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The relationship between nonword repetition ability and vocabulary size and vocabulary
learning has been a topic of intense research interest and investigation over the last two
decades, following the demonstration that nonword repetition accuracy is predictive of
vocabulary size (Gathercole & Baddeley, 1989). However, the nature of this relationship
is not well understood. One prominent account posits that phonological short-term mem-
ory (PSTM) is a causal determinant both of nonword repetition ability and of phonological
vocabulary learning, with the observed correlation between the two reflecting the effect of
this underlying third variable (e.g., Baddeley, Gathercole, & Papagno, 1998). An alternative
account proposes the opposite causality: that it is phonological vocabulary size that caus-
ally determines nonword repetition ability (e.g., Snowling, Chiat, & Hulme, 1991). We pres-
ent a theory of phonological vocabulary learning, instantiated as a computational model.
The model offers a precise account of the construct of PSTM, of performance in the non-
word repetition task, of novel word form learning, and of the relationship between all of
these. We show through simulation not only that PSTM causally affects both nonword rep-
etition accuracy and phonological vocabulary size, but also that phonological vocabulary
size causally affects nonword repetition ability. The plausibility of the model is supported
by the fact that its nonword repetition accuracy displays effects of phonotactic probability
and of nonword length, which have been taken as evidence for causal effects on nonword
repetition accuracy of phonological vocabulary knowledge and PSTM, respectively. Thus
the model makes explicit how the causal links posited by the two theoretical perspectives
are both valid, in the process reconciling the two perspectives, and indicating that an oppo-
sition between them is unnecessary.

� 2009 Elsevier Inc. All rights reserved.
Introduction

Over the last two decades, the relationship between
phonological short-term memory (PSTM) and vocabulary
learning has become a major focus of investigation in psy-
chological research, generating extensive bodies of study
in the traditional domains both of memory research and
of language research (e.g., Dollaghan, 1987; Gathercole &
Baddeley, 1989; Gathercole, Service, Hitch, Adams, & Mar-
tin, 1999; Gathercole, Willis, Emslie, & Baddeley, 1992;
. All rights reserved.

pta).
Gupta, MacWhinney, Feldman, & Sacco, 2003; Martin &
Saffran, 1997; Martin, Saffran, & Dell, 1996; Montgomery,
2002; Saffran, 1990; for review, see Baddeley, Gathercole,
& Papagno, 1998; Gathercole, 2006). Among the results
that initiated these bodies of research were the findings
that novel word repetition ability (i.e., the ability to imme-
diately repeat possible but nonoccurring word forms, also
termed nonwords) is correlated with immediate serial list
recall ability on the one hand, and with vocabulary
achievement on the other, in normally developing children
(Gathercole & Baddeley, 1989) and in children with specific
language impairment (SLI; Gathercole & Baddeley, 1990a).
Since these initial reports, an overwhelming amount of
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1 The causal link from phonological vocabulary learning to phonological
vocabulary size is not specifically a postulate of this particular account but
rather is a logical necessity that any account presumably must incorporate.
The reason for inclusion of this link in the depiction is to clarify the
relationship between terms that are sometimes used interchangeably. In
particular, the terms ‘‘vocabulary learning” and ‘‘vocabulary size” are
sometimes used as if indicating the same construct. In fact, however, these
terms refer to different constructs that should be clearly distinguished. A
measure of vocabulary learning gauges the operation of processes that lead
to increases in vocabulary size. The terms ‘‘vocabulary”, ‘‘vocabulary size”
and ‘‘vocabulary knowledge” are also often used interchangeably, but these,
too, refer to different constructs: vocabulary refers to the set of known
words; vocabulary size refers to the cardinality of this set (the number of
items in the vocabulary), and vocabulary knowledge refers to the informa-
tion that is known about the members of this set. Having noted these
various distinctions, we will nevertheless adopt the practice of ignoring the
latter set, for ease of exposition. However, as acknowledgment that
different constructs are being conflated, we will frequently use the terms
vocabulary/knowledge or vocabulary size/knowledge to refer to vocabulary/
vocabulary size/vocabulary knowledge.
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further evidence has documented the existence of a rela-
tionship between vocabulary size and/or new word learn-
ing; nonword repetition; and immediate serial recall (e.g.,
Atkins & Baddeley, 1998; Baddeley, 1993; Baddeley, Papag-
no, & Vallar, 1988; Gathercole & Baddeley, 1990b; Gather-
cole, Frankish, Pickering, & Peaker, 1999; Gathercole, Hitch,
Service, & Martin, 1997; Gathercole et al., 1992; Gupta,
2003; Gupta et al., 2003; Michas & Henry, 1994; Papagno,
Valentine, & Baddeley, 1991; Papagno & Vallar, 1992;
Service, 1992; Service & Kohonen, 1995).

The question arises, of course, of what these associa-
tions indicate. One interpretation of these findings (e.g.,
Baddeley et al., 1998) has been that PSTM, the memory
system hypothesized to underlie immediate serial recall
performance, also underlies nonword repetition perfor-
mance and novel word form learning. That is, in this view,
PSTM plays a causal role in vocabulary learning, particu-
larly phonological vocabulary learning. If this view is cor-
rect, the behaviorally observed patterns of relationship
between immediate serial recall, nonword repetition, and
vocabulary learning would be the manifestation of a mech-
anistic connection between the development of linguistic
representations and what has been thought of as a mem-
ory system, and would have considerable importance for
our understanding of language learning. It would also have
considerable importance to the study of human cognition
more generally, not merely because of the importance of
language to cognition, but also because it would constitute
a paradigm case of the interaction of short-term memory
systems and long-term learning.

The perspective described above (e.g., Baddeley et al.,
1998; Ellis & Beaton, 1993; Ellis & Sinclair, 1996; Gather-
cole, 2006; Gupta, Lipinski, Abbs, & Lin, 2005; Michas &
Henry, 1994; Service & Craik, 1993) is based on the pre-
mises that (a) novel word or nonword repetition is a task
that requires PSTM, much as immediate serial list recall
does, and (b) learning a new word relies on processes that
encompass those necessary for novel word or nonword
repetition. The first premise is based on the extensive evi-
dence indicating a relationship between nonword repeti-
tion ability and performance in immediate serial recall
(the canonical PSTM task), including the finding of serial
position effects in repetition of individual polysyllabic non-
words, analogous to those classically obtained in list recall
(Gupta, 2005; Gupta et al., 2005). The task of nonword rep-
etition is therefore, in this view, a means of gauging the
efficiency of PSTM function. The starting point for the sec-
ond premise is the observation that a novel word is, to a
specific learner, in effect a nonword (Gathercole, 2006;
Gupta, 2005; Gupta et al., 2005); it would therefore appear
uncontroversial that the eventual learning of the novel
word would depend on how well it could be processed as
a novel word or nonword. From these two premises, it fol-
lows that PSTM is a causal determinant of vocabulary
learning. This conclusion receives additional support from
evidence that vocabulary learning and size are correlated
with performance in immediate serial recall, the classic
measure of PSTM (e.g., Gathercole et al., 1992; Gupta,
2003). This perspective is depicted graphically in
Fig. 1(a), which shows that PSTM is posited to play a causal
role in determining performance in immediate serial recall,
performance in nonword repetition, and phonological
vocabulary learning. In this account, the pairwise correla-
tions between nonword repetition performance, immedi-
ate serial recall performance, and vocabulary learning
arise because of the ‘‘third variable” they share in common,
namely, PSTM. Correlations of nonword repetition and
immediate serial recall with vocabulary size arise because
vocabulary size is causally determined by vocabulary
learning, as also shown in the figure.1

While emphasizing the causal role of PSTM in phono-
logical vocabulary learning in this manner, some propo-
nents of this view have also noted that the resultant
phonological vocabulary knowledge (and, more generally,
linguistic knowledge) is itself likely to play a role in deter-
mining nonword repetition ability (e.g., Gathercole, 1995,
2006; Gupta, 1995, 1996; Gupta & MacWhinney, 1997;
Gupta et al., 2005). This conclusion is based in part on evi-
dence that nonword repetition accuracy is affected by the
wordlikeness of the nonwords, which suggests that lexi-
cal-phonological knowledge influences nonword repetition
(e.g., Dollaghan, Biber, & Campbell, 1995; Gathercole,
1995; Gathercole, Willis, Emslie, & Baddeley, 1991).

The view described above has not gone unchallenged,
however, and there is debate over whether the observed pat-
terns of relationship do in fact imply a causal role for PSTM in
phonological vocabulary learning. An alternative perspec-
tive is that the association between nonword repetition on
the one hand and phonological vocabulary learning and size
on the other may be mediated by phonological vocabulary
size (and its concomitant phonological knowledge) itself,
rather than by PSTM (e.g., Bowey, 1996; Edwards, Beckman,
& Munson, 2004; Ellis Weismer & Edwards, 2006; Metsala,
1999; Snowling, 2006; Snowling, Chiat, & Hulme, 1991).
Snowling et al. (1991, p.372) argued, for example, that
‘‘. . . we can turn the argument about causation advanced
by Gathercole and her colleagues on its head: children with
good vocabulary knowledge are better able to cope with the
processing demands of nonword repetition tasks than are
children with poor vocabulary knowledge”. As another
example, Edwards et al. (2004, p. 434) have also emphasized
the causal role of phonological vocabulary knowledge, sug-
gesting that ‘‘[their] results support an account of acquisi-
tion in which the typically developing child gradually



Fig. 1. Depiction of the two accounts. (a) The PSTM account. (b) The linguistic account.
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acquires more and more robust phonological knowledge as a
consequence of learning to produce many words. That is, an
increase in vocabulary size does not simply mean that the
child knows more words, but also that the child is able to
make more and more robust phonological generalizations”.
(Such generalization would, in this view, underlie nonword
repetition.)

This view is based on the premises that (a) factors other
than PSTM influence performance in the nonword repeti-
tion task, and (b) one particularly relevant such factor is
the nature and extent of phonological knowledge available
to the individual. The first premise, which appears uncon-
troversial, is based on the intuition that performance of the
nonword repetition task depends on multiple abilities,
which may include PSTM, but are certainly not limited to
PSTM. The second premise is based on the evidence cited
above for the influence of lexical/phonological knowledge
on nonword repetition accuracy (e.g., Dollaghan et al.,
1995; Gathercole, 1995; Gathercole et al., 1991), as well
as on evidence suggesting that as phonological knowledge
changes with vocabulary development, it impacts non-
word repetition ability. For instance, Munson, Kurtz, and
Windsor (2005) reported that the effect of nonwords’ pho-
notactic probability on childrens’ accuracy in repeating
those nonwords decreased as a function of vocabulary size,
and interpreted this as further evidence that the level of
phonological vocabulary knowledge causally affects non-
word repetition performance. From these two premises,
it follows that phonological vocabulary knowledge is a
causal determinant of nonword repetition ability. Thus in
this view, it is the extent of phonological vocabulary/
knowledge available to an individual, and not PSTM, that
plays the important causal role in the association between
nonword repetition and vocabulary size.

