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Figure-Ground Organization and Object Recognition Processes: 
An Interactive Account 
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Traditional bottom-up models of visual processing assume that figure-ground organization 
precedes object recognition. This assumption seems logically necessary: How can object 
recognition occur before a region is labeled as figure? However, some behavioral studies find 
that familiar regions are more likely to be labeled figure than less familiar regions, a 

-problematic finding for bottom-up models. An interactive account is proposed in which 
figure-ground processes receive top-down input from object representations in a hierarchical 
system. A graded, interactive computational model is presented that accounts for behavioral 
results in which familiarity effects are found. The interactive model offers an alternative 
conception of visual processing to bottom-up models. 

In a typical visual scene multiple objects partially occlude 
one another, which makes object recognition a computation- 
ally complex task. Traditional information-processing theo- 
ries of visual perception have suggested that prior to object 
representation and recognition, an earlier stage of perceptual 
organization occurs to determine which features, locations, 
or surfaces most likely belong together (for examples, see 
Biederman, 1987; Kosslyn, 1987; Marr, 1982; Neisser, 
1967; Palmer & Rock, 1994a). Such a hierarchical organiza- 
tion of processing seems to be logically required (Palmer & 
Rock, 1994b): For object recognition to occur, an object 
representation must receive inputs from features or regions 
of the visual field that correspond to the object that is to be 
recognized. Inputs from any other feature or region of the 
visual field are spurious and presumably make object 
recognition more difficult. 

One particular aspect of perceptual organization that the 
visual system needs to determine is which regions in the 
visual field are figures and which regions are backgrounds. 
Only figural regions should be given as input to object 
representations. The study of figure-ground organization 
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began slightly after the beginning of the century by the 
Gestalt psychologists, most notably Rubin. The work of 
these psychologists, as well as of more modern theorists, 
suggests that there are certain "rules" that the visual system 
uses to determine which regions are figure. For example, 
Rubin (1915/1958) reported that smaller regions tend to be 
perceived as figure. Also, studies of figural perception 
motivated by information-processing theory demonstrated 
that figural perception was influenced by factors such as 
symmetry and convexity (see Pomerantz & Kubovy, 1986, 
for a review). Such findings are consistent with the tradi- 
tional theories of perception discussed above in which 
figure-ground organization is computed by using stimulus 
variables such as symmetry, area, and convexity. Following 
this figure-ground computation, the regions labeled asfigure 
are then matched against object representations. 

Although the hierarchical processing scheme is com- 
monly advocated by most theories of visual processing, 
recent studies of figure-ground organization have chal- 
lenged the traditional theory of visual processing. Peterson 
and her colleagues (Peterson, 1994; Peterson & Gibson, 
1991, 1993, 1994a, 1994b; Peterson, Harvey, & Weiden- 
bacher, 1991) have demonstrated that meaningful (or denota- 
tive) regions are more likely to be perceived as figure 
relative to less meaningful (or less denotative) regions. 
Similar findings were reported by Rubin (1915/1958), and 
Rock (1975) also briefly discussed this effect. For example, 
when viewing figure-ground stimuli that contain a more 
denotative, or familiar, region, research participants tend to 
report that the highly denotative (or meaningful) region is 
the figure. However, if the same display is rotated 180 ° , then 
the choice of figure is made primarily on the basis of 
stimulus factors such as symmetry or area (Peterson & 
Gibson, 1991). Similar results are found in experiments in 
which participants viewed figure-ground displays for a 
longer period of time (30 s) and reported reversals of figure 
and ground. Participants tend to report the denotative region 
as figure longer in upright displays, but when the displays 
are rotated 180 ° , the region that is favored by stimulus 
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factors is held as figure for longer (Peterson et al., 1991). 
This latter finding argues against an alternative interpreta- 
tion that attributes familiarity effects to object or shape 
recognition rather than to an influence of familiarity on 
figure-ground organization itself. This is because the partici- 
pants in this experimental paradigm are basing their behav- 
ior directly on their perceptions of figure-ground relations. 

If one assumes that figure-ground organization must 
precede the activation of an object representation, then these 
results appear paradoxical. How can object representations 
influence figure-ground organization if the very goal of 
figure-ground organization is to provide input to object 
representations? Previous attempts to explain how past 
experience can influence perceptual organization focused on 
the notion of "preconscious oscillations" (Rock, 1975). This 
theory suggests that when someone views a figure-ground 
stimulus, one region is held as figure preconsciously. If that 
region (preconsciously) matches an object representation, 
then it is held as figure longer because of top-down input 
from the object representation. If the region does not match 
an object representation, then the assignment of figure is 
switched to the other region so that this second region is the 
preconscious figure. This account explains these experience 
effects within the framework of traditional theories of visual 
processing. Figure-ground organization still precedes object 
representation, and the processing between these two hierar- 
chical stages is serial (i.e., a figure-ground organization is 
determined, and following this organization, the result is 
matched against object representations). 

In contrast with the preconscious oscillation theory, 
Peterson and her colleagues (Peterson & Gibson, 1991, 
1993, 1994a, 1994b; Peterson et al., 1991) have proposed an 
alternative account of these potentially paradoxical results: 
The observed orientation-dependent changes in figure- 
ground organization are due to object recognition processes 
that operate before figure-ground organization. That is, 
there are two types of cues that can determine figure-ground 
organization. The first type of cue is the gestalt, or stimulus 
cue, that emphasizes more general stimulus properties (e.g., 
symmetry, convexity, area). The second type of cue is an 
early orientation-dependent object representation process 
that is at work before figure-ground processes--a "prefig- 
ural" object representation that exists before figure-ground 
organization has been completed. In Peterson's (1994) 
words, "The second type of cue includes the outputs from an 
early object recognition process that operates before figure- 
ground relationships have been determined completely or 
even provisionally" (p. 110). This second process is thought 
to operate along both sides of the luminance contour in the 
figure-ground display. The result is that two sets of parts are 
determined, and these two sets of parts are matched against 
object representations that are stored in visual memory. If 
one of these sets matches an object representation, then that 
object representation provides input to the figure-ground 
processing stage, thus allowing object representations to 
influence figure-ground organization (see Peterson, 1994, 
for a review). This matching process occurs prior to any 

figural organization. Some computer vision theorists (e.g., 
Lowe, 1985) have also assumed that preliminary object 
identification can precede organization of the lower levels of 
representation. 

Whereas Peterson's (Peterson & Gibson, 1991, 1993, 
1994a, 1994b; Peterson et al., 1991) results clearly challenge 
the traditional models of visual perception, there is an 
alternative to the traditional theories of perception that 
predicts exactly these types of results. This alternative model 
is based on the principles of parallel distributed processing 
(PDP) models of information processing, particularly the 
ability of PDP models to exhibit interactive behavior (for 
reviews of PDP models see McClelland, 1993; Rumelhart, 
1989; Rumelhart & McClelland, 1986). In this article we 
have presented a relatively simple PDP model of figure- 
ground perception that explains familiarity effects in figure- 
ground organization in terms of a hierarchically structured 
model in which the levels of processing interact with one 
another; no prefigural object processing is assumed. We 
propose that partial results from figure-ground processing 
can be sent to subsequent object representations. The object 
representations, in turn, can send activation back to the 
figure-ground units, providing top-down input before a 
stable figure-ground percept has been established. By this 
account, object representations can be viewed as another 
type of constraint on figure-ground organization, much as 
area, symmetry, and convexity constrain which region is 
perceived as figure. Unlike in Peterson's (1994) account, in 
our account it is not necessary for these constraints to be 
computed prior to figure-ground organization because pro- 
cessing is thought to be fully interactive. 

Although Peterson and colleagues (Peterson, 1994; Peter- 
son & Gibson, 1991, 1993, 1994a, 1994b; Peterson et al., 
1991) considered such an interactive approach, they rejected 
it because they believe that interactive models can only 
facilitate lower level processing based on top-down inputs 
but not alter its outcome. This intuition is based in part on 
previous interactive models such as McClelland and Rumel- 
hart's (1981) word superiority model; in this model, top- 
down support from word units to letter units allows the 
network to make faster discriminations between letters 
within words than between letters within nonwords. A 
stronger form of top-down influence is necessary to account 
for Peterson's results with an interactive model because the 
actual outcome of figure-ground organization is determined 
in part by top-down familiarity or denotivity influences. 
However, when McClelland and Rumelhart's model is 
presented with partial stimuli, the top-down influences are 
strong enough to fill in missing letters in a way that is 
consistent with known words. Although this is an example of 
top-down processing actually changing the outcome of 
lower level processing, it could be argued that merely 
"filling in" missing information is not the same as influenc- 
ing the entire course of processing at the lower level, which 
is presumably what is observed in Peterson's experiments. 
Further, Peterson and Gibson (1993) showed that denotivity 
can actually compete with other bottom-up inputs instead of 
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merely resolving bottom-up ambiguity, which they argued 
further challenges an interactive account. 

Although Peterson and colleagues have clearly presented 
an alternative to interactive models of visual perception 
(Peterson & Gibson, 1994a), it is not a foregone conclusion 
that the interactive-processing approach cannot sufficiently 
explain these results. In what follows, we have proposed an 
interactive model of figure-ground organization in an at- 
tempt to reconcile the logical requirements of hierarchical 
processing accepted by most theories of visual perception 
and Peterson's behavioral results. The purpose of our model 
is to simply demonstrate that an interactive model that 
incorporates hierarchical visual processing can account for 
familiarity (or denotivity) effects in figure-ground percep- 
tion, reconciling the more traditional accounts of vision with 
Peterson's behavioral results. However, it should be noted 
that our model does not claim to simulate all of the relevant 
operations in visual processing that bear on our account of 
figure-ground organization, as we have simplified the model 
to capture the essential mechanisms that underlie the interac- 
tive processing account. 

A PDP Approach 

The principles we use to understand figure-ground organi- 
zation in a PDP network are derived from the graded, 
random, adaptive, interactive, and nonlinear networks 
(GRAIN; McClelland, 1993) model and involve the follow- 
ing principles: (a) A unit's activation is a graded, sigmoidal 
function of the summed input to the unit; (b) activation is 
transmitted gradually in time; (c) processing is interactive 
based on between-module connections that are excitatory; 
(d) processing is competitive based on within-module con- 
nections that are inhibitory; and (e) activation across units is 
intrinsically variable. 

The above principles provide a mechanistic account of 
figure-ground organization. Perhaps the most important 
principle for our account is interactive information process- 
ing (Principle c), in which processing at lower levels 
influences processing at higher levels, and vice versa. In 
multilayer networks, these influences are not constrained to 
immediately adjacent processing layers--a change in process- 
ing at one layer can be observed when processing is altered 
at a more distant layer. Thus, our approach to figure-ground 
organization relies on top-down projections from object 
representations to figure-ground processes to show effects 
of stimulus familiarity on figural organization. The interac- 
tive-activation account of the word superiority effect (Mc- 
Clelland & Rumelhart, 1981; Rumelhart & McClelland, 
1982) is probably 'one of the best known examples of 
interactive processing in which higher level information 
(word level) can impact on lower level processes (letter 
perception). 

