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Abstract

To minimize drug name confusion errors, regulators, drug companies, and clinicians need tools that help them

predict which names are most likely to be involved in confusions. Two experiments, carried out in the United States,

examined the effects of stimulus frequency (i.e., how frequently a target name is prescribed), neighborhood frequency

(i.e., how frequently prescribed are the ‘‘neighbors’’ of the target name), and neighborhood density (how many names

are within a fixed distance of the target name) on the probability of pharmacists making an error in a visual perceptual

identification task. In both experiments, the task was to correctly identify a series of blurry drug names after a 3 s

presentation on a computer monitor. In the first experiment, 45 pharmacists viewed 160 typewritten names, incorrectly

identifying 60.6% of them. Random effects regression revealed a significant beneficial effect of stimulus frequency and a

detrimental effect of neighborhood density. Significant two-way interactions were observed between stimulus frequency

and neighborhood density and neighborhood frequency and neighborhood density. In the second experiment, 37

pharmacists viewed 156 handwritten drug names, incorrectly identifying 45.7%. Random effects regression revealed

significant main effects of stimulus frequency and neighborhood density. These were contained within a significant

three-way interaction: The interaction between stimulus frequency and neighborhood density was present at high but

not low neighborhood frequency. Objectively measurable frequency and neighborhood characteristics have predictable

effects on errors in pharmacists’ visual perception. Organizations that coin and evaluate drug names, as well as

hospitals, pharmacies, and health systems, should consider these characteristics when assessing visually confusing

names.

r 2003 Elsevier Science Ltd. All rights reserved.
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Introduction

Recent estimates suggest that medical errors of all

types may cause the death of between 44,000 and 98,000

hospitalized patients in the United States each year

(Kohn, Corrigan, & Donaldson, 2000). Errors involving

medication cause the death of one person every day in

the US, and injure more than a million more each year

(US Food and Drug Administration, 2001). Confusions

between drug names that look and sound alike account

for between 15% and 25% of reported medication errors

in the US (US Pharmacopeia, 1995, 1996, 2001).

Similarity between drug names can cause errors in

short-term memory as well as in visual and auditory

perception (Brodell, Helms, KrishnaRao, & Bredle,

1997; Lambert, Chang, & Lin, 2001b; Lambert,

Chang, Lin, & Gupta, 2000; Lambert, Lin, Gandhi, &

Chang, 1999; Luce & Pisoni, 1998; Luce, 1959). This
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investigation examined the effect of similarity and

prescribing frequency on pharmacists’ ability to accu-

rately identify blurry, briefly presented, handwritten and

typewritten drug names. Two research questions pro-

vided the motivation for the experiments that follow:

(1) To what extent is a pharmacist’s ability to identify

a target drug name affected by the prescribing

frequency of the target, the number of names similar

to the target, and the prescribing frequency of the

similar names?

(2) To what extent do the characteristics in Q1 have

different effects depending on whether the drug name

is handwritten or typewritten?

Theoretical background

Activation-competition models of visual perception

The ‘‘interactive activation’’ framework has been very

influential in the development of cognitive psychology

theories of visual word recognition, following a seminal

formulation of this approach by McClelland and

Rumelhart (McClelland & Rumelhart, 1981; Rumelhart

& McClelland, 1982). In such a model, words are

represented in memory as networks of nodes connected

by excitatory and inhibitory links. The nodes are

typically arranged in a hierarchy of levels. Lower level

nodes detect particular letters. High-level nodes detect

particular words. When a word stimulus is presented,

the flow of activation is bottom-up from the feature level

to the letter level and eventually to the word level (see

Fig. 1 for a simplified schematic). However, a crucial

aspect of the interactivity within the system is that, as

time passes, the letter-level nodes can be reinforced via

excitatory links from the word-level nodes, and vice

versa. Thus there is a ‘‘top-down’’ influence on proces-

sing, because word-level nodes contribute to the activa-

tion of letter-level nodes. Another crucial aspect of this

framework is that active nodes at a particular level try to

suppress the activations of other nodes at the same level,

via inhibitory connections. Thus nodes at a particular

level ‘‘compete’’ to be active (Grainger & Dijkstra, 1996;

Grainger & Jacobs, 1996).

This original formulation of the interactive activation

theory did not aim to capture the distributional statistics

of word groups. That is, it neither precisely reflected the

fact that a word like ‘‘cat’’ has many similar words

(which will therefore compete with it for activation at

the word level) whereas a word like ‘‘atrocity’’ has few

similar words (and therefore less competition at the

word level), nor did it capture the frequencies of

different words. Recent work has extended the basic

ideas of the interactive activation framework to creating

models that can represent word frequency, and that can

investigate how words in a ‘‘neighborhood’’ interact in

complex ways, leading sometimes to inhibition of each

other, and sometimes to facilitation, under certain

circumstances (Andrews, 1997; Dell, Schwartz, Martin,

Saffran, & Gagnon, 1997; Grainger & Jacobs, 1996;

Jacobs & Grainger, 1994; Mathey, 2001; Perea & Rosa,

2000). The following two sections summarize the

observed effects of frequency and neighborhood char-

acteristics on a variety of word recognition tasks.