This perspective is depicted graphically in Fig. 1(b),
which shows that phonological vocabulary size/knowledge
is posited to causally affect nonword repetition ability. In
this view, the correlation between nonword repetition
and vocabulary size is a direct consequence of this causal
link, while the correlation between nonword repetition
and vocabulary learning is mediated by the two causal links
connecting them. In contrast with the preceding account, a
causal link between PSTM and vocabulary learning is not
emphasized here. This perspective does not usually include
explicit hypotheses about immediate serial recall or PSTM,
or their relationship to nonword repetition, but the causal
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links shown from PSTM to immediate serial recall and non-
word repetition would not be inconsistent with the ac-
count. An explanation of the correlation between
nonword repetition and immediate serial recall in terms
of their shared PSTM third variable would therefore also
be consistent with the account. An explanation of the cor-
relation between vocabulary/knowledge and immediate
serial recall in terms of the covariance arising from (i)
the causal link from vocabulary/knowledge to nonword
repetition and (ii) the shared role of PSTM in nonword rep-
etition and immediate serial recall would not be inconsis-
tent with the account.

In principle, these accounts are not mutually exclusive,
as a number of investigators have noted (Bowey, 1996;
Brown & Hulme, 1996; Gathercole, 1995, 2006; Gathercole,
Service, et al., 1999; Gupta, 1995, 2006; Gupta & Mac-
Whinney, 1997; Snowling, 2006; Snowling et al., 1991).
For instance, the term redintegration (Schweikert, 1993)
has been used to refer to a process whereby short-term
memory recall is influenced by long-term knowledge rep-
resentations, which aid in reconstruction of information
from a short-term memory trace, and the idea of redinte-
gration has been extended and applied specifically to non-
word repetition by Gathercole et al. (1999), constituting an
account that posits a role for both PSTM and long-term
vocabulary knowledge in nonword repetition. As another
example, Gupta’s (1995, 1996; Gupta & MacWhinney,
1997) work has also argued that long-term linguistic
knowledge inherently influences recall from short-term
memory. Nevertheless, in practice, these two perspectives
– one emphasizing the role of PSTM and the other empha-
sizing the role of long-term knowledge – have come to be
somewhat oppositional; this continues to be the case, as
evidenced by the extensive debate about these views in a
recent review of the field and in commentaries accompa-
nying that review (see Gathercole, 2006 and associated
commentaries). In our view, an important reason for this
has been the lack of an explicit, implemented computa-
tional account that can simulate the relevant phenomena
and provide mechanistic understanding of whether/how
the accounts could be consistent with each other.

We will refer to these opposing accounts, respectively,
as the ‘‘PSTM account” and the ‘‘linguistic account” (corre-
sponding roughly to what others have termed the ‘‘phono-
logical storage hypothesis” and ‘‘phonological sensitivity
hypothesis”, respectively – e.g., Bowey, 1996; Gathercole,
2006). Let us consider carefully the points of agreement
and disagreement between them. First of all, it may be
noted that it is phonological vocabulary knowledge (rather
than, say, semantic knowledge) that is particularly relevant
to the hypotheses in both accounts. Second, both accounts
posit or acknowledge the possibility of a role for the level
of phonological knowledge in determining nonword repe-
tition accuracy. The crucial point of difference is that the
PSTM account also posits an important causal role for
PSTM in the growth of phonological vocabulary/knowledge
(i.e., in phonological vocabulary learning), while the lin-
guistic account posits that such a role may be relatively
minor. The critical discriminating question is, therefore,
whether or not PSTM plays an important causal role in
phonological vocabulary learning.
Although there have been numerous computational ac-
counts of immediate serial list recall (e.g., Botvinick &
Plaut, 2006; Brown et al., 2000; Burgess & Hitch, 1992,
1999, 2006; Gupta, 1996, 2009; Page & Norris, 1998) as
well as of word and nonword repetition (e.g., Gupta,
1996, 2009; Gupta & MacWhinney, 1997; Hartley &
Houghton, 1996; Vousden, Brown, & Harley, 2000), they
have either not addressed phonological vocabulary learn-
ing, or have not addressed it in a manner that resolves
the critical question (but see Jones, Gobet, & Pine, 2008
for a recent approach). The issues can, however, usefully
be framed in computational terms, and in particular, in
terms of three questions: First, what is required computa-
tionally for repetition of a novel word form? That is, what
kind of computational mechanism would be necessary for
such a task? Second, is PSTM part of these computational
requirements? Third, do these necessary computational
mechanisms and/or PSTM play any role in phonological
vocabulary learning?

A useful starting point in thinking about these questions
is the fact that a novel word form, on first exposure, is a no-
vel sequence of sounds. The task of repeating such a stim-
ulus immediately after exposure to it requires the listener
to encode the serial order of this sequence during its pre-
sentation, and then replicate this serial order when the
stimulus is no longer present. That is, immediate repetition
of a novel word form requires the encoding and retrieval of
a novel serial ordering of constituent sounds. What are the
mechanistic underpinnings of a task that requires produc-
tion of an unfamiliar serially ordered sequence?

Below, we present a theory of phonological vocabulary
learning. We instantiate our theory as a recurrent neural
network computational model, offering a precise account
of the construct of PSTM, of performance in the nonword
repetition task, of novel word form learning (i.e., phonolog-
ical vocabulary learning), and of the relationship between
all of these. We show through simulation not only that
PSTM causally affects both nonword repetition accuracy
and phonological vocabulary learning, but also that phono-
logical vocabulary/knowledge causally affects nonword
repetition ability. We further demonstrate that the model’s
nonword repetition performance shows effects of phono-
tactic probability and of nonword length, which have been
taken as evidence for the causal effects on nonword repe-
tition accuracy of phonological knowledge and PSTM,
respectively. As a by-product of these demonstrations, we
provide a means of reconciling the PSTM and linguistic ac-
counts, suggesting that an opposition between them is
misplaced.
Serial ordering within phonological word forms: A
computational model

The model we constructed to examine these questions
is adapted from recent work by Botvinick and Plaut
(2006), who developed a neural network model of immedi-
ate serial recall of arbitrary lists of letters. The issue we
investigated was not immediate serial list recall, but rather
the processing, production, and learning of phonological
sequences, where each such sequence constitutes a word



Fig. 2. Architecture of the model.
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form. That is, the present model addresses serial ordering
within word forms, investigating phonological sequencing
and phonological vocabulary learning. It does not address
serial ordering across word forms, as in list recall.

Following Botvinick and Plaut (2006), our model took
the general form of a simple recurrent network (SRN),
which is a type of neural network architecture that has
been widely employed in simulation of cognitive phenom-
ena involving sequential processing (e.g., Christiansen
et al., 1998; Dell et al., 1993; Elman, 1990; Ernansky, Mak-
ula, & Benuskova, 2007; Gupta, 2009; Gupta & Cohen,
2002; Jordan, 1986). The architecture of the model is
shown in Fig. 2. The model has an input layer at which a
distributed representation of an entire syllable is pre-
sented, and an output layer that uses the same representa-
tion scheme, at which the model’s output is produced. The
representation of a syllable, at both the input and the out-
put layers, is in terms of a CCVCC (i.e., Consonant–Conso-
nant–Vowel–Consonant–Consonant) frame. That is, the
representation scheme for a syllable consists of units di-
vided into five slots. Activation of units in the first slot de-
notes the first C (if any) of the syllable, activation of units
in the second slot denotes the second C (if any) of the syl-
lable, activation of units in the third slot denotes the V of
the syllable, and so on. Within each of these slots, the var-
ious phonemes that are legal for that slot for English are
represented as different patterns of activations across a
set of units. For example, for the encoding scheme used,
there are 17 different phonemes of English that are legal
for the first C slot. Five bits (i.e., binary digits) are needed
to represent 17 different binary patterns, and five binary
units were therefore necessary for the first slot. Thus each
of the 17 possible phonemes was represented as a different
binary pattern of activation across this set of five units.
Similarly, the 21 phonemes that are possible in the V slot
were represented as patterns of activation across a set of
five units constituting the V slot (five units suffice for up
to 32 different patterns); and so on for the various slots
shown at the input and output layers in Fig. 2.

In addition to the input and output layers, the model
has a hidden layer of 200 units. All units in the input layer
project to all units in the hidden layer, and all units in the
hidden layer project to all units in the output layer. The
model also has a layer termed the context layer, as is typ-
ical of simple recurrent networks. Each context layer unit
corresponds to one hidden layer unit; the context layer
thus has the same number of units as the hidden layer.
The dashed arrow indicates one-to-one connections from
hidden layer units to context layer units. These connec-
tions are used to copy the hidden layer activation pattern
into the context layer, at the end of each time step of pro-
cessing. The context layer however has full connectivity to
the hidden layer, and transmits its activation to the hidden
layer in the same manner as does the input layer. At each
point in processing, the model therefore has two types of
input available: the current stimulus, available in the input
layer; and, in the context layer, a copy of the hidden layer’s
previous activation pattern, which provides the network
with a kind of memory of its previous processing. (It is
worth noting that the HiddenLayer ? copy to ContextLayer
? transmit to HiddenLayer circuit is functionally equivalent
to each hidden layer unit having connections back to itself
and to all other hidden layer units. Therefore, for simplicity
we will frequently refer to the HiddenLayer–ContextLayer–
HiddenLayer circuit as the hidden layer self-connections
or hidden layer recurrent connections. Also, we will use
the term context information to refer to the information
about previous processing that is provided by this circuit.)
Finally, the model also incorporates feedback connections
from the output layer back to the hidden layer, as in the
Botvinick and Plaut (2006) model. The strength of all con-
nections in the model can be adjusted via learning, with
the exception of the one-to-one connections from hidden
layer units to context layer units, which have fixed
strength and implement the copy operation.

The model takes as its input a sequence of one or more
syllables constituting a monosyllabic or polysyllabic pho-
nological word form. That is, a word form is presented to
the model one syllable at a time. For our primary goal of
examining the role of PSTM in serially ordered production,
it sufficed for the model to represent and produce serial or-
der across syllables within a word form, but not within a
syllable, as the model still would be processing and pro-
ducing phonological sequences, and this was computation-
ally simpler than attempting to represent word forms as,
say, phoneme sequences. There is also considerable evi-
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dence to suggest that the syllable is a natural unit of pho-
nological analysis, and that there is perceptual segmenta-
tion at the level of the syllable (e.g., Jusczyk, 1986, 1993,
1997; Massaro, 1989; Menyuk, Menn, & Silber, 1986) and
it thus seemed reasonable to treat word forms as se-
quences of syllables rather than as sequences of phonemes.
Each phoneme in each syllable was nevertheless repre-
sented individually, using the CCVCC scheme described
previously. After the input had been presented, syllable
by syllable, the model attempted to produce as its output
the entire word form, as the correct sequence of syllables
(including correct phoneme representations). Importantly,
the model’s output production was performed when there
was no longer any information in the input about the word
form that had been presented. In order to perform the task,
the model therefore had to develop an internal representa-
tion of the entire word form that included information
about both its serial ordering and the phonemic structure
of the syllables comprising the word form. Over the course
of many such learning instances, the model not only
learned a phonological vocabulary (the set of phonological
sequences that it could correctly produce) but also ac-
quired generalized phonological knowledge (as we will
demonstrate below).