Graded processing (Principle a) has two important effects 
for our model. The first effect is that processing is not strictly 
sequential because partial products are propagated, or cas- 
caded, throughout the network (McClelland, 1979). The 
second effect is that a single variable may only have a partial 
influence on other units, which allows multiple cues or 

constraints to simultaneously influence processing in the 
network. In relation to our simulations, the implications of 
graded processing for figure-ground organization are that a 
region can be considered partially figure during intermediate 
stages of processing, before the network has settled on a 
coherent interpretation of the image. This may be at odds 
with intuitive notions of figure-ground processing, in which 
there always appears to be a discrete figural region. How- 
ever, it is important to note that whereas the processing is 
gradual, the network does indeed show discrete phase 
transitions, which might map directly onto these intuitions. 
This issue is revisited in more detail in the General 
Discussion section. 

The final principle that is important for our account is 
multiple-constraint satisfaction, which emerges from the 
combination of the properties of graded and interactive 
processing (Principles a and c). As partial (graded) products 
of processing in different layers interact, the various con- 
straints built into the weights, and the external inputs, jointly 
influence the activation state that results over cycles of 
activation updating or "settling." In our approach to figure- 
ground organization, different types of inputs can constrain 
the possible figure-ground organization. These inputs might 
be lower level stimulus cues, such as area or convexity, or 
they might be higher level inputs coming from object 
representations stored within the network. Each of these 
sources can influence (i.e., constrain) figure-ground process- 
ing without the need to postulate a prefigural object recogni- 
tion process. 

Our account of figure-ground organization is consistent 
with a number of other models of visual processing. 
Examples of these models include Cohen, Dunbar, and 
McClelland's (1990) work, in which they showed that 
attentional selection in the Stroop task can be simulated as a 
balance of constraints provided by the stimulus presented 
and by the task demands imposed on the participant by the 
experimenter. Another neural network model that relies on 
constraint satisfaction is the selective attention model 
(SLAM) of Phaf, Van der Heijden, and Hudson (1990), 
which accounted for participants' performance in several 
selective attention tasks, such as attentional filtering and the 
Stroop task. This model's processing is guided by con- 
straints imposed by the stimulus and by the attributes to be 
attended. Finally, constraint satisfaction can also be ob- 
served in Malt and Poggio's (1976) account of binocular 
disparity; in this account of stereopsis, corresponding points 
between the two retinas are matched on the basis of 
constraints, such as continuity of surfaces. For example, in 
Mart and Poggio's model, two neighboring units that 
represented a patch of surface at the same depth plane were 
connected by an excitatory connection. This excitatory 
connection implements the constraint that these two units be 
mutually active, thus ensuring that the network maintained 
the continuity of some particular surface. 

In what follows, we have presented a computational 
model of figure-ground organization. We assumed that 
processing can be hierarchical, with object recognition 
processes logically following figure-ground processes, as 
assumed by most theories of visual perception. No prefigural 
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shape recognition process is assumed, as was postulated by 
Peterson (e.g., Peterson, 1994). By our account, familiarity 
(or denotivity) effects are due to interactive processing 
among units in the figure-ground layer and units in the 
object representation layer. With such an interactive ap- 
proach, the finding that one stage of processing can influence 
another stage of processing does not necessarily mean that 
the first process is either before or in parallel with the 
process it influences. Instead, higher level processes can 
interact with lower level processes. We thus offer our model 
as an "existence proof" of the interactive account: To the 
extent that our interactive account simulates the behavioral 
data, it needs to be considered a viable model of figure- 
ground perception. Indeed, our results show that our net- 
work can explain orientation effects, exposure-duration 
effects, and the combination of multiple cues to figure- 
ground organization. 

The Model  

Our network was based on a model developed and 
investigated by Sejnowski and colleagues (see Kienker, 
Sejnowski, Hinton, & Schumacher, 1986; Sejnowski & 
Hinton, 1987). We adopted this model as a framework for 
our simulations because it is capable of exhibiting some 
basic figure-ground organization, not because we feel that it 
is a model that simulates all aspects of visual processing. In 
essence, this model allows us to implement the more general 
principles of graded, interactive processing, which we feel 
are essential for explaining the range of figure-ground 
phenomena discussed above. We believe that our account, 
based on the general principles of PDP models, will hold 
given different assumptions about the details of the underly- 
ing processing. 

The network, shown in Figure 1, has three processing 
levels. The first level processes the boundaries contained in 
the image; this level corresponds to simple image features 
(edges). This level is followed by a layer of units that 
represent which surfaces are figure. Finally, there are object 
representations that code for familiar shapes. Thus, the 
figure-ground units receive two types of information: bot- 
tom-up information from the edges present in the visual field 

f 
t 

/- Object units 

f j ,ig.re 
units  

t 
J ~'/~-'-/'~ ~ Boundary 

J 

t t t t t  
Input from image 

Figure 1. The architecture of the interactive model of figure- 
ground organization. 

and top-down information from internally stored object 
representations. Note that whereas the network can be 
divided into clear processing layers, this hierarchical organi- 
zation is blurred by the interactive processing; as soon as 
information begins to propagate within the network, the 
information flow is bidirectional. 

In the present model there were four types of edges, each 
corresponding to a simple visual contour and to the side of 
that contour on which the figural region was most likely to 
be located. For example, activation of a boundary-left unit 
signaled the presence of a vertical edge that had the figural 
region to its left. Similarly, activation of a boundary-right 
unit signaled the presence of a vertical edge that had the 
figural region to its right. Activation of either a boundary- 
above or a boundary-below unit signaled the presence of a 
horizontal edge that had the figural region above or below 
the edge, respectively. These four types of units are collec- 
tively referred to as the boundary layer. One could argue that 
such boundary units are psychologically implausible be- 
cause they contain cues to figure-ground relations, and 
human observers can clearly perceive edges or boundaries 
without assigning figure-ground relations to either side of 
this boundary. However, the same is true of the boundary 
units in our model: The boundary units can represent simple 
edges without assigning figure-ground relations. This is 
because a single edge would activate boundary units corre- 
sponding to both figure-ground interpretations, which would 
result in neither side of the edge being labeled figure. 

The figure units, when active, signaled the presence of the 
figural region. Thus, the network was presented with edge 
information, and from this information the network had to 
fill in the region that was most likely the figure by activating 
some set of figure units. The network solved this task by 
using both lower level constraints, provided by the edge 
units, and higher level constraints, provided by the object 
representations. Finally, it is important to note that the 
boundary information provided to the network was com- 
pletely ambiguous from the view of the figure units; at any 
location the network did not know whether that region 
should be labeled figure or ground. Only the top-down 
information could bias the network to choose one particular 
figure-ground organization. Given this brief overview of the 
network, we now turn to the specific implementational 
details. 

Connectivity 

All of the connections described were symmetric. That is, 
for each connection described, there was also a reciprocal 
connection with the same weight value. This implementa- 
tion is denoted w;] = wil, which states that the weight from 
unit i to unit j equals the weight from unit j to unit i. 
Symmetric connections are significant because of Hopfield's 
(1982) convergence theorem, which states that a symmetric 
network settles into a stable pattern of activation (an energy 
minimum or a goodness maximum) given sufficient settling 
time. 

The lowest levels of processing, the boundary units, 
consisted of an 11 x 16 array of units for the boundary-left 
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and the boundary-fight layers and a 12 × 15 array of units 
for the boundary-above and the boundary-below layers. The 
next layer, the figure layer, consisted of a 12 × 16 array of 
units. Finally, the object representation level contained only 
two units, each corresponding to a different shape. 

At each location in the visual field there were four 
different types of edge units, as described above, for an 
overall total of 712 edge units. In accordance with Kienker 
et al. (1986), opposite pairs of edge units were mutually 
inhibitory, as illustrated in Figure 2a. For example, a 
boundary-left unit at one location in the visual field inhibited 
the boundary-right unit at the same location because the 
figure cannot lie both to the left and the right of the edge; the 
figure must lie either to the left or the right. The boundary- 
above and boundary-below units were also mutually inhibi- 
tory for the same reason. (Exact values of all parameters, 
including the strengths of the connections, appear in Appen- 
dix A.) 

Each of the figure units was connected by means of 
excitatory weights to its eight nearest neighbors (Figure 2b) 
to implement the constraint that the figural region tends to be 
connected and continuous. Between each pair of figure units 

Figure 2. Patterns of connectivity in the network. (a) Opposing 
boundary units (i.e., left vs. right and above vs. below) inhibit one 
another. (b) A given figure unit has positive projections to and from 
its eight nearest neighbors. (c) Figure units (squares) receive both 
excitatory and inhibitory projections from boundary units (arrow- 
heads). For example, the boundary-right unit shown will excite 
figure units to its right but inhibit figure units to its left. All 
connections are bidirectional. 

Consistent (Possible) Inconsistent (Impossible) 
Relations Relations 

Figure 3. The patterns of connectivity among the boundary units. 
Some combinations of boundary units formed legal comers (consis- 
tent), whereas other combinations formed illegal comers (inconsis- 
tent). Units with a relationship consistent with a comer were joined 
by positive weights; units with a relationship inconsistent with a 
comer were joined by negative weights. 

was a pair of edge units, oriented such that the boundary unit 
activated the figure units to one side and inhibited the figure 
units to the other side, as shown in Figure 2c. This pattern of 
connectivity between the boundary units and the figure units 
allowed the network to fill in the figural region to one side of 
the edge that was present in the visual field. 

Because of the presence of corners in visual images, there 
was another pattern of connectivity among the boundary 
units, as shown in Figure 3. At a given location in the visual 
field certain combinations of vertical and horizontal bound- 
ary units are possible and are consistent with a corner, 
whereas other combinations of boundary units are impos- 
sible and do not correspond to any coherent visual input. ~ 
Possible combinations of vertical and horizontal boundary 
units (i.e., boundary units that corresponded to corners) were 
mutually excitatory, whereas impossible combinations of 
boundary units were mutually inhibitory. The bottom-up 
processing and figure-ground processing involve multiple- 
constraint satisfaction as the network attempts to determine 
which of the figure units are consistent with "the boundary 
units and vice versa. This was the primary focus of the 
original Kienker et al. (1986) model. Also, although the 
pattern of connectivity among the boundary units and figure 
units was hand wired, it is possible for a network to develop 
similar patterns of connectivity through experience-based 
learning (Mozer, Zemel, Behrmann, & Williams, 1992). 

The object units received input from the figure units. Each 
of the object units received excitatory weights from those 
figure units that corresponded to a particular shape; an 
example is given in Figure 4, which shows the two shapes 
known to the network used in Simulations 1 and 2. Thus, 
each object unit can be thought of as coding for a group of 
figure units that are simultaneously active. The object units 
only coded for a shape in a given orientation (i.e., they were 

l This assumes a relatively clean image that does not contain 
multiple, overlapping objects. Processing such a complex scene 
would be difficult for the present network, and comers that are 
"inconsistent" for the present network might exist in a more 
complex scene. 
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Figure 4. The object representations used in the model. The 
darker regions of each panel correspond to those figure units that 
project to, and receive projections from, the object units. One 
object unit represents a single object. 

orientation dependent), which is consistent with findings 
from some behavioral studies (see Jolicoeur, 1985; Tarr & 
Pinker, 1989). However, we should note that the object 
representations were extremely simplified, as they do not 
incorporate the important properties of position, size, and 
other invariances known to be characteristic of human object 
recognition (Biederman & Cooper, 1991). This simplifica- 
tion is useful for understanding the basic behavior of our 
model. We revisit the issue of more realistic object represen- 
tations in Simulation 3 and in the General Discussion. As 
noted earlier, our claims with this model are modest: We 
want only to demonstrate that an interactive model that 
incorporates a traditional hierarchical model of visual pro- 
cessing can simulate the effects of familiarity on figure- 
ground perception. As stated above, we do not claim that all 
aspects of our model are supported by the psychological and 
neurobiological data, nor does this have to be the case to 
demonstrate our point. The basic phenomena we observe in 
our model are present in systems that have different represen- 
tations at several different levels of the system. 