Frequency effects on visual perception of words

One of the oldest and most consistent findings in

psycholinguistics is that word frequency (normally

defined as the frequency with which a word appears in

print) enhances word recognition. Nearly 50 years ago,

Solomon and others showed that as word frequency
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Fig. 1. Interactive activation model of visual word perception. Arrows represent excitatory links. Filled circles represent inhibitory

links. See, e.g., McClelland and Rumelhart (1981).
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increases, the time needed to correctly identify a briefly

presented word decreases (Howes & Solomon, 1951;

Solomon & Postman, 1952). Similar effects have been

repeatedly demonstrated in a variety of related tasks,

including lexical decision (i.e., time needed to decide

whether a stimulus is a word or nonsense string),

perceptual identification (i.e., identifying a briefly

presented or degraded word), and naming (i.e., time

needed to pronounce a visually presented word) (Balota,

1994; Grainger & Dijkstra, 1996; Grainger & Segui,

1990; Monsell, 1991; Whitlow & Cebollero, 1989).

Although this study focuses on visual perception, it is

worth noting that analogous frequency effects have been

found for perceptual identification of auditorily pre-

sented words as well (Luce, Pisoni, & Goldinger, 1990).

The precise mechanism by which frequency exerts its

effects is still controversial. The main ideas are either (a)

that high-frequency word nodes have higher resting

activation levels and hence are quicker to exceed a

recognition threshold or (b) that frequency biases

decision processes independent of activation levels

(Andrews, 1997; Grainger & Dijkstra, 1996; Grainger

& Jacobs, 1996). Regardless of the precise mechanism, it

is clear that in perceptual identification tasks, more

frequent words are identified more quickly and accu-

rately than less frequent words. This leads to our first

hypothesis:

Hypothesis 1. High-frequency drug names will be

identified more accurately than low-frequency drug

names in a visual perceptual identification task.

Neighborhood effects on the visual perception of words

Another consistent finding is that word recognition is

affected by the properties of a word’s neighborhood

(Andrews, 1997; Havens & Foote, 1963; Mathey, 2001;

Perea & Rosa, 2000). In this context, ‘neighborhood’

refers to the set of words that are within some similarity

boundary of the target word. The most common

operational definition of orthographic (i.e., spelling)

neighborhood is the set of all words of the same length

that share all but one letter in the same position as the

target word (Coltheart, Davelaar, Jonasson, & Besner,

1977). For example, in terms of this definition, ortho-

graphic (i.e. written) neighbors of the word ‘dog’ include

‘cog’, ‘dig’, and ‘dot’. The set of all such words differing

in only one letter from ‘dog’ makes up the orthographic

neighborhood of dog. (As discussed below, this defini-

tion will prove to be too strict when working with drug

names.) Two specific features of a word’s neighborhood

have received most of the experimental attention:

neighborhood frequency and neighborhood density (some-

times called neighborhood size or simply N). Neighbor-

hood frequency refers to how frequent the words in the

neighborhood are. One common operational definition

is to assign neighborhood frequency the value 1 if at

least one of the neighbors has a higher frequency than

the word itself, and otherwise to assign neighborhood

frequency a value of 0 (Andrews, 1997). Generally

speaking, words with at least one higher frequency

neighbor are harder to recognize than words with no

higher frequency neighbors (Newbigging, 1961). In a

recent review of 16 published papers that studied

neighborhood effects on a variety of tasks, Andrews

notes that neighborhood frequency inhibited recognition

in 14 of 23 experiments (Andrews, 1997). The effects

were null in 5 experiments and facilitatory in 4

experiments (Andrews, 1997). In perceptual identifica-

tion, the task most relevant to the current experiments, 3

out of 3 experiments found that neighborhood fre-

quency inhibited perceptual identification (Andrews,

1997; Carreiras, Perea, & Grainger, 1997; Grainger &

Jacobs, 1996; Grainger & Segui, 1990). This leads to our

second hypothesis:

Hypothesis 2. Drug names with low neighborhood

frequency will be identified more accurately than names

with high neighborhood frequency in a visual perceptual

identification task.

The effects of neighborhood density, on the other

hand, depend on the task (Andrews, 1997). For lexical

decision and naming tasks, neighborhood density

facilitates recognition. That is, words with many

neighbors are easier to name and recognize as true

words than words with few neighbors. In contrast, for

the perceptual identification task that is our main focus,

neighborhood density inhibits performance. Under brief

or degraded stimulus conditions, performance is slower

and less accurate for words with many neighbors than it

is for words with few neighbors (Andrews, 1997;

Carreiras et al., 1997; Snodgrass & Mintzer, 1993).