As an example, let us consider the syllable-by-syllable
processing of the word form flugwish in the model. The
procedure is the same irrespective of whether the word
form has been presented to the model previously. At the
first time step, the first syllable flug is presented at the in-
put layer. (At the start of processing a word form, the con-
text layer is reset to zero; it therefore does not provide any
input on this first time step.) In response to presentation of
flug at the input, the model’s task is to produce that same
syllable at the output. The model’s actual output, of course,
may or may not be correct. Either way, after the model has
produced an output, the actual output is compared with
the target output (in this case, flug) and the discrepancy be-
tween the two is calculated (what in neural networks is of-
ten termed the error). Then, the activation pattern that is
present at the hidden layer is copied to the context layer.

At the second time step of processing, the second sylla-
ble wish is presented at the input layer. The overall input to
the network, however, is this representation of wish to-
gether with the context layer copy of the previous hidden
layer activation pattern. The model’s task, as for the first
syllable, is to produce the current input syllable (now
wish), at the output. Again, the output may or may not be
correct, and the error is calculated. Again, the hidden layer
activation pattern is copied to the context layer so as to be
available at the next time step.

At the next (third) time step, however, there is no phono-
logical input, because wish was the final syllable of the word
form, so that presentation of the word form has been com-
pleted. At this point the model’s task is to produce at the out-
put layer the entire sequence of syllable representations
previously presented at the input layer, i.e., flug followed
by wish. That is, the network’s task at this point is to repeat
the preceding word form, as a serially ordered sequence.
To indicate this to the network, the input is now a signal to
recall the preceding sequence of inputs. This signal or cue
is denoted by activation of the ‘‘Recall” unit in the input
layer, as in Botvinick and Plaut (2006). It can be thought of
as loosely analogous to the context signal that is present
throughout recall in other types of models (e.g., Burgess &
Hitch, 1999; Hartley & Houghton, 1996), although unlike
those other models, it does not change during recall. Thus
on the third time step, in the presence of the ‘‘Recall” input
signal (together with the context layer input), the network’s
task is to produce flug at the output. This target and the net-
work’s actual produced output are again used in the calcula-
tion of error. Again, the hidden layer activation pattern is
copied to the context layer so as to be available at the next
(fourth) time step. At the fourth time step, the ‘‘Recall” signal
is once again presented as input (together with context layer
input). The network’s task is to produce the second syllable
of the preceding sequence, wish. Again, the difference be-
tween this target output and the actual output produced
by the network is used to determine error. Again, the hidden
layer activation pattern is copied to the context layer for
availability at the next time step. At the next (fifth) time step,
the input is still the ‘‘Recall” signal together with context
layer input. The network’s task on this time step (the final
step in repetition of this word form) is to activate a specially
designated ‘‘Stop” unit at the output layer, to signify the end
of its production of the word form. Once again, this target
and the network’s actual produced output are used in the
calculation of error. At the end of this repetition process,
the total error that has been calculated over all five time
steps is used to adjust the model’s connection weights, using
a variant of the back-propagation learning algorithm (back-
propagation through time; Botvinick & Plaut, 2006; Rumel-
hart, Hinton, & Williams, 1986). For present purposes, the
key aspect of this algorithm is that, by using error from all
steps of processing, it adjusts weights on the connections
from the context layer to the hidden layer in a way that takes
into account information about the entire sequence whose
presentation and attempted repetition has just ended.

Via connection weight adjustments following repeated
exposures to a set of word forms in this manner, a neural
network model of this kind would be expected to develop
more and more detailed internal phonological representa-
tions of these word forms such that it could produce them
with increasing accuracy. At each point in this trajectory of
learning, the set of word forms that could be correctly pro-
duced would constitute the model’s phonological vocabu-
lary. The construction of a model that could learn a
phonological vocabulary in this manner formed the start-
ing point for the present investigations.
Simulations of phonological vocabulary learning and
nonword repetition

Acquisition: Simulation 1

A set of approximately 125,000 phonologically distinct
words of one through four syllables was drawn from the
corpus of words accompanying the Festival speech synthe-
sis software (Black & Taylor, 1997). A syllabified phonemic
transcription was created for each word using a transcrip-
tion scheme developed by Dennis Klatt (for description, see
Luce & Pisoni, 1998). The transcription for each syllable in a
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particular word was then further translated into a set of
binary vectors, one for each phoneme, according to the
scheme described in the previous section.

The simulation of phonological vocabulary learning
consisted in presenting the model with a set of 1000 words
drawn from the overall set of 125,000, with adjustment of
connection weights occurring after presentation of each
word. This procedure (syllable-by-syllable presentation,
and connection weight adjustment, for each of the 1000
words) was termed an epoch, and vocabulary learning con-
sisted of a large number of such epochs (as discussed fur-
ther shortly). The 125,000 words were intended to
approximate the set of words of the language, and the sam-
ple of 1000 words in an epoch was intended to be very
loosely analogous to the kind of exposure to a subset of
these words of the language that a human learner might
receive in a period of time such as a day. We are not aware
of any estimates of the number of words that a human
learner actually hears during a day, but it has been esti-
mated that children speak 10–14,000 word tokens per
day (Wagner, 1985), so that it does not appear unrealistic
to assume exposure to 1000 words in a day. An epoch, as
noted, was meant to correspond very roughly with such
a period of time.

The 1000 words in each epoch were selected stochasti-
cally from the overall set of 125,000, with the probability
of selection of a given word into the sample of 1000 for
an epoch being based on its frequency of occurrence. Spe-
cifically, the probability of inclusion of a word was deter-
mined, as in Seidenberg and McClelland (1989), by the
formula P = K � log10(kf + 2), where kf was the Kucera–
Francis frequency of occurrence (Kucera & Francis, 1967),
and K was a constant. Selection was with replacement
within each epoch so that a particular word could occur
more than once within an epoch.

For each of the words in an epoch, the procedure de-
scribed in the previous section was followed: the model
was exposed to the word one syllable at a time, attempting
to repeat each syllable after its presentation, and attempt-
ing to repeat the entire word one syllable at a time after
presentation was complete; connection weights were ad-
justed at the end of this process. Following presentation
and connection weight adjustment for all 1000 words in
an epoch, the model’s production accuracy was then as-
sessed in a test using the same procedure (but now with-
out any adjustment of connection weights) one word at a
time, for all 125,000 vocabulary items. For each of the five
phoneme slots in the output layer, the model was consid-
ered to have produced the phoneme whose representation
vector was closest to the actual activation pattern present
in that slot. The model’s performance in producing a given
word was considered correct only if, when producing the
entire word after its presentation, the model produced
the correct phoneme in every slot of each syllable, and all
the syllables in the correct serial order. Otherwise, the
model’s performance in producing that word was consid-
ered incorrect, and the word was not considered a cor-
rectly produced vocabulary item. The number of words
correct in the test was taken as a measure of the model’s
phonological vocabulary size at that epoch. It may be
worth clarifying that, in keeping with the aim of examining
the learning and repetition of phonological word forms, the
model incorporated no representations of meaning, i.e., no
semantics. Thus, the model’s phonological vocabulary con-
sisted of the set of word forms to which the model had
been exposed and that it could produce correctly following
immediate presentation – i.e., phonological forms that it
could repeat, rather than phonological forms that could
be produced via semantics.

A further stochastic sample of 1000 words was then se-
lected, and the entire above procedure repeated, constitut-
ing another epoch. Overall, 8000 epochs of such exposure-
and-test were provided to the model, for a total of
8,000,000 learning trials. Keeping in mind the loose anal-
ogy of an epoch with a day, the 8000 epochs corresponds
roughly with 8000/365 = 21 ‘‘years” of age, and keeping
in mind the assumption of exposure to 1000 words per
day in human language users, the figure of 8,000,000 expo-
sures to words in 21 years would appear to be within the
bounds of plausibility.

Fig. 3 shows development of the model’s phonological
vocabulary across these epochs. The upper curve in the fig-
ure shows the number of words to which the model has
been exposed at least once. The lower line shows the size
of the model’s vocabulary, determined as above. As can
be seen, the model’s phonological vocabulary exhibits stea-
dy growth as a function of exposure to the simulated lin-
guistic environment. By about 6000 epochs, phonological
vocabulary size had largely asymptoted, with that level
being maintained through the remainder of the 8000
epochs of training. In the absence of relevant empirical
data on phonological word form repetition ability, we do
not know how closely stages in the model’s trajectory
match developmental time points in the human trajectory.
Clearly, however, the model exhibits a developmental tra-
jectory; moreover, the trajectory exhibits the kind of
power law learning often characteristic of human
cognition.
Nonword repetition: Simulation 2

To test the network’s ability to generalize its knowledge
of trained word forms to the repetition of novel word
forms, it was tested on a set of nonwords of lengths two
through four syllables (100 nonwords of each length) by
random sampling from a corpus of nonwords used in our
behavioral studies (Gupta, 2005; Gupta et al., 2005; Gupta



Table 1
Error proportions in nonword repetition: comparison of behavioral and
simulation data.

Human (%) Model (%)

Syllables correctly produced 95.0 95.6
Preserved syllable structure

CV targets 99.7 98.9
CVC targets 99.4 98.2

Proportion of errors that are
Single-phoneme errors 86.2 86.9
Multiple-phoneme errors 13.8 13.1

Single-phoneme errors
Substitutions 90.1 79.5
Insertions 6.5 10.3
Deletions 3.4 10.3
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et al., 2004). As described in greater detail in Gupta et al.
(2004), all nonwords in this corpus have CV nonfinal sylla-
bles and a CVC final syllable, were constructed to be
unwordlike, and contain no inflectional morphemes. To
test nonword repetition, we presented each of the selected
stimuli to the model, one at a time. Each stimulus was pre-
sented syllable by syllable, exactly as for vocabulary items
in Simulation 1. As for vocabulary items, the model’s repe-
tition of the word form was tested immediately after its
presentation. The model’s repetition response was re-
corded, and was scored as correct only if all phonemes of
each syllable were produced correctly, and all syllables
were produced in correct serial order. Connection weights
were not adjusted, to ensure that the model’s performance
in this task would be based solely on generalization from
its existing phonological vocabulary/knowledge, rather
than on any learning of the specific nonwords presented.
Overall, this procedure was exactly like the test of produc-
tion accuracy at the end of each epoch during learning of
the vocabulary in Simulation 1, except that the stimuli
being tested were not vocabulary items but nonwords.