Updating Algorithm 

Following standard algorithms (Hopfield, 1984; McClel- 
land, 1993), the units in our model computed their net input 
from other units, and their activation was a sigmoidal 
function of the net input. All updating equations are given in 
Appendix A. The processing dynamics of our GRAIN model 
are briefly described here. 

Using a network consisting of binary units (0, 1 outputs 
only) and symmetric connections (i.e., wij = wji), Hopfield 
(1982) used properties from statistical physics to mathemati- 
cally prove that such a network converges to a fixed state. 
Hopfield (1984) later showed that this convergence behavior 
also holds for networks with continuous units and symmetric 
weights, as in the present simulations. In particular, for a 
continuous network there exists an "energy" function (also 
called a Liapunovfunction) that decreases monotonically as 
processing proceeds through time, thereby settling into a 
state of low energy. (The derivation of the energy function 

for the continuous model can be found in Hopfield, 1984, 
and is not presented here. See also Hertz, Krogh, & Palmer, 
199 l, and Movellan & McClelland, 1993.) 

The global energy of the system can be thought of as the 
degree to which the current activations in the network satisfy 
the constraints given by both the input to the network and the 
patterns of connectivity among the units. Alternatively, the 
sign of the energy function can be reversed to define the 
"goodness" function (McClelland, 1993; Movellan & Mc- 
Clelland, 1993). A higher value of goodness suggests that 
the current pattern of activation is more consistent with, or 
fits well with, the constraints imposed by the input and the 
patterns of connectivity, whereas a lower goodness value 
suggests that the current pattern of activation is less consis- 
tent with, or fits poorly with, these constraints. 

The use of noise in the activations is important because 
the network can reach a local maximum of the goodness 
function, which represents an incorrect or partial interpreta- 
tion of the visual image presented to the network. Noise 
essentially allows the network to "jump" out of these local 
maxima, increasing the likelihood that the network will find 
the global maximum. As a result, the units in our network 
have random, Gaussian noise added to them, and we use a 
noise schedule in which the added noise is larger during the 
early stages of processing and is gradually reduced as 
processing proceeds (Kirkpatrick, Gelatt, & Vecchi, 1983). 
Kienker et al. (1986) discussed the importance of noise for 
multiple-constraint satisfaction in a network similar to ours. 

Simulation 1: Network Performance 

We first conducted a simulation to test the network's 
overall behavior. The goal of this simulation was to ensure 
that it could correctly separate figure from ground and 
"recognize" the shape that was presented (i.e., activate the 
corresponding object unit). Furthermore, we wanted to 
determine if the network would show the orientation effects 
reported by Peterson and colleagues (see Peterson, 1994, for 
a review of this work). The network was presented with an 
image of a figure-ground display with a single, ambiguous 
luminance contour separating two regions of the display. 
This was represented by input to the corresponding bound- 
ary units, an example of which is shown in Figure 5. The 
only difference between the two regions was that one of 
them received top-down input from an object representation. 
That is, one side of this otherwise ambiguous stimulus was 
familiar to the network. If the object representations can 
indeed influence figure-ground organization, then the net- 
work should have a bias to call the familiar side figure. Note 
that any bias that emerges would be entirely due to the object 
representations' influencing figure-ground organization be- 
fore the completion of this processing, because either side of 
the ambiguous shape is equally likely to be called figure 
from the point of view of the lower level constraints on the 
network (i.e., the size or area constraints). 

As a control condition, we rotated the shapes 180 °. 
Because the object representations in the model are orienta- 
tion dependent, rotating the stimulus would lessen the 
top-down bias for the shape because the familiar region in a 
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Ambiguous Luminance Contour 
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Figure 5. An example of the ambiguous input presented across 
the boundary units to simulate presenting the network with a 
figure-ground display. Note that the central contour is ambiguous-- 
the network does not know which side of this contour should be 
called figure. 

rotated display has a poorer fit to the object representations 
relative to the familiar region in an upright display. Thus, 
with rotated shapes there are few cues to determine which 
region should be figure; the network should, therefore, 
choose each region (i.e., the familiar region and the less 
familiar region) with approximately the same probability. A 
reliable difference between the upright and rotated condi- 
tions would replicate Peterson's (1994) behavioral results. 

M e ~ o d  

The network was presented with one of four shapes: The familiar 
region could appear either to the left or right of the ambiguous 
central contour, and it could appear upright or rotated 180 ° from 
upright. The network cycled 400 times in which the activations of 
each unit were updated in accordance with Equation 3 in Appendix 
A. Each stimulus was presented by giving the appropriate boundary 
units additional net input of 60; this external input corresponds to 
the/j term in Equation 1 of Appendix A. 

Following the 400 time steps, the pattern of activation across the 
figure units was compared with all of the correct figure-ground 
solutions that the network could have settled on (i.e., those 
solutions that corresponded to a reasonable interpretation of the 
boundaries presented as input). To determine if the network settled 
into any local maxima, any discrepancies between the present 
solution and the correct figure were calculated. If there was any 
discrepancy between the number of units in the actual solution and 
in the correct solution, then the trial was excluded from the 
analyses reported below. This is a forced-choice procedure, but the 
network must choose exactly either the familiar region or the less 
familiar region. Note that this is a very conservative criterion, and 
as such it may tend to inflate the number of incorrect solutions. 

Results 

The network was tested with upright and rotated versions 
of  the two familiar shapes. The four possible stimuli 
(upright, familiar region on left; upright, familiar region on 
right; rotated, familiar region on left; rotated, familiar region 
on right) were each presented on 100 different trials; 
however, the results for the upright and rotated shapes were 
collapsed across whether the meaningful region appeared on 
the left or on the right because there were no differences 
between the left and right positions. The resulting figure- 
ground solution was compared with the two possible solu- 
tions for a given stimulus. Again, if the solution did not 
match one of  the two possible solutions perfectly, then the 
trial was excluded from the results reported. These imperfect 
solutions were removed prior to any further data analysis; 
thus, all of  the results reported do not include all of  the trials 
on which the network was tested. 

For those trials in which a perfect solution was obtained, 
the probability that the network called the meaningful (or 
denotative) region as figure for the upright and rotated 
shapes appears in Table 1. As is evident from the results, 
when the stimulus was in the upright orientation, the 
network had a strong bias to call the familiar region figure. 
However, when the same stimulus was presented in the 
rotated condition, that bias was dramatically reduced. This 
difference was statistically reliable, as indicated by a z test 
on independent proportions (z = 3.87, p < .001; see Fergu- 
son, 1981). 

Trials in which the figure-ground solution did not per- 
fectly match one of  the two possible solutions for that 
stimulus were also analyzed. These incorrect solutions were 
compared between the upright and the rotated shapes. Of the 
200 trials in which upright shapes were presented, the error 
rate was 34.5%; of  the 200 trials in which rotated shapes 
were presented, the error rate was 30.5%. The difference 
between these two error rates was not statistically reliable 
(z = 0.86, p > .30). The same analyses were performed on 
the remaining simulations. 

Finally, the number of  incorrect solutions was also 
computed with a less conservative decision criterion to 
determine if the relatively large rates of  incorrect solutions 
were due to our stringent criterion. The less conservative 
criterion involved excluding a figure-ground solution if it 
differed from one of  the possible legal patterns by more than 
five units (instead of  one unit). This criterion resulted in 

Table 1 
Results From Simulation 1: Figure-Ground Solutions and 
Stimulus Orientation 

Stimulus orientation 

Summary statistic Upright Rotated 

Probability of choosing denotative region as 
figure .801 .583 

SD 0.035 0.042 

Note. Standard deviations are based on the assumption that the 
probabilities came from a binomial distribution. 
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qualitatively similar results with only a moderate reduction 
in the number of incorrect solutions. In particular, for the 
rotated stimuli the denotative region was computed as the 
figural region 58.6% of the time; for the upright stimuli the 
denotative region was computed as the figural region 78.7% 
of the time. For the rotated shape trials the error rate was 
30%; for the upright shape trials the error rate was 32%. 
Thus, a more lax decision criterion gives results similar to 
those of the strict criterion, suggesting that the large number 
of incorrect solutions is not entirely a function of the strict 
criterion. 

Discussion 

These results demonstrate that higher level object knowl- 
edge can indeed influence figure-ground organization, even 
when all of the lower level cues are identical between two 
regions. This supports our assertion that object representa- 
tions can influence figure-ground organization in an interac- 
tive manner: Object representations can be partially acti- 
vated by initial activation across the figure units, allowing 
the object units to send activation back to the lower 
processing levels. If  there is enough of a match to a 
particular shape, then the corresponding object representa- 
tion becomes more active and, as a result, sends more 
top-down activation to the figure-ground units. Although the 
error rates were moderate, they were similar for the upright 
and the rotated shapes. 

Our results replicated those of Peterson and colleagues 
(e.g., Peterson & Gibson, 1991, 1994b). The mechanisms 
that give rise to our simulation results are consistent with 
interactive models of visual processing, suggesting that an 
interactive model can indeed explain how object representa- 
tions can influence figure-ground processes. 

Simulat ion 2: Exposure  Durat ion 

In Simulation 2 we investigated an aspect of the behav- 
ioral data that goes beyond the simple ability of object 
representations to affect figure-ground organization. Peter- 
son and Gibson (1991, 1994a) reported that the meaningful 
regions in upright stimuli were more likely to be labeled 
figure than the same regions in rotated stimuli. However, this 
effect was determined by the exposure duration of the 
stimuli. That is, stimulus orientation interacted with expo- 
sure duration. For brief exposure durations (all durations 
less than 150 ms in Peterson & Gibson, 1991, and for the 
14-ms exposure duration in Peterson & Gibson, 1994a), the 
difference in reporting the meaningful region as figure 
between upright and rotated shapes was much reduced, 
relative to longer exposure durations. Figure-ground process- 
ing can also occur without influences from object representa- 
tions at short durations, but the top-down influence emerges 
as the exposure duration of the stimulus increases. 

The effects of exposure duration were investigated by 
varying the number of processing cycles that the network 
was allowed to process the stimuli. The network was 
identical to that used in Simulation 1, but the stimuli were 
presented for 25, 50, 100, or 400 cycles. 

Method 

The procedure used in Simulation 2 was identical to that used 
previously, with the following exceptions. First, the stimuli were 
allowed to cycle for different amounts of time (25, 50, 100, or 400 
cycles). Second, the strict decision criterion was not used because 
full figure-ground solutions would not have been present following 
a few processing cycles. Thus, use of a stringent criterion would 
have excluded most, if not all, of the trials. In Simulation 2 we 
instead had the network perform the equivalent of a forced choice 
on which side of the figure-ground stimulus appeared to be figure 
by scoring that side with more figure units active. 

Results 

The results of Simulation 2 appear in Figure 6. As is 
evident from the graph, stimulus orientation interacted with 
the number of processing cycles. Specifically, for the 
smallest number of processing cycles (25 cycles), there was 
no reliable difference between the upright and the rotated 
shapes (z = -0.50,  p > .60). The differences for the other 
numbers of cycles (50, 100, or 400 cycles) were all highly 
reliable (for 50 cycles, z = 2.30, p < .03; for 100 cycles, 
z = 2.10,p < .04; and for 400 cycles, z = 2.35,p < .02). 

Discussion 

The results of Simulation 2 demonstrated that stimulus 
orientation interacted with the number of processing cycles, 
a finding which fits with the results presented by Peterson 
and Gibson (1991, 1994a). Observers who saw upright 
figure-ground stimuli at various exposure durations required 
a minimum exposure duration before reporting the denota- 
tive region as figure. The minimum exposure duration was 
different between two studies: In Peterson and Gibson's 
(1994a) article, exposure durations of 28 ms or greater were 
required in order to see denotivity effects, whereas in 
another article (Peterson & Gibson, 1991), exposure dura- 
tions of 150 ms or greater were required. The results from 
Peterson and Gibson (1991) suggested that if the exposure 
duration was less than 150 ms, participants were likely to 
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Figure 6. The results of Simulation 2. Stimulus orientation 
interacts with the number of processing cycles (or exposure 
duration). 
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use gestalt factors (specifically, symmetry) to determine 
which region appeared to be the figure, although in another 
study (Peterson & Gibson, 1994a) they found that symmetry 
cues were not used at the briefest exposure duration (14 ms). 
If the figure-ground stimulus was rotated 180 ° from the 
canonical, upright orientation, participants were likely to 
rely on gestalt factors to assign figure and ground, presum- 
ably because the inputs from object representations were 
diminished (see the "full figures" data in Table 2 of Peterson 
& Gibson, 1991). 

This analysis is consistent with the operation of our 
network. Some minimum exposure duration must be met 
before object representations can be bootstrapped from the 
figure units to provide top-down input to the figure-ground 
computations. We should note that because of the intrinsic 
variability in the network, the object units might become 
activated very early in processing. However, this activation 
is not far enough above the noise level to reliably influence 
the figure units. 

Simulation 3: Position Invariant Object 
Representations 

We next turned to a shortcoming of our approach. In 
particular, the use of the simplified object representations in 
our model are problematic because of the well-known 
limitations of such simple template-like models (see Hum- 
mel & Biederman, 1992; Neisser, 1967; Pinker, 1984; 
Selfridge & Neisser, 1960, for reviews of the difficulties 
with template matching). Although some recent computer 
vision systems have effectively used a template-like proce- 
dure for object identification (e.g., Lowe, 1987; Poggio & 
Edelman, 1990; UUman, 1989), some psychological evi- 
dence suggests that human object representation can be 
achieved over different transformations, such as position 
(e.g., Biederman & Cooper, 1991), a result inconsistent with 
template-matching models. Other evidence, however, is 
more consistent with template matching (Edelman & 
BUlthoff, 1992). Although we did not attempt to address all 
theoretical issues in both figure-ground perception and 
object recognition, we did want to ensure that the previous 
results could also arise in a system that used object representa- 
tions that would more closely parallel the psychological data 
suggesting that object representations are not templates. 

The critical property of the object representations for the 
success of Simulations 1 and 2 is that they were able to exert 
top-down influence in a specific spatial location correspond- 
ing to a familiar object. Thus, it seems that our account 
requires that object representations retain spatial informa- 
tion, which might appear to be fundamentally at odds with 
the psychological data just described. However, there is at 
least one way in which object representations could be both 
spatially invariant and yet still be able to exert a spatially 
specific top-down influence on earlier stages of processing. 
This could occur in a system that developed fully invariant 
representations over a number of intermediate processing 
stages, each of which extracts a greater degree of invariance 
from previous stages. Examples of this type of invariant 
object recognition have been proposed by both Mozer 

(1987, 1991) and Fnkushima (1980), and this approach to 
translation invariance is depicted in Figure 7. This approach 
to invariant representations involves a convergence of 
information as one progresses upward in the hierarchy. For 
example, in Level 1 of Figure 7, there would be individual 
image features (e.g., oriented edge segments) in particular 
spatial locations (each of the circles in Level 1 of Figure 7 
corresponds to a different spatial location). As one progresses 
to Level 2, the receptive fields of units in this layer are larger, 
thus allowing these units to start to code for more complex 
features, with less of a reliance on where that feature is 
located. This spatial collapsing continues, so that by the time 
information reaches Level 5, the features responded to by 
individual units are quite complex and, presumably, corre- 
spond to objects or components of objects. Furthermore, 
based on the convergence of information, the units in Level 
5 are spatially invariant; they detect an object irrespective of 
the exact location the object occupied in Level 1. But, 
although the highest level representations in such a system 
have lost all information regarding spatial location, this 
information is still present in the intermediate representa- 
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Figure 7. Illustration of how a spatially invariant object represen- 
tation can interact with spatial positions occupied by objects. As 
one progresses from earlier .levels to later levels in this network, 
receptive field size increases, resulting in spatial invarianee in later 
levels (Level 5). However, the lower levels preserve spatial 
position, thereby allowing an invariant object representation to 
interact with locations. Also, although not depicted here, a network 
similar to this would code for more complex features the deeper 
one moved into the network (see Mozer, 1987, 1991). For example, 
Level 1 would only be involved in coding simple features such as 
an oriented edge in a specific location; later layers would code for 
more complex combinations of features, thereby resulting in object 
representations. We thank the International Association for The 
Study of Attention and Performance for permission to adapt this 
figure from "Early Parallel Processing in Reading: A Connectionist 
Approach" by M. C. Mozer, 1987, in M. Coltheart (Ed.), Attention 
and Performance XII: The Psychology of Reading (p. 89), Hove, 
England: Erlbaum. Copyright 1987 by Erlbaum. Adapted with 
permission. 
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tions leading up to the object representations, and an 
interactive version of this type of network would indeed 
exhibit the ability for activity at higher, more invariant levels 
of processing to facilitate processing at lower, more spatially 
organized levels of processing. 2 

To demonstrate our model's performance with a simpli- 
fied version of the multiple levels of invariant object 
processing (~ la Fukushima, 1980, and Mozer, 1987; see 
Figure 7), we extended the model by including another layer 
of object-level representations. This layer contained four 
units and was positioned between the figure layer and the 
object layer. This intermediate object layer coded for 
familiar patterns in a particular retinal position (similar to 
the intermediate levels in Figure 7); the object layer itself 
received input from the different positions of a given object. 
Thus, the object layer had spatial invariance in that the two 
units coded for a shape irrespective of where that shape 
appeared (similar to Level 5 in Figure 7). As before, there 
were two familiar objects. Each of the four individual units 
in the intermediate object layer coded for one of the two 
familiar objects in one of two positions. For example, the 
first unit in this layer coded for Object 1 in Position l, the 
second unit coded Object 2 in Position 1, and so on. Each of 
the two units in the object layer coded for one of the two 
objects irrespective of the location in which that object 
appeared, thereby making these object representations spa- 
tially invariant. The invariant object representations influ- 
enced processing by both receiving input from the appropri- 
ate intermediate object representations, thereby allowing 
objects to be recognized, and by sending top-down activa- 
tion back to the intermediate object layer, thereby allowing a 
bias in processing familiar shapes relative to unfamiliar 
shapes. 

Method  

The network was tested as in Simulation 1. All parameters in the 
current network were identical to those used in the previous two 
simulations. 

Table 2 
Results From Simulation 3: Position Invariant Object 
Representations 

Stimulus orientation 

Summary statistic Upright Rotated 

Probability of choosing denotative region as 
figure .919 .691 

SD 0.023 0.044 

Note. Standard deviations are based on the assumption that the 
probabilities came from a binomial distribution. 

tations can directly influence figure-ground organization, 
even when all other stimulus factors are held constant 
between two regions. 

The number of incomplete solutions was also collected 
and averaged across the two different shape orientations. For 
the two upright shapes, the average percentage of incom- 
plete solutions was 27%; for the two rotated shapes the 
average percentage of incomplete solutions was 44.5 %. This 
difference was statistically significant (z = 3.65, p < .001), 
with reliably fewer incomplete solutions occurring when the 
shape was in the upright orientation. 

Discussion 

These results replicated our earlier results, suggesting that 
higher level object knowledge can indeed influence figure- 
ground organization. Furthermore, in the present simulation 
we used object representations that were more plausible than 
those used in Simulations 1 and 2. Note, however, that the 
intermediate object units used in the present simulation still 
have many of the difficulties involved with template models. 
Again, we are not attempting to solve all of the problems 
posed by object representation and recognition; rather, we 
are trying to understand the interactions that might exist 
between intermediate levels of perceptual organization and 
later stages of object representation. To this end, our model 
has succeeded in showing that an interactive approach can 

Results 

The network was again tested with upright and rotated 
versions of the two familiar shapes. The four possible 
stimuli were each presented on 100 different trials, and the 
resulting figure-ground solution was compared with all 
possible solutions for a given stimulus. We used the criterion 
from Simulation 1: Any figure-ground organization that did 
not perfectly match one of the potentially correct solutions 
was excluded from the analyses. 

The results appear in Table 2. As is evident from the 
results, when the stimulus was in the upright orientation, the 
network had a strong bias to call the familiar region figure. 
However, when the same stimulus was presented in the 
rotated condition, that bias reduced dramatically. This 
difference was statistically significant (z = 4.72, p < .001). 
These results parallel those from Simulation 1, suggesting 
that the higher level object representations can overcome the 
ambiguity of these stimuli. Thus, as before, object represen- 

2 In addition, it is known that there is extensive interconnectivity 
between the ventral, object-based processing stream and the dorsal, 
spatial-based processing stream (see Desimone & Ungerleider, 
1989; Goodale & Milner, 1992; Harries & Perrett, 1991; Unger- 
leider & Mishkin, 1982). Thus, these connections could be 
providing interactivity between spatial and object processing, 
which could lead to the ability of object representations to influence 
spatially localized processing, as is required in our model. Further, 
data from neglect patients, who suffer from lesions of the parietal 
lobe (the dorsal stream), show impairments of spatially based 
processing defined both by object-based as well as spatially based 
reference frames, indicating that object-based representations are 
apparently affecting the spatial-based processing taking place in the 
dorsal stream (see Behrmann & Moscovitch, 1994; Driver & 
Halligan, 1991; Farah, Wallace, & Vecera, 1993). Thus, the idea 
that invariant object-recognition processing can also exhibit spa- 
tiaUy localized effects on processing in other areas (e.g., the 
figure-ground organization being modeled here) is sufficiently 
plausible to justify the simplified implementation of object represen- 
tations used in our models. 
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explain the influence familiarity (or meaningfulness) has on 
figure-ground organization. 