As noted in Simulation 1, the model’s phonological
vocabulary size asymptoted by epoch 6000, and we there-
fore considered epochs 6000–8000 to constitute an ‘‘adult”
range of phonological vocabulary achievement. We set the
model’s learning rate parameter so as to yield adult-like
nonword repetition accuracy at this phonological vocabu-
lary learning asymptote. The learning rate that achieved
this was 0.0001, the same as that employed by Botvinick
and Plaut (2006). Fig. 4 compares the model’s nonword
repetition performance at 8000 epochs, the asymptote of
vocabulary acquisition, with that of human adult partici-
pants on nonwords of the same lengths drawn from the
same corpus (Gupta et al., 2005), and confirms that perfor-
mance at this final epoch in the model’s adult range was
quite similar to the human data. We also examined the
model’s nonword repetition performance at a number of
points in this ‘‘adult” range, with similar results in all cases.

To further assess the model’s nonword repetition per-
formance, we analyzed error patterns in the model’s non-
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Fig. 4. Nonword repetition accuracy, collapsed across two-, three- and
four-syllable nonwords. Comparison of behavioral data from Gupta et al.
(2005) with simulation results at 8000 epochs.
word repetition data, comparing them with those in the
behavioral data (Table 1). None of the model’s parameters
had been adjusted in any way to account for error patterns
or any of the other phenomena described below. The mod-
el showed good correspondence with the behavioral pat-
terns in a number of important respects. First, the overall
proportion of syllables correctly repeated was very similar
in the behavioral and the simulation data (94.97% vs.
95.56%). Second, the behavioral data show very strong
adherence to the syllable-structure constraint, such that
target syllables with CV structure were almost without
exception repeated as CVs, even if the actual repetition
was incorrect, and CVC syllables were repeated (even if
incorrectly) as CVCs. The model shows equally strong
adherence to this constraint, for both CVs and CVCs. (CVs
and CVCs were the only two syllable types that occurred
in the nonwords, in both the behavioral and the simulation
experiments.) Third, we examined the proportion of incor-
rectly produced syllables that had a single-phoneme error
versus multiple-phoneme errors. In the simulation results,
as in the behavioral data, close to 90% of errors were sin-
gle-phoneme errors. Finally, for single-phoneme errors,
we further classified the error as a substitution (replace-
ment of a phoneme in the target syllable by one that was
not present in the target syllable), insertion (involving
addition of a phoneme), or deletion (removal of a pho-
neme). In the model, as in the behavioral data, the over-
whelming majority of single-phoneme errors were
substitutions. The model thus exhibits a good correspon-
dence with the behavioral data in this analysis of propor-
tions of error types.
Effects of nonword length and serial position

A robust phenomenon of nonword repetition has been
the finding that repetition accuracy decreases with non-
word length (e.g., Gathercole et al., 1992). This finding
has been thought to indicate the operation of PSTM in non-
word repetition both because it mirrors the well-docu-
mented finding of list length effects in immediate serial
recall of lists, and because it appears difficult to account
for in a purely linguistic account (e.g., Gathercole, 2006).
A more recent finding is that serial position effects, which
are likewise considered a hallmark of PSTM engagement in
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immediate serial list recall, are also obtained syllable-wise
in repetition of single polysyllabic nonwords (Gupta, 2005;
Gupta et al., 2005). As these phenomena of nonword repe-
tition have been viewed as offering support for the PSTM
account, they are particularly relevant to the present inves-
tigation. If the model exhibited them, it would instantiate
some key behaviors that motivate the PSTM account.

The three bars at the left of Fig. 5(a) display repetition
accuracy for two-, three-, and four-syllable nonwords from
Gupta et al. (2005), which illustrate the basic phenomenon
of nonword repetition accuracy decreasing with nonword
length, for adults. The Figure also displays nonword repeti-
tion accuracy data from Simulation 2 at an adult level of
8000 epochs, now broken down by nonword length. (Note
that these behavioral and simulation data are identical to
those shown collapsed across nonword length in Fig. 4.) As
can be seen, the model’s performance exhibits a clear effect
of nonword length, and furthermore, matches the behav-
ioral data quite well. The main effect of length was signifi-
cant in both the human and simulation data, p < .005 in
each case.

We also examined the effect of nonword length at an
earlier developmental stage. As discussed in Simulation 1,
the model showed a clear trajectory of phonological vocab-
ulary development, asymptoting in the 6000–8000 epoch
range, which we therefore termed the adult range. If this
trajectory is plausible, then the model’s nonword repeti-
tion performance at earlier points would have at least
some correspondence with the behavioral data for younger
age groups. We did not expect this correspondence to be
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Fig. 5. Effect of nonword length on nonword repetition accuracy: data
and simulations. (a) Human adults (Gupta et al., 2005) and model at 8000
epochs. (b) Human children (Gupta et al., in preparation) and model at
3000 epochs.
very systematic, and merely expected there to be points
of contact such that at some younger ‘‘ages” of the model,
nonword repetition performance would correspond with
that of children.

However, to provide some informal sense of how the
model’s trajectory might map onto human age, suppose
we assumed a linear relationship between epochs in the
model and age. We note again that we do not expect or
claim that such a systematic mapping actually holds, and
thus we introduce it only for illustrative purposes. Under
this linear assumption, if we consider epoch 6000 (the start
of the adult range in the model) to correspond loosely with
an age of 18 years, then epoch 3000 would correspond
loosely with an age of 9 years. With this loose analogy in
mind, we compared the model’s nonword repetition at
3000 epochs with that of a group of children aged 6–11
with a mean age of 9.02 years (Gupta, Abbs, Tomblin, &
Lipinski, in preparation). The stimuli presented to the chil-
dren came from the same corpus as those presented to the
model. The three bars at the left of Fig. 5(b) display repeti-
tion accuracy for two-, three-, and four-syllable nonwords
in the children, while the three bars at right display the
model’s performance from Simulation 2 at 3000 epochs,
broken down by nonword length. Here, too, the model dis-
plays a clear effect of nonword length, and also matches
the behavioral data reasonably well. Again, the effect of
length was significant in both the human and simulation
data, p < .005 in each case.

We further examined serial position effects within non-
words. Gupta (2005) and Gupta et al. (2005) demonstrated
that repetition of nonwords was subject to syllable-wise
serial position functions, and this finding has also been rep-
licated in other age groups and languages (e.g., Archibald &
Gathercole, 2007; Gupta et al., in preparation; Santos, Bue-
no, & Gathercole, 2006). Fig. 6(a) displays serial position
functions obtained in repetition of two-, three-, and four-
syllable nonwords from adults (Gupta et al., 2005).
Fig. 6(b) shows accuracy by serial position for nonword rep-
etition at 8000 epochs from Simulation 2. (The functions in
Fig. 6a and b are derived from the behavioral and simulation
results plotted by nonword length in Fig. 5a.) As can be seen,
the model corresponds quite well with the behavioral data.
In the behavioral data, classic primacy and recency are seen
most clearly for four-syllable nonwords, and this is the case
for the model as well. The model also displays the lack of pri-
macy as well as lack of recency seen in the behavioral data
for three-syllable nonwords. The overall levels of accuracy
are quite similar to those in the behavioral data.

Fig. 7(a) shows serial position functions for 6- to 11-
year-old children (Gupta et al., in preparation), and
Fig. 7(b) serial position functions from the model at 3000
epochs, both corresponding to the data plotted by non-
word length in Fig. 5(b). Here, too, the model captures
the behavioral data fairly well, showing clear primacy
and recency for four-syllable nonwords, and primacy and
a lack of recency for three-syllable nonwords. However,
the model does not capture the negative recency for
three-syllable nonwords, and it shows slight primacy for
two-syllable nonwords, where there is none in the behav-
ioral data. Overall levels of performance are in a roughly
similar range to the behavioral data.
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In summary, then, the model’s nonword repetition
exhibits behavioral effects that in humans have been
attributed to PSTM, thus offering a computational account
of these effects, and establishing that the model simulates
key phenomena motivating one of the two accounts. We
note once again that these results involved no manipula-
tion of the model, and are merely finer-grained analyses
of the model’s nonword repetition performance reported
in Simulation 2 – that is, they fall out of the model.
Effects of phonotactic probability: Simulation 3

As noted in the Introduction, the findings that nonword
repetition accuracy is influenced by lexical/phonological
knowledge (e.g., Gathercole, 1995) and that these effects
change with vocabulary size (e.g., Munson et al., 2005)
have formed an important part of the rationale for the lin-
guistic account. Gathercole (1995) found, for example, that
4- and 5-year-old childrens’ nonword repetition accuracy
was greater for highly wordlike nonwords than for less
wordlike nonwords, exemplifying an effect of phonological
knowledge on nonword repetition performance. As word-
likeness is highly correlated with phonotactic probability
(e.g., Munson, 2001), these results have also been inter-
preted as showing an effect of phonotactic probability
(Gathercole, 2006). Munson et al. (2005) further found that
the effect of phonotactic probability on childrens’ nonword
repetition accuracy decreased as a function of vocabulary
size, also suggesting that phonological knowledge impacts
nonword repetition performance.

To examine whether the phonological knowledge en-
coded in the model gives rise to such effects, we created
100 word forms of each of four types: two-syllable high pho-
notactic probability, two-syllable low-phonotactic proba-
bility, three-syllable high phonotactic probability, and
three-syllable low-phonotactic probability. None of these
stimuli was in the vocabulary to which the model was ex-
posed as part of learning in Simulation 1. Positional segment
(i.e., phone) probabilities and biphone probabilities were
calculated using the method described by Vitevitch and Luce
(2004). Phone and biphone probabilities were significantly
lower for the low probability stimuli than for the high prob-
ability stimuli at each of the two syllable lengths (two-sylla-
ble low vs. high mean phone probability: .199, .264; two-
syllable low vs. high mean biphone probability: .005, .032;
three-syllable low vs. high mean phone probability: .194,
.308; three-syllable low vs. high mean biphone probability:
.005, .035; p < .0005 for all low vs. high comparisons). At a
number of points during the model’s vocabulary develop-
ment as described in Simulation 1, we tested its perfor-
mance in nonword repetition for each of these high and
low-phonotactic probability stimuli, using the procedure
of Simulation 2, and the model of Simulation 1.