Simulation 4: k-WTA Algorithm 

Although the results of the previous simulations are 
consistent with our claims, a significant point warrants 
further discussion. First, with both Simulations 1 and 3 the 
number of incomplete solutions is quite problematic. What 
caused the relatively large numbers of incomplete solutions? 
These improper solutions were most likely due to the 
unrestricted activation that could occur across the figure 
units, which permitted the figure units to settle into patterns 
that did not correspond to one of the possible solutions given 
the input. Such solutions correspond to the network settling 
into a local maxima (i.e., a nonoptimal solution). Other 
researchers have noted this difficulty with multiple- 
constraint satisfaction networks (I-Iinton & Lang, 1985; 
Mozer, Zemel, & Behrmann, 1992; Mozer, Zemel, Behr- 
mann, & Williams, 1992). Specifically, an interactive, 
multiple-constraint satisfaction model such as ours must 
perform two searches (Mozer, Zemel, & Behrmann, 1992). 
The first search is for a good solution across the figure units; 
the other, simultaneous search is for a good solution across 
the object units. As Mozer, Zemel, and Behrmann (1992) 
noted, such multiple searches often lead to a large number of 
incorrect solutions. 

One limitation of our model that encouraged these local 
maxima was that there were no inhibitory mechanisms to 
restrict the number of figure units that could be active at any 
one time. Thus, activation across the figure units would often 
begin to grow across the boundaries specified by the input to 
the network. Given that inhibition is a well-known aspect of 
neural processing, our failure to implement inhibition within 
the figure layer is a clear limitation of the model. However, 
we found it impossible to implement inhibition directly 
among the figure units because direct lateral inhibition is 
often unstable when multiple inputs are to remain active at 
the same time. To address this issue, we adopted a "k -  
winner take all" (k-WTA) algorithm to incorporate inhibi- 
tory processes across the figure units. This should signifi- 
cantly reduce the number of incomplete solutions because 
only a certain number of units (denoted by the parameter k) 
are allowed to be active on any particular layer. In Simula- 
tion 4 we attempted to replicate our previous results using 
this algorithm. 

We used the activation function from Learning in Error- 
driven and Associative, Biologically Realistic Algorithms 
(LEABRA; see O'Reilly, 1995), which incorporates some 
additional, biologically motivated properties beyond the 
ones typically used in generic PDP models like the Boltz- 
mann machine or back-propagation networks. For the pre- 
sent purposes, the relevant property is activity regulation, 
which is intended to capture the effects of inhibitory 
intemeurons on pyramidal excitatory cells. The LEABRA 
model uses the k-WTA model of activity regulation, which 
stipulates that inhibition limits the maximum number of 
active units to some relatively fixed upper level, k. This form 
of activity regulation has been used to describe the effects of 

inhibitory circuitry in the hippocampus and other brain areas 
(Gibson, Robinson, & Bennett, 1991; McNaughton & 
Morris, 1987; O'Reilly & McClelland, 1994; Torioka, 1979; 
see Appendix B for the LEABRA activation equations). 

M e ~ o d  

The procedure was identical to that used in Simulation 3, 
except that the network cycled for 200-time steps and used a 
slightly different noise schedule (see Appendix B for param- 
eters). Note that k, the number of units active, was different 
for each layer. The value of k alone did not, however, bias 
the network to favor one region over the other region in the 
displays because the number of units was equal for the 
familiar region and the less familiar region (48 units in 
each). Any biases observed would be due to the top-down 
projections from the object units, not to the k parameter. 

Results 

The network was again tested with upright and rotated 
versions of the two familiar shapes, and the four possible 
stimuli were each presented on 100 different trials. We used 
the criterion from Simulations 1 and 3: Any figure-ground 
organization that did not perfectly match one of the poten- 
tially correct solutions was excluded from the analyses. 

The results appear in Table 3. As is evident from the 
results, when the stimulus was in the upright orientation, the 
network again had a strong bias to call the familiar region 
figure; when the same stimulus was presented in the rotated 
condition, that bias reduced dramatically. This difference 
was statistically significant (z = 3.07, p < .01). These re- 
sults parallel those from the previous simulations. 

The number of incomplete solutions was also collected as 
in the earlier simulations. In contrast to the previous 
simulations, the average percentage of incomplete solutions 
was dramatically reduced: The error rate was 3.5% for the 
two upright shapes and 6% for the rotated shapes. Although 
there were fewer incomplete solutions when the shape was 
in the upright orientation, this difference failed to reach 
statistical significance (z = 1.19,p > .20). 

Discussion 

The results of Simulation 4 replicated our earlier results 
by using a k-WTA updating algorithm, but in the present 

Table 3 
Results From Simulation 4: Figure--Ground Solutions and 
Stimulus Orientation in k-WTA Network 

Stimulus orientation 

Summary statistic Upright Rotated 

Probability of choosing denotative region as 
figure .791 .650 

SD 0.029 0.035 

Note. Standard deviations are based on the assumption that the 
probabilities came from a binomial distribution, k-WTA = k- 
winner take all; k = parameter k. 



452 VECERA AND O'REILLY 

simulation the number of incorrect or incomplete solutions 
has been significantly reduced. In addition, these results 
demonstrate that the interactive approach that we are 
advocating generalizes over different updating algorithms. 

These results also suggest that a constraint satisfaction 
approach can be used without resulting in a large number of 
incorrect solutions (i.e., local maxima). Also, we were able 
to replicate the previous findings after reducing the number 
of processing cycles from 200 to 100, suggesting that the 
constraint satisfaction approach, when combined with the 
LEABRA k-WTA algorithm, can robustly simulate figure- 
ground results, even with a smaller time scale. 

Simulation 5: Multiple Cues 

Although the present series of simulations support an 
interactive approach to figure-ground perception, Peterson 
and Gibson (1993) have presented results that they believe 
argue against a "feedforward and feedback" (i.e., interac- 
tive) process. Peterson and Gibson (1993) presented partici- 
pants with figure-ground displays that contained depth cues. 
These displays could either be black and white (B&W) 
stereograms or random dot (RD) stereograms. In each 
display type, there was a high-denotative (i.e., familiar) 
region and a low-denotative region. The depth cue could 
either cooperate or compete with the denotivity cue. For 
example, the high-denotative region could appear closer to 
the viewer (cooperation), or the low-denotative region could 
appear closer to the viewer (competition). When the denota- 
tive region was close to the viewer, this was said to be 
cooperative because regions that are closer to the viewer 
tend to be perceived as figure; thus the denotivity and depth 
cue both signaled that the same region (the denotative 
region) should be figure. Similarly, when the low-denotative 
region was closer to the viewer, this was said to be 
competi t ive because the distance of the low-denotative 
region suggested it should be figure while the denotivity of 
the more distant high-denotative region suggested it should 
be figure, thereby creating a competition between nearness 
and meaningfulness. 

Using these types of displays, Peterson and Gibson (1993) 
found that figure-ground organization was different between 
B&W stereograms and RD stereograms. In B&W stereo- 
grams, both denotivity and depth cues constrained equally 
what participants would call figure. Specifically, in the 
competition condition, participants perceived the meaning- 
ful region to be figure about half of the time; the other half of 
the time they perceived the closer region to be figure, even 
though this region was low in denotivity. The cooperative 
B&W stereograms resulted in participants' perceiving the 
meaningful region, which was also closer to the participant, 
as figure most of the time. In contrast to these results, in the 
RD stereograms disparity alone and not denotivity deter- 
mined which region would be figure. For example, in these 
stereograms, when the high-denotative region appeared 
closer to the participant, this region was called figure; 
however, when the low-denotative region was closer to the 
participant, this region was called figure, and denotivity did 

not appear to influence figure-ground organization, unlike 
performance in the B&W stereograms. 

Peterson and Gibson (1993) argued that these results 
could not be due to interactive processes. In particular, if 
disparity cues acted as the lower level letter units in 
McClelland and Rumelhart's (1981) model of the word 
superiority effect, then in B&W stereograms higher level 
denotivity cues should "operate to facilitate correct fusion 
rather than to alter the outputs of fusion processes" (p. 423). 
In other words, they did not see how top-down cues (i.e., 
denotivity) could cause the lower level units to settle into a 
pattern that was actually inconsistent with the bottom-up 
input. For example, this would amount to McClelland and 
Rumelhart's network settling into the letter-level representa- 
tion of wave  in response to the nonword bottom-up input 
mave. That is, the top-down support for wave  would actually 
have to override the bottom-up input of mave  by changing 
all of the m features to w features in the first letter position. 
Thus, to account for their results, Peterson and Gibson 
(1993) would need to postulate that denotivity must in effect 
be a bottom-up-like cue (on the basis of the prefigural 
shape-recognition process) with respect to the figure-ground 
organization process, as shown in Figure 8a. Thus, by 
Peterson and Gibson's (1993) account, the denotivity cue 
can compete on equal footing with the other bottom-up cues 
such as disparity in determining what is viewed as figure. 
Denotivity is only a factor in the B&W stereograms because 
only certain types of contours (notably, luminance contours) 
allow prefigural shape-recognition processes to be con- 
ducted, whereas the RD stereograms, lacking luminance 
contours, have only disparity cues. 

Although it is true that McClelland and Rumelhart's 
(1981) network did not exhibit the ability of top-down 
activation to override bottom-up inputs, there is no reason to 
believe that it is impossible in principle for interactive 
networks to have the kind of strong top-down influence 
necessary to account for Peterson and Gibson's (1993) 
results. However, it is not simply a matter of the strength of 
the top-down influence because the top-down units require 
input from the bottom-up inputs to become active in the first 
place. Thus, for top-down representations to compete with 

(a) (b) 

Figure 8. The two alternative models for combining denotivity 
and disparity cues. (a) Our interpretation of Peterson and Gibson's 
(1993) prefigural account, in which we assumed that no feedback 
occurs. (b) Our interactive account. 
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bottom-up ones, they require at least some degree of  support 
from the bottom-up cues, otherwise they simply remain 
inactive and do not influence processing at all. This suggests 
that at least some degree of  ambiguity in the bottom-up input 
is required to allow the top-down influences to affect 
processing. 3 The importance of  ambiguity for the expression 
of  top-down influences was emphasized in the original 
model of  McClelland and Rumelhart (1981). They showed 
that when a stimulus word was partially occluded, the 
network would fill in the missing letter in a way that was 
consistent with a known word. When multiple words were 
consistent with the ambiguous input, the missing letter 
would be completed on the basis of  a competition among the 
various word-level units. 

We accounted for Peterson and Gibson's (1993) results 
not in terms of  a competition among multiple top-down 
influences for resolving a partially ambiguous input but 
rather as a competition between top-down and bottom-up 
cues. We assumed that disparity cues operate in parallel with 
luminance contour cues, an assumption that is at least 
partially supported by the segregation of  form and depth 
processing in the early cortical visual areas (see Livingstone 
& Hubel, 1987, 1988). Thus, the presence of  the ambiguous 
bottom-up luminance contour enables the object representa- 
tions to become partially activated and thereby to compete 
with the disparity cue (see Figure 8b). In the case in which 
the luminance contour is absent (i.e., in the RD stereo- 
grams), the object units never become partially activated in 
the first place, and processing is dominated by the bottom-up 
disparity cue. 

The revised model used in Simulation 5 appears in Figure 
9. 4 The model is identical to the previous models, except for 
the addition of  a disparity layer. This layer was the same size 
as the figure layer (12 × 16 units) and served as an 
additional input to the figure units. This layer provided input 
to the figure units in parallel with input from the boundary 
units. The disparity units projected only to the figure units in 
a one-to-one manner. That is, a disparity unit at a given 

retinal location projected only to the figure unit in the same 
retinal location. All of  these weights were positive (+5).  
Disparity cues were represented by activating a contiguous 
set of  the disparity units, which corresponded to the single 
region that was closest to the network. For example, if a 
surface was supposed to appear closer to the network, then 
the disparity units that corresponded to that region would 
receive external input. The external input to these units was 
+36. All of  the other disparity units would receive no 
external input. We took this representation across the 
disparity units to be the final product, or output, of  a process 
that computed depth based on binocular cues (see Marr & 
Poggio, 1976, for an example of  such a process). 

Method  

We simulated the effects of disparity cues with the network. The 
input was analogous to either a B&W stereogram or to an RD 
stereogram. In the B&W case, the input was presented to both the 
boundary units and to the disparity units. In the RD case, input was 
only presented to the disparity units; this was done because in an 
RD stereogram no luminance contour cues exist. Within each type 
of stereogram, the disparity cues could either cooperate or compete 
with denotivity. In the cooperative condition, the input across the 
disparity units was a meaningful shape (refer to Figure 4). In the 
competitive case, the input across the disparity units was the less 
meaningful shape (i.e., the other half of the stimulus in Figure 4). 

The input in the four conditions was as follows. For the B&W, 
cooperative case, an ambiguous contour was presented across the 
boundary units, as with all of the previous simulations; along with 
this, the familiar, high-denotative shape was presented across the 
disparity units. In the B&W competitive case, the same ambiguous 
contour was presented across the boundary units; however, the less 
meaningful, low-denotative region was presented across the dispar- 
ity units. For the RD, cooperative case, the high-denotative shape 
was presented across the disparity units. In the RD, competitive 
case, the low-denotative shape was presented across the disparity 
units. In both RD conditions there was no input presented along the 
boundary units. 

Results 

Object tlnils 

Intermediate 
Object units , /  / 

t 

\ \  / /  
I n p u t  f r o m  i m a g e  

Figure 9. The network used in Simulation 5. This model included 
a layer of units that represented the disparity of a region. 

Incorrect solutions were judged as they were in the 
previous simulations, with one exception: No criterion was 
used in the RD stereogram conditions because these inputs 
typically did not precisely activate the figure units, so the 
solutions often did not perfectly correspond to a correct 
solution. This was due to the lack of  any inhibitory 
connections between the disparity units and the figure units; 
this lack of  inhibitory connections allowed activation across 
the figure units to spread across the shape's boundaries. The 
activation spread across the boundary due to the lateral 
connections among the figure units (see Figure 2b). 

3 Of course, there may be other ways of creating a top-down bias 
(e.g., experimental instructions, strategies). We are simply predict- 
ing that ambiguity is required in situations where this top-down 
influence has not been caused by other factors, as in the present 
simulations. 

4 The network used in Simulation 5 was the same network used 
in Simulation 4, but in the earlier simulation no input was presented 
across the disparity units. 
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Each of the four conditions (B&W cooperative and 
competitive; RD cooperative and competitive) was pre- 
sented 100 times. The results appear in Figure 10. As is 
evident, the B&W stereograms resulted in a very different 
pattern of performance than did the RD stereograms. In 
particular, in the B&W stereograms the cooperative and 
competitive conditions were significantly different from one 
another (z = 10.22, p < .001). However, in the RD stereo- 
grams the cooperative and competitive conditions did not 
differ from one another (z = 0.16, p > .80). Finally, and 
most important, the difference between the two types of 
B&W stereograms was reliably different from the two types 
of RD stereograms (z = 16.03, p < .001), suggesting that 
stereogram type (B&W vs. RD) interacted with condition 
(cooperative vs. competitive). 

Finally, the incorrect solutions for the B&W stereograms 
were infrequent. For the cooperative B&W condition the 
error rate was 2.5%; for the competitive B&W condition the 
error rate was 9%. This difference was statistically reliable 
(z = 2.83, p < .01), suggesting that fewer errors were made 
in the cooperative condition than in the competitive condi- 
tion. 

D i s c u s s i o n  

The results of Simulation 5 replicated those presented by 
Peterson and Gibson (1993). Specifically, with B&W stereo- 
grams, the disparity cues and the denotivity cues both 
influenced figure-ground organization. This emerged as a 
difference between the cooperative and competitive B&W 
stereograms; the difference of the proportions was .47 (or 
47%) in the model and approximately .30 (30%) in Peterson 
and Gibson's (1993) data, suggesting a good fit by our 
model. (Our approximations of the data from Peterson and 
Gibson's, 1993, article were averaged over three different 
amounts of disparity, and these data were the proportions of 

R~ults from Simulation 5 

B & W Random Dot 
Stereogram Type 

Peterson & G i b s o n  (1993) 

B & W Random Dot 
Stereogram Type 

• Cooperative 

[] Competitive 

Figure 10. The results of Simulation 5. Stereogram type (black 
and white [B&W] vs. random dot) interacts with whether the two 
cues (denotivity and disparity) are cooperative or competitive. The 
model's data are presented with approximate values from Peterson 
and Gibson (1993). 

initial figure-ground reports.) In the RD stereograms, the 
results were dominated by the disparity cues alone because 
the bottom-up input was unambiguous (i.e., across the 
disparity units there was only one surface presented). The 
region that appeared closer (i.e., the disparity cue) was the 
region determined to be figure. The difference between the 
proportions in the cooperative and competitive stereograms 
was .005 (or .5%) in the model and approximately .06 (or 
6%) in Peterson and Gibson's (1993) data, again suggesting 
a good fit by the model. (The data from Peterson and 
Gibson's, 1993, study are approximations based on Figure 7 
in their article.) 

Thus, in the present simulation we have also demon- 
strated that our interactive approach can account for the 
competition between multiple cues (i.e., denotivity and 
disparity cues), even when these cues are at different levels 
o f  processing. We postulated that the critical factor that 
determines when top-down cues are able to compete with 
bottom-up ones is the existence of some degree of ambiguity 
in the bottom-up input. In the present case, this ambiguity 
was present in the luminance contours, which could support 
either side of the contour as figure. This ambiguity allowed 
the denotative region of the display to become partially 
activated, thereby enabling the corresponding object unit to 
become active; this, in turn, provided top-down support for 
that region within the display. This result contradicts Peter- 
son and Gibson's (1993) intuitions about what kinds of 
top-down influences can be found in interactive networks. 
However, we should acknowledge that it is not entirely 
obvious from McClelland and Rumelhart's (1981) interactive- 
processing model that results like those we obtained would 
occur in an interactive network. Indeed, we know of no other 
models of psychological results that show that top-down 
cues can actually override bottom-up cues. However, these 
kinds of strong top-down effects are not surprising at a 
purely computational level, as we would expect this kind of 
behavior from a wide range of interactive models under 
similar conditions. 

One final point of discussion concerns the figure-ground 
organizations from the RD stereogram condition. Such a 
solution appears in Figure 11. The figural solution lacks the 
precisely defined edges that characterized figural solutions 
when luminance contours were the input. This "blurry" 
figure-ground solution is due to the absence of any inhibi- 
tory connections between the disparity units and the figure 
units. Note that these blurry solutions are not a failure of the 
network. Instead, this result suggests that human partici- 
pants may have difficulty recognizing objects in RD stereo- 
grams, which is consistent with empirical reports (e.g., 
Peterson & Gibson, 1993, p. 421). Indeed, in viewing the 
RD stereogram stimuli used by Peterson and Gibson (1993, 
pp. 392-393), this seems informally to be the case. How- 
ever, such a blurry solution is not the perception that one has 
of the disparity contour itself; instead, the disparity contour 
is quite sharp and highly distinct. 5 On the basis of our 
network, we suggest that the perception of the disparity 

5 Thanks to Steven Pinker for pointing this out. 
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Figure 11. An example of a figure-ground solution that resulted 
after presenting a random dot stereogram as input. The squares 
correspond to the individual figure units, and the shading of the 
square indicates the activation of that unit (see figure legend). The 
absence of any luminance contours prevented the formation of a 
well-defined figural region, often preventing the network from 
recognizing the object. On this trial, however, the network did 
recognize the shape presented. 

contour itself may be mediated directly by the disparity 
units, thereby resulting in a well-defined disparity edge. 

General  Discussion 

In a set of five simulations we have demonstrated that a 
relatively simple PDP model can account for several phenom- 
ena in figure-ground perception. Not only was the network 
able to separate figure from ground correctly, but it also 
showed orientation-dependent effects and exposure-duration 
effects similar to those demonstrated by human participants. 
Furthermore, in Simulations 1-4 the network's performance 
was strongly influenced by the top-down information. This 
is because all of the lower level cues (e.g., area, symmetry, 
convexity) were identical between the two regions of the 
displays presented to the network; only the denotivity 
(familiarity) cue differed between the two regions of the 
stimulus. Finally, the network could exhibit competition 
between bottom-up and top-down cues when determining 
figure-ground relations, as shown in Simulation 5. Thus, we 
have demonstrated that top-down processing in an interac- 
tive model, can alter--not simply facilitate--the course of 
processing at lower levels, which contradicts Peterson's 
(e.g., Peterson & Gibson, 1994a) stipulation to the contrary. 
We now turn to a discussion of the implications of these 
results, as well as to additional issues raised by the present 
work. 

Implications 

A significant contribution of this work is that it accounts 
for the paradoxical data from studies of figure-ground 
organization without proposing a prefigural recognition 
process as proposed by Peterson and colleagues (e.g., 
Peterson, 1994). Our approach maintained a hierarchical 
scheme of information processing but adopted processing 
principles in accordance with PDP models of information 
processing. This allowed us to maintain the hierarchical 
organization of the more traditional models of visual percep- 
tion (e.g., Biederman, 1987; Kosslyn, 1987; Mart, 1982; 
Neisser, 1967; Palmer & Rock, 1994a) without having to 
adhere to the sequential processing that has been associated 
with many of these models. We should note that our 
interactive account does not directly refute Peterson's ac- 
count; what the model offers, instead, is a reconciliation 
between the traditional models, which often emphasize 
serial, feed-forward processing, and Peterson's data, which 
cannot be fully explained with the traditional models. 

Although we have argued that our account is hierarchical, 
a cautionary note is in order. In massively interactive PDP 
networks, the intuitive notions of a level or of a hierarchy are 
blurred. Although the object units take input only from the 
figure units (and are therefore technically after the figure- 
ground processes), the parallel, interactive computations 
result in the object units operating in parallel with the figure 
units. We acknowledge that this approach to hierarchical 
processing blurs the distinction between our account and 
that offered by Peterson (1994) because figure-ground 
processing is occurring in parallel with object representa- 
tion. However, our claim is that there is a difference between 
parallel, interactive processing and prefigural shape- 
recognition processes. The difference lies in how the object 
representations are activated, or "bootstrapped." In our 
model the object units take input from the figure units, but in 
Peterson's (1994) account object representations take input 
directly from luminance contours (e.g., the boundary units in 
our model). 