Fig. 8(a) plots the results reported by Gathercole (1995)
for 4- and 5-year-olds, while Fig. 8(b–d) plot the model’s
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Fig. 8. Effect of phonotactic probability on nonword repetition accuracy. (a) Effect in 4- and 5-year-old children, re-drawn from data in Gathercole (1995).
(b–d) Effect in model, at three ‘‘ages”: epochs 500, 2000, and 8000.
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nonword repetition performance for the high and low-
phonotactic probability nonwords in Simulation 3 at three
points chosen to correspond roughly to a ‘‘young child” age
(500 epochs), an ‘‘older child” age (2000 epochs) and an
‘‘adult” age (8000 epochs). We did not attempt to set these
epochs into any more systematic correspondence with age.
At each of these points, the model’s nonword repetition
was significantly more accurate for the high phonotactic
probability than the low-phonotactic probability words
(p < .001 at each simulated age).2 As can be seen in the fig-
ure, the size of the effect was smaller in the model than in
the empirical data; nevertheless, the model did show a
clear effect of phonotactic probability. The occurrence of
these phonotactic probability effects in the model falls
out of the very manner of its operation and learning:
phones and combinations of phones that occur more fre-
quently in the vocabulary have been processed more fre-
quently by the model, leading to better performance in
generalizing to new stimuli (i.e., nonwords) that incorpo-
2 Assessing statistical significance required that multiple observations of
nonword repetition be obtained from the model, at each ‘‘age”. This was
achieved by testing the model at each of the 25 epochs immediately
preceding a chosen age value. Thus, for instance, nonword repetition
performance for epoch 2000 was assessed by measuring nonword repeti-
tion performance at epochs 1975 through 2000. This can be thought of as
analogous to sampling 25 individuals of about (but not exactly) the same
‘‘age”.
rate them. This is very much the same explanation that
has typically been offered for the effects of phonotactic
probability in human nonword repetition (e.g., Edwards
et al., 2004); however, the present model provides a con-
crete instantiation of and mechanistic basis for such an
explanation.

Munson et al. (2005) reported a diminution of the ef-
fects of phonotactic probability in typically developing
children over the age range 60–160 months such that an
interaction between phonotactic probability and age was
found (Fig. 3, page 1043, Munson et al., 2005). To analyze
whether such an effect existed in the model, we conducted
a 2-way ANOVA comparing the model’s performance on
high and low-phonotactic probability nonwords at the
vocabulary sizes corresponding to epochs 500 and 2000,
the two ‘‘child” ages from Fig. 8. The ANOVA revealed a sig-
nificant interaction (p < .0005), plotted in Fig. 9. In the
model, as in Munson et al. (2005) results, the effect of pho-
notactic probability diminishes with age. The reason for
this in the model is that very early in phonological vocab-
ulary learning, weight adjustment in the model has been
dominated by higher probability phones and phone combi-
nations, because of their relatively high frequency of
occurrence, so that accuracy at 500 epochs is substantially
greater for stimuli containing higher probability than low-
er probability elements. By later in phonological vocabu-
lary learning, higher probability elements no longer



35

40

45

50

55

60

65

70

75

Age1 Age2
Age

High

Low

N
on

w
or

d 
R

ep
et

iti
on

 A
cc

ur
ac

y

Fig. 9. Interacting effects of age and phonotactic probability on nonword
repetition: simulation.

492 P. Gupta, J. Tisdale / Journal of Memory and Language 61 (2009) 481–502
generate as much error (their accuracy is closer to ceiling),
whereas lower frequency phones and phone combinations
continue to generate substantial error. Error-driven weight
adjustment therefore now occurs more in response to the
lower frequency elements, so that their accuracy begins
to ‘‘catch up”, e.g., at 2000 epochs. The model thus offers
an explanation of this phenomenon as well.

The interaction noted above indicates that the differ-
ence between repetition accuracy for high- versus low-
phonotactic probability nonwords (i.e., the phonotactic
probability effect) decreased with age. Munson et al.
(2005) also found, however, that this effect (which they
termed the frequency effect) decreased as a function of
vocabulary size as gauged by a standardized vocabulary
measure, the Peabody Picture Vocabulary Test, or PPVT
(Fig. 2, p. 1043, Munson et al., 2005). Munson et al.
(2005) therefore examined the relative contributions of
age and vocabulary size to the phonotactic probability ef-
fect by conducting a hierarchical regression in which first
age and then the vocabulary measure were entered as pre-
dictors. The results of this analysis, summarized in the
upper panel of Table 2, indicated that age and vocabulary
size made independent contributions to the phonotactic
probability effect (Table 4, p. 1042, Munson et al., 2005).
However, it was only the effect of vocabulary size that
was negative (as indicated by the negative beta weight in
Table 2), while the effect of age was positive, although
not significantly so. That is, it was increases in vocabulary
size rather than age that led to a decrease in the phonotac-
tic probability effect. Also, as indicated by the DR2 values in
Table 2
Hierarchical regression analyses of the contributions of age and vocabulary size to
et al., 2005) and simulation.

Data Order of entry Variable entered

Munson et al. (2005) 1 Age
2 PPVT vocab

Simulation 1 Epoch
2 Vocab size
Table 2, vocabulary size accounted for a greater proportion
of variance in the phonotactic probability effect than did
age. To examine the effects of age and vocabulary size in
the model, we conducted a hierarchical regression of the
phonotactic probability effect between epochs 500 and
8000, incorporating first epochs (the model’s analogue of
age) and then phonological vocabulary size as the predic-
tors, as in Munson et al. (2005). The results are shown in
the lower panel of Table 2. Although age is a significant
predictor in the model, thus differing from the empirical
results, the model in other key respects shows the same
pattern as reported by Munson et al. (2005): a negative
beta weight for vocabulary size, but not for age, and a high-
er DR2 for vocabulary size than for age. Thus in the model
as in the behavioral data, the longitudinal decrease in the
phonotactic probability effect is driven more strongly by
increasing vocabulary size than by age.
Understanding the model’s functioning

The simulations thus far establish that the model learns
a phonological vocabulary, and that its nonword repetition
performance exhibits overall levels of accuracy similar to
those of human adults and children, shows nonword
length effects and serial position effects of the kind that
support the PSTM account, and shows phonotactic proba-
bility effects of the kind that support the linguistic account.
What underlies these behaviors and effects in the model?
And what, if anything, does PSTM have to do with them?
Serial order processing in the model

We can begin by noting that the task performed by the
model in all of these behaviors is the production of word
forms as serially ordered sequences. Let us examine how
the model achieves this serially ordered behavior. (See also
Botvinick & Plaut, 2006, who present extensive analyses of
their model’s functioning. The principles of sequential
operation are largely similar in the two models, even
though the Botvinick & Plaut, 2006 model was applied to
sequences of letters rather than syllables, and the focus
was not on learning specific sequences.)

When input of the sequence of syllables representing a
particular word form has ended, the model is left with the
task of replicating that particular sequence, in the absence
of any external input other than the ‘‘Recall” signal (which
is identical for all word forms, and hence provides no use-
ful information about the content of any particular word
form). Two things are needed to solve this computational
the phonotactic probability effect: comparison of behavioral data (Munson

DR2 Significance Beta weight Significance

.081 p < .05 .05 ns

.148 p < .01 �.53 p < .01

.243 p < .005 .416 p < .05

.429 p < .001 �1.121 p < .001



3 The availability of context information is in fact a computational
requirement for the production of serially ordered sequences, not only in
neural networks, but in general. The many mathematically and/or compu-
tationally specified accounts of various aspects of serially ordered behavior
differ in many respects (e.g., Botvinick & Plaut, 2006; Brown et al., 2000;
Burgess & Hitch, 1992, 1999; Christiansen et al., 1998; Dell et al., 1993;
Elman, 1990; Grossberg, 1978, 1986; Gupta, 1996, 2009; Gupta & Cohen,
2002; Hartley & Houghton, 1996; Houghton, 1990; Jordan, 1986; Page &
Norris, 1998), but all converge on one notion: in all of these accounts,
producing a serially ordered sequence has the computational requirement
that context information must be available – that is, information that can
serve to distinguish successive states of the system from each other, during
production of the sequence. It should be noted that our use of the term
‘‘context” is not meant to be equated with any one particular mechanism
that has been proposed in these various computational models – for
instance, a time-varying context signal (e.g., Brown et al., 2000; Burgess &
Hitch, 1992, 1999; Gupta, 1996; Hartley & Houghton, 1996) or updating of
a context layer (e.g., Elman, 1990) as in the present model, or changes in the
pool of activated items as a result of items’ post-recall suppression (Page &
Norris, 1998), all of which serve to distinguish successive states of the
system from each other. Our use of the term is meant to abstract away from
particular instantiations, and refers to an abstract functionality that is
needed for serial order processing.

P. Gupta, J. Tisdale / Journal of Memory and Language 61 (2009) 481–502 493
problem. First, the activation pattern over the hidden units
at the end of input must encode information about the en-
tire word form, including its serial order. Second, this hid-
den layer activation pattern must change during recall,
such that at each time step, it provides the basis for the
model to produce the correct syllable at the output.

To clarify the second point: If the hidden layer activation
pattern remained the same throughout all time steps of re-
call, then, even if it constituted a representation of the en-
tire word form, the model’s output would remain a static
pattern, rather than a sequence of appropriate syllables.
In other words, for different outputs to be produced from
one time step to the next, the hidden layer activation must
change over these time steps. For the hidden layer activa-
tion pattern to change from one time step of recall to the
next, the model’s input must change. Input from the ‘‘Re-
call” signal, however, is unchanging throughout. The
change in the model’s input therefore has to come from
elsewhere – from the context information. Thus the mod-
el’s ability to modify its hidden layer activation appropri-
ately during recall depends critically on the recurrent
connections on the hidden layer, which provide the con-
text information (which is derived from the hidden layer’s
own previous state). Without these connections, and in the
presence of the unchanging and uninformative ‘‘Recall” in-
put, no change would occur in the model’s input and hence
hidden layer activation pattern, and hence output. The
model would just keep producing the same output, time
step after time step.

The model’s context information, provided by its hidden
layer recurrent connections, is thus critically necessary for
its serially ordered production of word forms. This speaks
to the first question we raised in Introduction: (1) What
are the computational requirements of serial order produc-
tion in the nonword repetition task? Given that nonword
repetition is a serially ordered word form production task,
it follows that having and using context information is a
computational requirement for nonword repetition.

What is phonological short-term memory?

The second question we raised in Introduction per-
tained to whether short-term memory has any relationship
to these computational requirements. To examine this
question, let us further examine the nature of the context
information.

Because the context information is provided by
recycling one of the network’s own previous activation
patterns, or states, it is information about the past-informa-
tion about what past state(s) the system has been in, dur-
ing production of the sequence. But information about past
states is nothing if not memory information. Furthermore,
because the context information is reset from one
sequence to the next, it pertains only to the sequence cur-
rently being processed, and so it is short-term memory
information. (It is also constantly overwritten even during
the processing of a particular sequence, again making it
short-term memory information.) Thus in our model, and
in recurrent neural networks more generally, short-term
memory information is context information; and as
discussed above, context information is an inherent
computational requirement for serially ordered production
of sequences.3 From this it follows that in a recurrent neural
network, short-term memory information is computation-
ally necessary for the serially ordered behavior of nonword
repetition. This addresses the second question we raised
above, regarding the relationship of short-term memory to
nonword repetition.