Perhaps one of the most challenging findings for an 
interactive model of figure-ground processing like ours is 
the data from Peterson and Gibson's (1993) experiments that 
showed that denotivity and disparity cues competed with 
each other in influencing participants' figure-ground process- 
ing. Because denotivity is a top-down influence in our 
interactive model, accounting for this result requires that 
top-down influences be able to compete with bottom-up 
influences. That we were able to show how this can happen 
in our model and understand more generally the conditions 
under which effects of this nature can occur extends the 
range of phenomena that interactive models can account for. 
This result goes beyond simple intuitions about the nature of 
interactive processing and argues for the importance of 
simulation models for informing psychological theories. 
Further, we can predict on the basis of our model that the 
presence of some degree of ambiguity (even when other, 
unambiguous cues are also present) would be a necessary 
condition in order for top-down influences to be observed 
(assuming that the top-down influences have not been 
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activated by other sources, such as experimental instruc- 
tions, strategic knowledge, etc.; see Footnote 3). We should 
also note, however, that bottom-up cues may often be 
sufficient; the main conclusion from our approach is that 
these cues alone do not fully characterize information 
processing. 

Finally, there are other behavioral results that we have not 
directly simulated but that can be accounted for by our 
model. It is well established that symmetric regions are more 
likely to be perceived as figure than are asymmetric regions. 
Furthermore, these symmetry cues can combine with deno- 
tivity cues; Peterson and Gibson (1994a) showed that 
symmetric, high-denotative regions were more likely to be 
perceived as figure than were asymmetric, high-denotative 
regions. The same effect held for less denotative regions: 
Symmetric low-denotative regions were more likely to be 
seen as figure than were asymmetric, low-denotative re- 
gions. Thus, both symmetry and denotivity influenced 
figure-ground organization. To the extent that symmetry 
acts like the disparity cue used in Simulation 5, we can 
account for these results with our current model. This would 
likely be true even if the influence of symmetry was more of 
an emergent phenomenon, which might not be represented 
separately as disparity was in our network. Similar argu- 
ments could be made for other kinds of bottom-up cues, such 
as fixation (Peterson & Gibson, 1994b). 

Additional Issues 

Although our network accounts for the role of familiarity 
in figure-ground perception, there are additional issues that 
warrant discussion. Here we address five significant issues: 
(a) the locus of knowledge in the visual system, (b) the 
process of settling in the model, (c) the possible neural locus 
of figure-ground organization, (d) the relationship between 
figure-ground organization and image segmentation, and (e) 
the implementation of object representations in the current 
model. 

In discussing our network, we have emphasized that the 
familiarity or denotivity cues arise from the higher level 
object representations. This suggests that knowledge about 
shapes occurs only in the weighted connections between the 
figure units and the object units and that familiarity effects in 
figure-ground organization are the result of interactions 
between these two layers of units. However, there is an 
alternative account for such familiarity effects also based on 
PDP models of visual processing. 

Mozer, Zemel, Behrmann, and Williams (1992) have 
constructed a PDP model that learns to perform a type of 
perceptual organization; this network learns to segment two 
overlapping shapes apart from one another. This model, 
Multiple-object Adaptive Grouping of Image Components 
(MAGIC), consists of only a lower level, array-format 
representation in which image features (edges) are presented 
and a set of hidden units that takes its input from the feature 
representation. The network learns to group certain conjunc- 
tions of these image features. For example, the network 
might learn that a vertical edge and a horizontal edge in 
close retinal proximity form a T junction and that these two 

image features have a high probability of belonging to 
different shapes. Although MAGIC contains no object 
representations as our network does, MAGIC can still 
exhibit familiarity effects; MAGIC will segment two famil- 
iar shapes more quickly than it will segment two less 
familiar shapes (M. C. Mozer, personal communication, 
1993). 

When the results from MAGIC are contrasted with our 
simulations, does an explanation emerge regarding where 
familiarity effects arise in the human visual system? That is, 
could familiarity effects be explained as arising solely from 
lower level image statistics, as in MAGIC, or could familiar- 
ity effects be explained by object representations interacting 
with lower level representations? We argue that knowledge 
could exist in both lower level and higher level representa- 
tions. Indeed, our network contains knowledge within both 
the boundary units and the figure units. This knowledge 
takes the form of weighted connections that specify how 
edges form comers and how edges constrain figural regions 
(see Figures 2 and 3). Thus, familiarity effects are most 
likely determined by knowledge at many different levels. 
Some tasks, such as those used by Peterson and colleagues 
(Peterson & Gibson, 1991, 1993, 1994a, 1994b; Peterson et 
al., 1991), may depend more heavily on knowledge at higher 
levels of representation, but other tasks may depend more 
heavily on knowledge of image statistics (e.g., vertex 
information or line termination information; see Waltz, 
1975). 

Another consideration regarding the locus of familiarity 
effects in visual processing, and the nature of visual 
processing more generally, is the duration of the settling 
process required by models such as the one we have used. 
Computationally, it is important that the buildup of activa- 
tion is gradual so that constraints at different levels have a 
chance to influence the outcome of processing. There are 
two potential problems with this gradual settling, however. 
First, the overall processing time might be psychologically 
implausible--gradual settling in a network might take 
longer than is consistent with psychological data. Second, 
phenomenologically it seems that many aspects of visual 
perception are more discrete than graded (as in our model). 
Figure-ground organization seems to have this discrete 
character it seems that one region is entirely the figure 
while another is entirely the ground. Regarding the first 
point, we have shown that by introducing further constraints 
on the activation states of units with a k-WTA activation 
function, settling times can be reduced from 400 cycles to 
100 cycles. Regarding the second point, even though 
processing is fundamentally graded, the network can exhibit 
"phase transition" kinds of behavior, where processing 
undergoes a rapid transition into a figure-ground solution. 
To illustrate this latter point, in Figure 12 we present a plot 
of the goodness function as the GRAIN network settles into 
a correct figure-ground solution. (Recall that goodness is the 
degree to which the state of the network fits the constraints 
imposed by the weights. Higher values of goodness indicate 
the current state fits the constraints well.) As is evident, the 
network undergoes a rapid period of transition after some 
number of processing cycles. This transition corresponds to 
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Figure 12. The goodness of the activation state of the network as 
it settles into a correct solution. The constant schedule uses 
constant noise and sharpening values; the standard schedule uses 
the schedules used in Simulation 1. Both schedules show a phase 
transition, where the network quickly settles into the correct, stable 
solution. For the constant schedules this occurs between Cycles 
250 and 300; for the standard schedules this occurs between Cycles 
150 and 200. 

the development of a coherent and largely correct solution across 
the figure-ground layer. This phase transition behavior is not 
simply a byproduct of the noise and sharpening schedules; we 
see the same rapid transition behavior in a network using 
constant noise and sharpening levels (see Figure 12). 

In our model, the figure units form a layer separate from 
both the boundary units and the object units. Whereas the 
separation of the figure units from the object units seems 
justified by most accounts of perception, is the separation of 
the figure units and the boundary units justified? Studies that 
have measured visual evoked potentials (VEPs) have re- 
vealed that early visual cortices may be responsible for some 
forms of perceptual segmentation (Bach & Meigen, 1991; 
Lamme, Van Dijk, & Spekreijse, 1992, 1993). However, 
VEPs may not allow a fine discrimination between adjacent 
cortical areas. More detailed single-cell recording studies 
have suggested that neurons in V1 may be modulated by 
figure-ground relations; V1 neurons gave larger responses 
to stimuli belonging to a figural region than to background 
regions (Lamme, 1995). This suggests that figure-ground 
relations may be computed early, at the same level at which 
edges are detected. However, other results have pointed to 
area V2 as being the neural locus of a "direction of figure" 
computation (see Sajda & Finkel, 1995; v o n d e r  Heydt, 
Peterhans, & Baumgartner, 1984). These results suggest that 
figure-ground processes may occur at a different neural 
locus than does edge detection. Thus, the evidence concern- 
ing the separability of the boundary units and the figure units 
is somewhat inconclusive. Although we clearly separated 
these two layers in our model, we do not reject the 
possibility that figure-ground processes might emerge from 
edge-detection processes. Figure-ground organization may 
not be assignable to a distinct visual area. 

Next, we should note that examining only the case of 
figure-ground organization may be somewhat limiting be- 
cause in such behavioral experiments (and simulations), 
only a single stimulus is presented at any given time. What 
of complex visual scenes in which multiple objects are 
present? Presumably, before regions can be labeled figure or 
ground, different regions must be segmented apart from one 
another, or, alternatively, individual regions must be grouped 
together. This suggests that image segmentation or percep- 
tual organization might precede figural judgments (see 
Finkel & Sajda, 1992, 1994; Sajda & Finkel, 1995, for a 
model that incorporates such a processing hierarchy). Could 
higher level object knowledge influence image segmenta- 
tion? Some behavioral results suggest that image segmenta- 
tion may indeed be an interactive process (see Vecera, 1993, 
for relevant behavioral results). The case of image segmenta- 
tion is presumably quite similar to that of figure-ground 
organization in that object representations might constrain 
the processes by which local edge information is grouped. In 
the present network, such effects could be due to top-down 
information that is cascaded back from the object units 
through the figure units and finally to the boundary units. We 
should note, however, that image segmentation raises the 
difficult issue of binding of low-level features to shapes, 
which is obviously not addressed by our current model (cf. 
Hummel & Biederman, 1992). 

Finally, the current implementation of object representa- 
tions in our model is potentially problematic. Human vision 
is characterized by the ability to recognize objects across 
different spatial positions or different sizes (e.g., Biederman 
& Cooper, 1991). Could the present simulation results be 
specific to template-like matching systems (e.g., Simulations 
1 and 2), or are the results more general? First, we showed 
the generality of our approach in Simulations 3-5 by 
allowing a more gradual buildup of spatially invariant object 
representations, in accord with other PDP models of invari- 
ant object recognition (e.g., Fukushima, 1980; Mozer, 1987, 
1991). Second, the success of these PDP models suggests 
that our results should generalize to more realistic object 
representation schemes. As we discussed previously, Moz- 
er's (1987, 1991) connectionist model architecture created 
spatially invariant object representations by gradually collaps- 
ing across space from one layer to the next, an idea 
originally proposed by Fukushima (1980). O'Reilly and 
Johnson (1994) showed that a self-organizing learning 
algorithm (F61diak, 1991) could develop a similar progres- 
sion of increasingly invariant object representations. Finally, 
although more realistic object representations could be 
explored, our use of template-like representations does not 
detract from our main theoretical claim: Invariant object 
representations can influence figure-ground organization in 
a location-specific manner by means of bidirectionally 
connected intermediate representations that incrementally 
compute this invariance. 

Toward a GRAIN Account of  Visual Processing 

The phenomenon of denotivity or familiarity effects in 
perception has been observed in many different tasks that tap 
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different aspects of  visual processing. Perhaps the paradig- 
matic case is the word superiority effect (Reicher, 1969; 
Wheeler, 1970). Interestingly, the word superiority effect 
was explained in a manner similar to the prefigural account 
of  figure-ground organization. Lawry and LaBerge (1981) 
proposed that word-level information was processed in 
parallel with or before letter information. This "prelexical" 
account suggested that word-level information might be 
bootstrapped from letter-feature information (i.e., edges and 
line segments), not from letter information itself. McClel- 
land and Rumelhart 's  (1981) interactive account of  the word 
superiority effect showed that this prelexical stage was 
unnecessary if processing was graded and bidirectional. 

The situation in figure-ground organization parallels that 
of  the word superiority effect. Peterson (1994) hypothesized 
a prefigural stage of processing, and we showed that this was 
an unnecessary assumption in an interactive model. How- 
ever, whereas our interactive account explains the results 
from a number of  behavioral experiments, the prefigural 
account also explains these results. Why should one favor 
our interactive model over the prefigural account? A strong 
argument in favor of  our interactive model is based on 
parsimony, because our account retains the logical hierarchy 
of visual processing (Palmer & Rock, 1994b) and does not 
require the introduction of a new processing stage in 
addition to those commonly thought to exist. 

Our interpretation of figure-ground processing is also 
consistent with the so-called H/Sffding function (H(iffding, 
1891; see also Neisser, 1967; Rock, 1962), which suggests 
that some sensory representation (or perceptual organiza- 
tion) must precede recognition. Sensory organization pre- 
cedes recognition, but one does not need to assume that 
these two processes are sequentially ordered; instead, organi- 
zation processes can be influenced by recognition processes. 
Thus, the Htffding step need not be viewed as a discrete, 
sequential step; instead, it can be thought of  as a gradual, 
cascaded process. 

Finally, a significant advantage to our interactive account 
is that we use a set of  information-processing principles that 
are powerful enough to explain not only figure-ground 
organization but other effects in visual processing as well. 
For example, the GRAIN principles have been used to create 
working models in different visual domains (e.g., Stroop 
interference, binocular disparity, the word superiority ef- 
fect), as well as across entirely different sensory domains 
(e.g., speech perception; see McClelland, 1991; McClelland 
& Elman, 1986). As a consequence, the GRAIN principles 
offer the possibility of  providing the foundation of a more 
general information-processing framework, suggesting that 
interactive processing, in which information flows bidirec- 
tionally, might be a computational strategy used not only by 
the visual system but by other cognitive and perceptual 
systems as well. 
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Appendix A 

GRAIN Equations and Parameters 

Updating Algorithm 

Following standard algorithms (Hopfield, 1984; McClelland, 
1993), the units in our GRAIN model (Simulations 1-3) computed 
their net input from other units, and their activation was a sigmoidal 
function of the net input. Specifically, the net input to unit j was 
given by 

"qi = ~ w i i  ai + 0i + Ii' (1) 
i 

where ~ is the net input to unit j, w; i is the connection between unit 
j and unit i, ai is the activation of unit i, 0 i is the bias (or threshold) 
of unit j, and/ / i s  the external input to the unit. This net input is 
passed through a sigmoidal activation function: 

1 
(2) Y1 -- 1 + e - ~  ' 

where ~/is gain (or sharpness of the sigrnoid) and "q/is the net input 
to unitj  as given in Equation 1. Finally, the activations of the units 
in the network were updated by moving the current activation 
toward the value of Yi. That is, the activation was changed gradually 
between the activation at time t and the new activation at time t + 1: 

a i (t + 1) = e(yi - a1 (t)) + 1(0, or), (3) 

where ai(t + 1) is the activation of uni t j  at time t + 1, • is the 
activation step size (or settling rate) parameter, ai(t) is the 

activation of unitj  at time t, and v(0, or) is random, Gaussian noise 
with a mean of zero and a standard deviation of tr. 

Parameters 

The annealing schedule started the noise in the network at 10.0 
and reduced the noise to 8.0 from Cycles 0-100; from Cycles 
100-300 the noise was reduced from 8.0 to 4.0; and from Cycles 
300-400 the noise was reduced from 4.0 to 1.0. The sharpening 
schedule, which changed the gain of the sigmoidal activation 
function, followed a progression similar to that of the annealing 
schedule. The sharpening schedule began at 1.0 and increased to 
1.1 from Cycles 0-100; from Cycles 100-300 the sharpening 
increased from 1.1 to 1.5; and from Cycles 300--400 the sharpening 
was increased from 1.5 to 2.0. As the gain increases, the sharpness 
of the sigmoid also increases. This, in effect, makes the units more 
binary; that is, with a higher sharpening value the units' activations 
are more likely to be either 0.0 or 1.0 instead of intermediate 
values. The standard gain on the sigmoid was 0.50; this value was 
multiplied by the value of the sharpening schedule. 

The units in the various layers each had different biases, or 
thresholds. The boundary units had biases of -45.  The figure units 
had biases of - 36  in Simulations 1 and 2 and biases of - 38  in 
Simulation 3. The object units in Simulations 1 and 2 had biases of 
-250. The two object units in Simulation 3 had biases of -90,  and 
the intermediate object units had biases of -250. 

The external input to the boundary units was +60. The step size 
of the update function (e in Equation 3) was 0.25. 

Before cycling began on any given trial, the initial activations of 
the units were randomized with Gaussian noise. This noise had a 
mean value of 0.25 and a standard deviation of 0.25. 
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Finally, the values of the weights were as follows (see also 
Figures 2 and 3). The inhibitory weights among the opposing 
boundary units (e.g., between a boundary-left unit and a boundary- 
right unit) were -15 .  The boundary units projected to the figure 
units with excitatory weights of +12 and +10; the +12 weights 
corresponded to a boundary unit and a figure unit that were in the 
same retinal location; the +10 weights corresponded to the 
adjacent two units (see Figure 2c). The inhibitory weights among 
the boundary units and the figure units were similar to the 
excitatory connections: - 12 and - 10 for units that shared the same 

retinal position and adjacent units, respectively. Comers in the 
image were given by projections among the boundary units, as 
shown in Figure 3. These weights were +5 for relationships that 
were consistent with a comer and - 5  for relationships that were 
inconsistent with a comer. Finally, the figure units projected to the 
object units with weights of + 10. In Simulation 3 the intermediate 
object units projected to the object units with weights of + 100. 
Note that all connections were reciprocal and that these reciprocal 
connections had the same weight values as the feed-forward 
connections. 

Appendix B 

LEABRA Equations and Parameters 

Updating Algor i thm 

The particular implementation of the k-WTA algorithm used in 
LEABRA (Simulations 4 and 5) is based on the notion of a Relative 
Belief function (ReBel), which is derived in the context of 
Bayesian hypothesis testing. Units represent hypotheses that are 
evaluated by the extent to which they are supported by the current 
input pattern. The measure of relative belief is the product of two 
terms, one of which reflects the absolute level of support for a given 
hypothesis and the other of which measures its level of support 
relative to the other units in a layer. The absolute term is given by 
the likelihood function, P(xplh:), which is defined as a function of 
the goodness-of-fit between the input pattern xp and the weights 
into unit h:. We used a standard sigmoidal function of the net input 
as a measure of this fit, where ~ is the net input as defined 
previously in Equation 1: 

1 
P(xplh) . (4) 

1 + e-'~J 

Both the gain of this sigmoid - /and the offset or threshold 0: are 
allowed to "float" to keep the resulting probability measure from 
becoming saturated at the tails of the sigmoid, which would reduce 
the sensitivity of the network to differences in the probability 
measure of the units. The offset 0: is defined as the average net input 
of the units in the layer, and the gain 3, is set so that the difference 
between the maximum net input and the average net input, when 
scaled by % is 5.0, which results in a sigmoidal activation value 
that is just at the saturation point. 

The relative term is defined with respect to a null hypothesis, hq, 
which reflects the level of support for other units in the layer. To get 
k-WTA behavior, hq is defined as in between the probability of the 
kth and (k + 1)th most probable hypotheses in the layer, so that 
exactly k hypotheses will be more likely than the null hypothesis: 

P(hq) =- P(hk+l) + q[P(hk) - P(hk+l) ]. (5) 

The parameter q determines where the null hypothesis lies between 
these two values. This is set to 0.25 in all simulations. To measure 
how probable a given unit is relative to this null hypothesis, the 
posterior probability of a given unit given the current input pattern 
is evaluated in the context of where the unit's hypothesis and the 
null hypothesis are considered to be mutually exclusive and 

exhaustive. This is denoted as Pq(hjl xp). Thus, the ReBel function is: 

ReBel(h:, xp, hq) -~ P (xplh:)Pq(h:Ixp). (6) 

Because h: and hq are considered to be mutually exclusive and 
exhaustive hypotheses in the relative term, Equation 6 can be 
manipulated using standard Bayesian techniques, resulting in the 
following: 

ReBel(h:, Xp, hq) = P%lh:) (P(xplh:)P(h:)l-~,' 
1 + ip(xplhq)P(hq) ] 

(7) 

where the gain term in this equation, ~r, is the gain of the relative 
probability tenn. m This expression can be computed directly from 
the likelihood function P(xplhj) of the units in a layer. 

Because the ReBel function has an upper limit set by the relative 
probability term in Equation 7, units that might have strong 
absolute support but are nevertheless below the null hypothesis 
have a low relative probability in this equation. To make the units 
more sensitive to the absolute levels of support, we defined the 
actual activations of units in the network to be a weighted 
combination of the ReBel function as defined in Equation 7 and 
their absolute probability as given by Equation 4. This has the 
effect of "softening" the strict k-WTA constraint of ReBel, and 
results in more robust settling performance: 

cxj ------ p ReBel(h) + (1 - o)P(xplh) + v(o, cr), (8) 

where p is a parameter that determines the relative strength of the 
ReBel k-WTA constraint. A value of 0.8 was used in these 
simulations. 

Settling in the network occurs by updating the prior probability 
term P(hj) with the current value of Equation 8. A certain number 

m This gain term arises because the Bayesian manipulation of 
the relative probability term ends up being equivalent to the 
application of a logistic function to the log odds ratio of the unit's 
posterior probability over that of the null hypothesis. The gain is 
thus the gain of this logistic function. 
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of cycles (50 cycles in the present simulations) are processed 
before updating begins in order to allow information to first pass 
throughout the network. Finally Gaussian random noise was added 
to the activations, as is shown by the v(0, or) term in Equation 8. 
The standard deviation of this noise was adapted according to an 
annealing schedule similar to that used in the GRAIN simulations. 

Parameters 

The LEABRA model in Simulations 4 and 5 had the following 
values for the parameters. The noise schedule started the noise in 
the network at 7.0 and reduced the noise to 4.0 from Cycles 0-50; 
from Cycles 50-150 the noise was reduced from 4.0 to 2.0; and 
from Cycles 150-200 the noise was reduced from 2.0 to 0.5. 

The units in the various layers each had different offsets, or 
thresholds. The boundary units and figure units had offsets of +35; 
the intermediate object units in had offsets of +225; the two object 
units had offsets of +95. 

The external input (stimulus gain) to the boundary units was 
+36. The prior delay, which was the number of cycles that 
progressed before units updated their activations, was 50. 

The number of units active in each layer varied depending on the 
layer. The boundary-above and boundary-below layer were permit- 

ted to have 5 units active; the boundary-left and boundary-fight 
layers had 12 units active; the figure layer and disparity layer were 
each allowed to have 48 units active; and the two object layers were 
each allowed to have 1 unit active. 

Before cycling began on any given trial, the initial activations of 
the units were randomized with Gaussian noise. This noise had a 
mean value of 0.25 and a standard deviation of 0.1. 

Finally, the values of the weights were as in the GRAIN model, 
with the following exceptions. First, there were no self connections 
on the two object layers; the k-WTA nature of the LEABRA 
algorithm incorporated these connections. Second, the connections 
from the figure units to the intermediate object units were +9. 
Third, the connections from the disparity units to the figure units 
were +5. As before, all connections were reciprocal, and these 
reciprocal connections had the same weight values as the feed- 
forward connections. 
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