The hidden layer activation pattern at the end of input
presentation of a word form is the model’s encoding of
the entire word form, as noted previously, and this be-
comes context information at the next time step, and thus
the model’s ‘‘STM encoding” of the word form. Is this a
phonological encoding? If so, then the model’s STM would
also be its phonological STM. Given that the model employs
input and output representations that are distributed and
phonologically structured, and given that its hidden layer
representations are also distributed, we would certainly
expect the hidden layer encodings of word forms, and
hence the STM encodings, to be phonologically structured.
Nevertheless, to confirm this, we created one set of non-
words that rhymed with each other, and one set of non-
words that were dissimilar to each other. We verified
that, as would be expected, the input representations of
the rhyming word forms were more similar to each other
than the input representations of the dissimilar word
forms were to each other t(189) > 32.0, p < .0001. Thus
the input layer vector representations of the two sets of
nonwords reflected the phonological similarity relations
that the nonwords were designed to incorporate. The ques-
tion of interest was whether the model’s STM encodings of
these nonwords would reflect these phonological similar-
ity relations. To examine this, we presented all the non-
words to the model, the procedure being exactly as in
Simulations 2 and 3. For each nonword, we recorded the
model’s STM encoding of it – the context information pres-
ent in the model at the beginning of recall of that nonword.
Within-set similarity was greater for the STM encodings of
the rhyming nonwords than the dissimilar nonwords,
t(189) > 38.0, p < .0001. Thus the model’s STM encodings
reflect the phonological similarity of the input, confirming



4 Such ‘‘edge effects” also constitute a basis for primacy and recency
effects in a number of other computational models of serial order
production (e.g. Burgess & Hitch, 1992; Gupta, 1996, 2009).
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that the model’s short-term memory is, indeed, phonologi-
cal short-term memory. This elaborates our answer to the
second question we raised in Introduction, indicating that
PSTM does play a necessary role in the repetition of novel
word forms.

Two further points are important here. Because the
PSTM information available in the context layer is trans-
mitted to the hidden layer across weighted connections,
the PSTM or context information that is actually received
by the hidden layer is colored by those connection weights.
But these weights are long-term weights, set as a result of
the network’s entire experience – like any long-term
weights in a neural network, they incorporate its long-
term knowledge (in this case, phonological knowledge).
From this it follows that in the model, phonological
short-term memory information is influenced by long-
term phonological knowledge. Said differently, there is
no such thing as a ‘‘phonological short-term memory” that
is independent of a ‘‘long-term memory”.

In addition, there is no one structure or process in a
recurrent network that is ‘‘phonological short-term mem-
ory” – rather, there is PSTM functionality, which arises
from the joint operation of many structures and processes,
such as the weights of the recurrent connections, other
connection weights in the system, and the mechanisms
of activation propagation; and this functionality is inher-
ently intertwined with long-term knowledge in the sys-
tem. For these reasons, we will henceforth use the more
neutral term phonological short-term memory functionality,
defining it as the functionality of ‘‘having phonological
information about the recent past”. This term is intended
to avoid the connotation that ‘‘phonological short-term
memory” is a process or store, which becomes problematic
if ‘‘phonological short-term memory” cannot be identified
with any particular structure or process, and cannot be
cleanly separated from ‘‘long-term memory”. Our defini-
tion of the term is consistent with the possibility that the
information about the recent past may itself be colored
by long-term knowledge, i.e., by the not-so-recent past.

Length effects and serial position effects

The effect of length on nonword repetition accuracy is a
direct consequence of the nature of the representations
that the model constructs for word forms. As discussed
above, the hidden layer representations that develop by
the end of input of a word form are what guide its subse-
quent recall. Botvinick and Plaut (2006) showed that a
model of this type can be thought of as ‘‘unfolding” this
hidden layer activation pattern in time, in order to produce
the correct sequence element at the correct time step, and
that the greater the number of sequence elements (in the
present model, syllables), the more difficult it is to create
an encoding that maintains sufficient discrimination be-
tween those elements. (Note that this account falls into
the broad category of ‘‘interference” accounts, and does
not incorporate trace decay.) Length effects thus fall out
of the representations that the model constructs, with
nothing being added to the model to achieve them. Perfor-
mance differences at the ‘‘child” and ‘‘adult” ages also fall
out of the model’s manner of operation (as the result of
continuous weight change throughout simulated develop-
ment), with no manipulation of model parameters.

The explanation of serial position effects is also related
to the discriminability of components of the hidden layer
encodings of word forms. For a given number of syllables,
maintaining discriminability is easiest for syllables that
are distinguished by being at a boundary (either the begin-
ning or the end of a word form – an ‘‘edge” effect), and
more difficult for syllables in the middle of the word form,
thus giving rise to serial position effects. Again, the expla-
nation is exactly as in the Botvinick and Plaut (2006) model
of immediate serial recall of lists of letters.4
Effects of phonological knowledge

As we have seen, during learning, the model develops
internal representations of the word forms it is exposed
to, and learns how to unpack these internal representa-
tions in sequence. That is, it acquires knowledge about
phonological forms, and about the transition structure
within these forms. Moreover, because this knowledge
must be developed for all word forms in the same set of
connection weights, the connection weights must encode
knowledge of the entire vocabulary. This knowledge in
turn affects the processing of word forms, because the con-
nection weights are crucial determinants of all processing
in the model. It is for this reason that effects of phonolog-
ical knowledge arise in the model.

It is also worth noting that the model’s functioning can
be seen as providing a mechanistic instantiation of the
construct of redintegration referred to earlier, according
to which long-term memory plays a role in reconstruction
of the short-term memory trace. As we have discussed, the
context information available at the beginning of recall of a
word form can be thought of as the STM trace of the pre-
sented word form; its use in production of the word form
is therefore analogous to reconstruction of the to-be-re-
called stimulus from an STM trace. As we have also dis-
cussed, the ‘‘spelling out” of this hidden layer encoding is
critically dependent on the model’s recurrent connections,
whose weights encode long-term knowledge. The influ-
ence of long-term knowledge on the model’s reconstruc-
tion is thus functionally equivalent to redintegration. (See
also Botvinick & Plaut, 2006 for discussion of this point
for the domain of immediate serial list recall.)
The causal roles of PSTM functionality and vocabulary
size/knowledge

We have discussed how PSTM functionality in the mod-
el is critical to its nonword repetition ability. We are now
in a position to directly address the key theoretical ques-
tions on which the PSTM and linguistic accounts differ:
Does PSTM functionality in the model causally affect its
phonological vocabulary learning? And, does phonological
vocabulary growth in the model cause improvement in
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Fig. 10. Repetition accuracy for nonwords across development (simula-
tion). (a) As a function of epochs. (b) As a function of phonological
vocabulary size.

P. Gupta, J. Tisdale / Journal of Memory and Language 61 (2009) 481–502 495
nonword repetition ability, independent of any change in
parameters that affect PSTM functionality? We begin by
addressing the second question.
5 Note that the value of the fixed connection weights can equally well be
thought of as expressing either activation maintenance or activation decay
(decay and activation maintenance are the complements of each other), and
the parameter can therefore be thought of as controlling either activation
maintenance or trace decay. The notion of decay has not previously been
incorporated in distributed sequential learning models (e.g. Botvinick &
Plaut, 2006; Chang, Dell, & Bock, 2006; Elman, 1990; Gupta & Cohen, 2002;
Jordan, 1986). It does, however play an important role in many other neural
network models (e.g., McClelland & Rumelhart, 1981), that typically make
greater use of localist representations. In such models it is well established
that recurrence-based short-term memory functionality depends on both
decay and connection weight strength. However, in such models, the
recurrence is not employed for sequential processing: Although the
information about the past that is provided by the recurrence-based STM
functionality influences subsequent time steps of processing, so that the
system exhibits dynamical behavior in settling to a stable activation state,
the sequence of states does not replicate a specific target sequence. In-
corporation of decay into the present model can thus be seen as an
extension of ideas from such recurrent but non-sequential models to
recurrent sequential learning models.
The effect of vocabulary size/knowledge on nonword
repetition accuracy: Simulation 4

A central hypothesis of the linguistic account is that non-
word repetition performance is influenced primarily by the
level of phonological vocabulary size/knowledge available
to the individual, and, accordingly, that the association ob-
served between nonword repetition ability and vocabulary
size is largely a result of this influence. To test this hypothe-
sis, we examined whether the model’s nonword repetition
performance would improve as a function of its phonologi-
cal vocabulary/knowledge, without any explicit adjustment
of model parameters that could affect PSTM functionality. To
do this, we used the same two-, three-, and four-syllable
nonwords as in Simulation 2, again testing the model’s rep-
etition of these stimuli. Now, however, we did this at numer-
ous epochs during the model’s development described in
Simulation 1. As in the previous simulations of nonword rep-
etition, the procedure consisted of providing the nonword as
input to the model, one syllable at a time, and determining
the accuracy of the model’s repetition. Connection weights
were not adjusted at any point, so that at each epoch, the
model’s nonword repetition was based solely on generaliza-
tion from its existing phonological vocabulary/knowledge at
that epoch, rather than on any prior learning of the specific
nonwords presented. All parameters that might affect PSTM
functionality (and indeed, all parameters of the model) re-
mained unchanged throughout the epochs of development
in Simulation 1, as in all simulations we have reported.

Fig. 10(a) plots the model’s nonword repetition perfor-
mance across the 8000 epochs of phonological vocabulary
learning described in Simulation 1, collapsed across non-
word length. As can be seen, the model’s nonword repeti-
tion accuracy exhibits a clear developmental trend as a
function of epochs (i.e., simulated age). That is, nonword
repetition accuracy improves as a function of the model’s
increasing phonological knowledge, with no adjustment
having been made to PSTM functionality. Fig. 10(b) shows
even more clearly that this improvement is a function of
phonological knowledge, plotting nonword repetition
accuracy against phonological vocabulary size rather than
epochs. Here the trend is linear or even exponential. Non-
word repetition accuracy is strongly influenced by phono-
logical vocabulary size. Thus the model supports this tenet
of the linguistic account.
The causal effects of PSTM functionality: Simulations 5 and 6

To examine the causal effect of PSTM functionality on
phonological vocabulary learning, we manipulated the
effectiveness of that functionality. As explained earlier,
the connections from the hidden layer to the context layer
provide for a copy of the hidden layer’s activation at the
end of each time step, and all these connections have the
same fixed weight. What that fixed weight is, however,
can be manipulated. In all simulations discussed so far,
these weights were set at 1.0, as is typical in simple recur-
rent networks. This amounts to a completely veridical or
undecayed transmission of the hidden layer’s activation
pattern to the context layer. However, different values of
this fixed connection weight would be expected to affect
the veridicality of the copy (‘‘PSTM maintenance strength”)
and hence PSTM functionality. We therefore implemented
a pmaint parameter to vary the value of the fixed weight of
these connections and thus PSTM maintenance strength
and PSTM functionality.5 If such variation affected the mod-
el’s phonological vocabulary learning, it would evidence a
causal effect of PSTM functionality. In addition, to concretize
earlier discussion of the need for PSTM functionality in non-
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word repetition, we also examined the effect of such varia-
tion on nonword repetition accuracy.

As noted above, the value of pmaint was 1.0 in all simula-
tions thus far. We now used six lower values: .90, .95, .80,
.75, .70, and 0. The last of these values was equivalent to a
complete abolition of PSTM functionality. We constructed
six different networks, each incorporating one of these
pmaint values, and each of these networks was used to sim-
ulate phonological vocabulary learning, as in Simulation 1.
At various epochs during this learning, and when each net-
work had reached 8000 epochs of learning, we recorded its
vocabulary size. We also tested its nonword repetition (as
in Simulation 2) of 100 four-syllable nonwords at each of
these epochs. The question of interest was whether the var-
iation in PSTM functionality would result in systematic dif-
ferences in the developmental trajectory of both
phonological vocabulary learning and nonword repetition.

Fig. 11(a) shows the results of Simulation 5, which exam-
ined the developmental trajectory of phonological vocabu-
lary learning under variation in pmaint. The six different
curves indicate the learning trajectories for the six pmaint
values. The plots indicate clearly that phonological vocabu-
lary learning in the model is systematically affected in a
graded manner by graded variation in PSTM functionality,
and completely eliminated by abolition of PSTM functional-
ity. Fig. 11(b) shows the results of Simulation 6, which exam-
ined the model’s nonword repetition accuracy at these same
epochs, for each of the six pmaint values. The Figure shows
clearly that accuracy is affected in a graded manner by
graded variation in PSTM functionality and that nonword
repetition ability is eliminated by abolition of PSTM func-
tionality. Together, these results indicate that PSTM func-
tionality does causally affect phonological vocabulary
learning, and illustrate how it affects nonword repetition
ability. As a further demonstration, we conducted an addi-
tional simulation using the model of Simulation 1 at 8000
epochs, i.e., after the model had developed a normal ‘‘adult”
phonological vocabulary with the pmaint parameter set at
1.0. At 8000 epochs, we reduced the value of pmaint to 0,
thereby eliminating PSTM functionality without altering
any other connection weights or any other aspect of the
model. Even though the model retained all other connection
weights and thus its long-term phonological knowledge, its
nonword repetition ability was abolished. All of these find-
ings provide clear support for the PSTM account.

Recapitulation: Reconciling the PSTM and linguistic accounts

The results of Simulations 4–6 are clear in establishing
three things. First, PSTM functionality is a critical and cau-
sal determinant of phonological vocabulary learning –
without PSTM functionality, there is no vocabulary learn-
ing/growth (Simulation 5), and such learning is also af-
fected in a graded manner by variation in PSTM
functionality. Second, as our earlier theoretical analysis
indicated, and as Simulation 6 illustrated, PSTM functional-
ity is a critical and causal determinant of nonword repeti-
tion ability. Both of these determinations are in keeping
with the postulates of the PSTM account. Third, nonword
repetition ability increases as a function of increasing
vocabulary size/knowledge, even when no aspect of the
model’s PSTM functionality has been explicitly manipu-
lated (Simulation 4). This is in keeping with the linguistic
account. Together, these results clearly indicate that there
is no opposition between the key tenets of both the PSTM
and linguistic accounts. Given the model’s credibility, as
indicated by its ability to capture a range of behavioral
phenomena (including findings that have been adduced
as divergent evidence for each of the two accounts), there
is considerable reason to suppose that these causal find-
ings from the model are also true of human cognition.

Fig. 12(a) depicts the relationships revealed by Simula-
tions 4–6. It depicts the causal links from PSTM functionality
to nonword repetition ability and to phonological vocabu-
lary learning, as in the depiction of the PSTM account in
Fig. 1(a). (Note, however, that the construct of PSTM in
Fig. 1 has been replaced by the construct of PSTM functional-
ity.) Fig. 12(a) also depicts the causal link from phonological
vocabulary learning to phonological vocabulary size/knowl-
edge (a logical necessity, as noted in Introduction, and incor-
porated as a background assumption in both the PSTM and
linguistic accounts in Fig. 1). In addition, Fig. 12(a) shows
the link evidenced by Simulation 4, from phonological
vocabulary size/knowledge to nonword repetition ability
(as in the depiction of the linguistic account in Fig. 1b). The
model thus provides a clear reconciliation of the PSTM and
linguistic accounts.

The pattern of causality is, however, more complex than
this. The complexity has to do with the nature of PSTM func-
tionality. As discussed in Introduction and under ‘‘What is



Fig. 12. Patterns of causality revealed by the simulations. (a) Initial formulation. (b) Revised formulation, reflecting the causal effect of phonological
vocabulary size on PSTM functionality. (c) Third formulation, showing two possible paths for causal effect of phonological vocabulary size on nonword
repetition performance.
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Phonological Short-Term Memory?”, PSTM functionality is
itself dependent on long-term knowledge in the system.
Thus greater long-term phonological knowledge causes
greater PSTM functionality – this is an inherent consequence
of the way PSTM functionality works in the model. Fig. 12(b)
introduces this path of causality, indicating it by the new
causal link from phonological vocabulary size/knowledge
to PSTM functionality. It is worth emphasizing that this does
not alter the finding that PSTM functionality is causally crit-
ical for both phonological vocabulary learning and for non-
word repetition ability. Phonological vocabulary learning
simply cannot occur without the serial ordering capability
provided by PSTM functionality, no matter what the vocab-
ulary size. Similarly, nonword repetition (or word repetition
for that matter) is simply not possible without PSTM func-
tionality, no matter what the vocabulary size. However,
PSTM functionality itself is causally affected by phonological
vocabulary size/knowledge. The relationship between PSTM
functionality and phonological vocabulary size/knowledge
is thus a bidirectional one, making this an interactive (and
thus more complex) system.

In addition to making for a more complex picture in gen-
eral, this has specific implications for the association be-
tween phonological vocabulary size/knowledge and
nonword repetition. Notice that Fig. 12(a) and (b) do not la-
bel this link as causal. This is because there are actually two
possible causal paths that might underlie this association. It
could arise in part from a direct causal impact of greater pho-
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nological vocabulary size/knowledge on nonword repetition
ability, as the arrow in Fig. 12(a) and (b) implies (but does
not explicitly depict). However, it is certain from the manner
of the model’s operation that there is an indirect path for cau-
sality whereby phonological vocabulary size/knowledge
causally affects PSTM functionality which then causally
affects nonword repetition ability. The direct path might or
might not actually be a causal path. The indirect path must
necessarily be a causal path, but might or might not account
for a significant part of the association. Thus the association
might be explained by either or both types of causality.
Fig. 12(c) revises Fig. 12(b) to depict these possibilities,
showing two dashed lines that represent the two possible
causal paths underlying the association between phonolog-
ical vocabulary size/knowledge and nonword repetition
ability. (Causality from nonword repetition ability to phono-
logical vocabulary size/knowledge can be ruled out – the
model makes it clear that performing nonword repetition
does not lead to any change in knowledge.) Furthermore, be-
cause phonological vocabulary size/knowledge causally
affects PSTM functionality, which causally affects phonolog-
ical vocabulary learning, this means there is a feedback loop
from PSTM functionality to vocabulary learning to phono-
logical vocabulary size/knowledge to PSTM functionality
to phonological vocabulary learning, as can be seen in
Fig. 12(b) and (c). Thus even while supporting the postulate
of the linguistic account, the model reveals greater underly-
ing complexity.
General discussion

The present work offers a computational account of
phonological vocabulary learning and nonword repetition,
examining phenomena ranging from the growth of under-
lying phonological knowledge to phonotactic probability
effects, repetition accuracy for known and novel words,
stimulus length effects, serial position effects, and age
effects. Furthermore, the manipulation of PSTM functional-
ity in Simulations 5–6 constitutes, in effect, a simulation of
individual differences variation. It is worth highlighting
once again that all of these phenomena were simulated
with a single set of parameters across all simulations
(except where the very purpose of the simulation was to
explore the effect of variation in a parameter). That is, we
did not fit the model differently to different phenomena.

With respect to the theoretical debate that motivated
this work, our computational formulation emphasizes three
points. First, as posited by the PSTM account, PSTM function-
ality plays a causal role in the development of phonological
vocabulary/knowledge – i.e., in phonological vocabulary
learning. It is by virtue of taking seriously the fact that word
forms are psychological entities that extend over time and
that are serially ordered, and by considering the computa-
tional requirements of producing and learning such stimuli,
that the necessity for context information and thus PSTM be-
comes evident. In perspectives in which the role of PSTM in
word form production/learning has been de-emphasized,
the temporal nature of word forms may have been regarded
as an incidental rather than essential characteristic, and
computational considerations have perhaps not been
highlighted, so that the necessity for PSTM may have ap-
peared less evident. The present work emphasizes the
importance of taking into account the serially ordered nat-
ure of word forms, and emphasizes that it is this character-
istic that leads to the causal role of PSTM functionality in
phonological vocabulary learning. Second, as posited by
the linguistic account, phonological vocabulary/knowledge
is a causal determinant of nonword repetition accuracy.
The model exhibits phonotactic probability effects, suggest-
ing that the phonological knowledge it develops is plausible;
it also exhibits effects considered to be markers of PSTM
involvement in nonword repetition, suggesting that its ac-
count of PSTM functionality is plausible. All of this leads to
the third major point: the theoretical opposition between
the PSTM and linguistic accounts is illusory, and should be
dispensed with; the causal links postulated by each account
are consistent with each other. As we noted in Introduction,
this point of view is certainly not new, being consistent with
our own previous work, which has emphasized both of these
directions of causality (e.g., Gupta, 1995; Gupta & MacWhin-
ney, 1997; Gupta et al., 2005), as well as with formulations of
the PSTM account in which the possibility of both directions
of causality is acknowledged (e.g., Gathercole, 2006; Gather-
cole, Frankish, et al., 1999). The present work, however, goes
beyond such informal statements of this view by providing a
computational demonstration of how the two theoretical
positions can be reconciled. We believe that such a compu-
tational demonstration makes an important contribution
to our understanding of the issues – in much the same
way, for instance, that computational models of perfor-
mance in the immediate serial list recall task are considered
to have furthered our understanding of phenomena de-
scribed by the less formally specified working memory mod-
el of Baddeley, Hitch, and colleagues.

Limitations

The present work has numerous limitations, of course.
For instance, the model does not incorporate effects of vari-
ables such as semantics, lexical stress, low-level perceptual
processing, and low-level articulatory processing, all of
which are likely to account for some of the variance in hu-
man behavior. The lack of semantics in particular is an
important limitation that restricts the model to being a
model of phonological word form learning, rather than of
word learning more broadly. The lack of semantics also pre-
vents the model from providing a full account of phenomena
involving dissociations between known word and nonword
processing, such as the contrast, in the neuropsychological
syndrome termed the ‘‘pure STM” deficit, between the rela-
tively spared ability of patients to repeat known words and
their severely impaired ability to repeat nonwords (Badde-
ley, 1993; Baddeley et al., 1988; Vallar & Baddeley, 1984).
Also, as noted earlier, the model incorporates within-word
sequencing only at the level of syllables, and not at the pho-
neme level. A further limitation is that word forms pro-
cessed by the model are limited to four syllables in length.
We adopted this limit primarily in order to reduce comput-
ing time over the 8000 epochs of training. Although four
syllables is a longer word form length than in most other
computational models that we are aware of, it is nevertheless
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a limitation. In addition, the model provides largely qualita-
tive rather than quantitative fits. Here, it is worth noting that
the model’s quantitative fits could very likely have been im-
proved by adjusting parameters for simulation of different
effects, as is quite commonly done in computational model-
ing work. The qualitative rather than quantitative fits pro-
vided by the model are therefore to some extent a cost of
our maintaining a single set of parameter values across sim-
ulation of several different effects.

As noted above, these various limitations certainly pre-
vent the model from constituting a full account of vocabu-
lary learning (nor, to our knowledge, does any other extant
computational model constitute such an account). How-
ever, they do not prevent the model from achieving its pri-
mary aim, which was to computationally specify the role of
PSTM and vocabulary size/knowledge in phonological
vocabulary learning and nonword repetition, as a means
of examining the extent to which the PSTM and linguistic
accounts are necessarily in opposition to each other. It is
worth situating this achievement with respect to other
computational models that have addressed related issues.

Relation to other models

One recent computational model has sought very di-
rectly to examine the relative roles of working memory
and vocabulary knowledge in nonword repetition and non-
word learning, i.e., phonological vocabulary learning (Jones
et al., 2008). This interesting work employs the computa-
tional framework of EPAM, a discrimination net (Simon &
Feigenbaum, 1964). However, the model’s simulation of
nonword repetition does not incorporate certain features
that, in our view, are critical characteristics. For instance,
the model’s simulation of nonword repetition does not pro-
duce serially ordered output, nor does it produce the non-
word after input presentation is complete. As we have
emphasized in the present work, we take these to be key
characteristics of nonword repetition, ones that go to the
heart of what makes the task a working memory task.
Accordingly, the Jones et al. (2008) model characterizes
working memory in a very different way than in the present
model. In addition, that model does not appear to actually
produce output at all, and the behavioral performance it
simulates appears more akin to nonword recognition than
nonword repetition/production. For these reasons, we re-
gard the present work as considerably different from that
of Jones et al. (2008), and as making a substantial additional
contribution.

Another recent model (Gupta, 2009) focuses on the role
of PSTM functionality in the commonly observed relation-
ship between nonword repetition and immediate serial list
recall, rather than on the role of PSTM functionality in the
relationship between nonword repetition and vocabulary-
related variables as in the present work. That work presents
a rather different operationalization of PSTM functionality
in which the key mechanism is one that is external to the
language system, although it operates in close cooperation
with it. Briefly, this mechanism is a device (a ‘‘sequence
memory”) that produces a time-varying context signal,
which is associated to elements that are active at levels of
representation in the language system. This serial ordering
mechanism is a variant of the avalanche (Grossberg, 1978),
and time-varying context signals of this general kind have
been employed in a number of computational models of ver-
bal short-term memory (e.g., Brown et al., 2000; Burgess &
Hitch, 1992, 1999; Gupta, 1996; Hartley & Houghton,
1996; Houghton, 1990; Vousden et al., 2000). When a set
of word form units is activated in sequence at the lexical le-
vel of linguistic representation in the Gupta (2009) model
(as a result of simulated presentation of a word list), the se-
quence memory encodes that sequence of activations, and
can subsequently replay the sequence, thus simulating list
recall. Similarly, when a set of sublexical units (such as pho-
nemes or syllables) is activated in sequence as a result of pre-
sentation of a word form to the model (as a sequence of such
constituents), the sequence memory encodes the sequence,
and can subsequently replay it, thus simulating word form
repetition. The common involvement of the sequence mem-
ory at both these levels of representation provides an ac-
count of how PSTM functionality is necessary for both
nonword repetition and immediate serial list recall. The
Gupta (2009) model also simulates the long-term learning
of word forms. However, the sequence memory is not di-
rectly involved in this learning, and this is what constitutes
the limitation of the model with respect to the issues of pres-
ent interest: it does not offer an account of the role of PSTM
functionality in phonological vocabulary learning. Thus
although the Gupta (2009) model succeeds in relating PSTM
functionality to nonword repetition and list recall, it does
not succeed in relating it to phonological vocabulary learn-
ing, and the present work thus makes a substantially differ-
ent contribution.

Three other models have also addressed issues relating to
STM and vocabulary learning, although without addressing
the relation between vocabulary size/knowledge and non-
word repetition. One of these, developed by Hartley and
Houghton (1996), provided an impressive account of non-
word repetition, treating a nonword as being comprised of a
sequence of one or more syllables, and providing for the
encoding and recall of the serial order of phonemes within
these syllables. In essence, each syllable incorporated a se-
quence memory of the general type described above. Repeti-
tion of a nonword consisted in activating each encoded
syllable successively, in correct serial order, so that the se-
quence memory contained in each syllable could then in turn
spell out its own encoding of the phonemes comprising that
syllable, in serial order. Thus the model incorporated the abil-
ity to repeat nonwords as sequences of phonemes. It also pro-
vided a detailed account of errors in repetition of lists of
monosyllabic nonwords. It operationalized STM as the se-
quence memory contained within each syllable (there was
also assumed to be a sequence memory and hence STM that
operated to retain the order of a sequence of syllables in the
case of a polysyllabic word form), and showed clearly why
STM is necessary for nonword repetition. This model was
the first to tackle empirical data regarding nonword repeti-
tion, and has been quite influential. However, Hartley and
Houghton (1996) did not simulate how a phonological vocab-
ulary could be learned, and consequently, did not offer a com-
putational account of the relationship between vocabulary-
related variables (such as phonotactic probability) and PSTM
functionality or nonword repetition, and the model therefore
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does not speak directly to the debate between the linguistic
and PSTM accounts. An earlier model (Houghton, 1990) did
simulate the repetition of novel word forms, and their long-
term learning as chunks that incorporated the serial order
of their constituents.Each of the chunks in effect incorporated
a sequence memory, and the model thus offered an account of
the role of STM in nonword repetition and word learning.
However, because the chunks were separate, the phonologi-
cal knowledge stored in the connection weights for one chunk
did not interact with that in other chunks, and this knowledge
therefore did not influence the repetition or learning of addi-
tional word forms. The Houghton (1990) model thus also did
not speak to the theoretical debate of focus in the present
work. The same points apply to computational work by Gupta
(1995, 1996), which took as its starting point the Hartley and
Houghton (1996) and Houghton (1990) models.

Clarification of constructs

The present model provides a clear operationalization of
a number of constructs that have been central in the litera-
ture in discussion of the issues at hand. One such key con-
struct is ‘‘phonological short-term memory” or PSTM,
which we have preferred to term PSTM functionality. As we
have emphasized, (P)STM functionality is crucial to the pro-
duction of serially ordered behavior, of which word form
production is an example. As also discussed, and as empha-
sized by Botvinick and Plaut (2006), the functionality of
(P)STM depends (in the present model, as in this type of
recurrent neural network in general), on the recurrent con-
nections on the hidden layer. The transmission of informa-
tion from previous time steps to the current time step
occurs via these recurrent connections; the provision of such
information is precisely the functionality of short-term
memory. The present work makes explicit the nature of this
functionality, highlighting the fact that it is influenced by
long-term knowledge, because the strength of the weights
on the recurrent connections is determined via the long-
term learning weight adjustment procedure. At the same
time, the constructs of PSTM functionality and long-term
knowledge are not the same, and our model provides an
operationalization of this as well, showing both how they
are related and how they are different. We have also at-
tempted to emphasize the distinction between the construct
of PSTM functionality, which we view as the appropriate
conceptualization, and the construct of PSTM as an isolable
entity or structure or process, which we suggest is a less pro-
ductive way of thinking about this cognitive ability.

Relatedly, PSTM capacity limitations in the model do not
arise from any one isolable entity or sub-component. Rather,
such capacity limitations (as measured, for instance, by the
model’s repetition accuracy for longer nonwords) emerge
from the functioning of everything in the model that affects
the ability to provide information about the past. Variation
in the efficiency of activation transmission between units,
for instance, would affect PSTM functionality. So would var-
iation in the learning rate (because it would affect connec-
tion weights, on the recurrent connections and elsewhere).
So would variation in structural aspects of the model such
as the number of hidden units. As the overall functioning
of the model is thus multiply determined (a notion that has re-
cently been emphasized, e.g., Gathercole, 2006; Gupta,
2006, 2008), so is its PSTM capacity.

The present work also provides an operationalization of
the relationship between what is frequently referred to as
working memory (meaning information maintenance) and
statistical learning (the type of long-term learning incorpo-
rated in the model, which can also be viewed as procedural
learning; see Gupta & Cohen, 2002). As we have emphasized,
PSTM functionality, being intrinsically colored by long-term
knowledge, is affected by anything that affects long-term
knowledge – such as procedural learning – but is neverthe-
less a distinct functionality. In terms of Fig. 2, procedural
learning functionality is what provides for incremental con-
nection weight adjustment and hence learning throughout
the system. PSTM functionality is what provides for avail-
ability of information to guide serially ordered processing
of word forms in the system. As the many structures and pro-
cesses that provide for PSTM functionality include ones that
change via procedural learning functionality (especially the
connections from the context layer to the hidden layer),
PSTM functionality is affected by procedural learning func-
tionality – but is not subsumed by it.

Four further constructs that are given a clear operational-
ization in the present work are those of phonological vocab-
ulary knowledge, phonological vocabulary, phonological
vocabulary size, and phonological vocabulary learning. Pho-
nological vocabulary knowledge is defined by the current
state of connection weights in the system. Phonological
vocabulary is defined as the set of phonological words in
the language that the model can produce correctly in repeti-
tion (which will depend on the phonological knowledge, but
also on processing factors in the model). Phonological
vocabulary size is the number of items in the vocabulary
set. Phonological vocabulary learning is defined as an in-
crease in vocabulary size between two points in time. In
the model, these are all related but nevertheless separable
constructs. By clarifying this, the model encourages treat-
ment of them as separate variables in theoretical discussion.
These distinctions also apply, of course, to vocabulary in
general (i.e., not just to phonological vocabulary, but also
to vocabulary knowledge that includes semantic content).
Conclusion

As noted in Introduction, the causal involvement of PSTM
functionality in development of phonological vocabulary/
knowledge has potentially profound implications. By pro-
viding a computationally specified account of this involve-
ment, therefore, the present work offers insight into the
foundational human ability to learn words, indicating that
this element of linguistic ability, which is often considered
uniquely human, is founded on a memory mechanism (or
functionality). It also suggests that in the phonological do-
main, short-term and long-term memory functionalities
are inextricably linked in their effect, but still separable in
their mechanisms. Given the computational considerations
underlying this last point, it would be somewhat surprising
if this principle did not apply to non-phonological domains
as well, such as visual short-term memory, and this extends
the potential implications of the present work considerably.
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We therefore believe that the present model takes a worth-
while step toward understanding aspects of phonological
vocabulary learning and resolving a theoretical debate of
two decades, while also offering ideas about the relationship
between short-term and long-term memory functionality in
other cognitive domains.
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