Thus, our third hypothesis is as follows:

Hypothesis 3. Drug names with low neighborhood

density will be identified more accurately than names

with high neighborhood density in a visual perceptual

identification task.

Experiment 1: Perceptual identification of typewritten

drug names

Methods

Design

This experiment was designed to examine the effect of

prescribing frequency, neighborhood frequency and

neighborhood density on the probability of a pharmacist
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making an error in a visual perceptual identification

task. Participants viewed a series of noise-masked,

typewritten drug names as they were briefly presented

on a computer monitor. The task was to correctly

identify the presented name by typing it into a provided

text box. All experiments were approved in advance by

the local institutional review board, and all participants

orally consented to participate.

Participants

Forty-five licensed, practicing pharmacists partici-

pated in Experiment 1. Participants were recruited from

among the attendees at the 2000 annual meeting of the

American Pharmaceutical Association in Washington,

DC. Individuals were not paid for their participation.

Stimulus materials

One hundred sixty (1 6 0) three-syllable drug names

were selected to fill the cells of a 2� 2� 2 stratified

sampling design, where the strata were stimulus fre-

quency (high/low), neighborhood frequency (high/low),

and neighborhood density (high/low) (see Figs. 2 and 3

and Tables 1–3). Names and prescribing frequencies

were obtained from the drug databases contained within

the US National Ambulatory Medical Care Survey

(NAMCS) and the US National Hospital Ambulatory

Medical Care Survey (NHAMCS) for the years 1992–

1996 (National Center for Health Statistics, 2001a;

National Center for Health Statistics, 2001b). NAMCS

and NHAMCS surveys are based on a nationally

representative sample of outpatient physicians working

in traditional outpatient offices (NAMCS) as well as

hospital emergency departments and outpatient clinics

(NHAMCS). NAMCS surveys exclude anesthesiolo-

gists, radiologists and pathologists. NHAMCS excludes

federal, military, and Veterans Administration Hospi-

tals. Prescribing frequencies were based on national

estimates derived by weighting raw frequencies to reflect

the probabilistic sampling design of NAMCS and

NHAMCS, respectively. Henceforth, when we refer to

stimulus frequency, we are referring to the log10 of the 5-

year (1992–1996) cumulative frequencies from the

combined NAMCS and NHAMCS data.

Operational definitions of neighborhood, neighborhood

frequency and neighborhood density. Both neighborhood

frequency and neighborhood density presume some
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Fig. 2. Schematic diagram of a drug name’s orthographic

neighborhood. The size of the center X represents stimulus

frequency (i.e., the prescribing frequency of the target name).

The stars in the circle represent neighbors within a fixed

neighborhood radius (e.g., 3 edits). The size of each star

represents the prescribing frequency of that name. The ability to

compete for perceptual identification increases as prescribing

frequency increases. See text for details.

1)  High SF, High NF, High ND 2)  High  SF, Low NF, High ND 

4)  High SF, Low NF, Low ND 

X 
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X 
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Fig. 3. Schematic diagram of 8 different combinations of

stimulus frequency (SF), neighborhood frequency (NF) and

neighborhood density (ND). These 8 combinations correspond

to the 8 cells of the experimental design.
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Table 1

Stimulus names for Experiments 1 and 2

Cell Name SF NF ND

1 Trilafon 6.29 6.60 4

1 Rifampin 5.96 6.36 4

1 Depakene 5.69 6.15 4

1 Aclovate 6.15 6.12 3

1 Tobradex 6.82 6.94 3

1 Ocufen 5.85 6.49 4

1 Insulin 6.55 6.54 3

1 Betoptic 6.72 6.65 3

1 Lotensin 6.79 6.49 3

1 Zonalon 5.65 6.19 5

1 Librium 6.44 6.49 3

1 Metrogel 6.50 6.15 5

1 Adalat 6.54 6.31 5

1 Ativan 7.28 6.32 5

1 Nicotrol 5.91 6.88 3

1 calcium 6.32 6.61 5

1 Mellaril 6.66 6.64 3

1 Nolvadex 6.26 6.18 5

1 Loestrin 6.35 6.10 3

1 Anaprox 7.13 6.59 3

2 Robinul 5.81 5.22 3

2 Capozide 6.08 4.99 4

2 Topicort 6.51 4.71 3

2 Verelan 6.72 4.91 4

2 Enduron 5.69 4.13 4

2 Proventil 7.66 5.11 3

2 Imuran 6.47 5.24 3

2 Sinemet 6.63 4.67 3

2 Tetramune 6.72 4.64 3

2 Kenalog 6.87 5.16 5

2 Ventolin 7.62 5.19 4

2 Catapres 6.82 5.14 4

2 Clonidine 6.74 4.92 5

2 Pramasone 5.69 4.91 4

2 Dyazide 7.45 3.66 4

2 Dilantin 7.18 4.96 4

2 Duratuss 6.13 5.08 4

2 Tagamet 7.34 5.43 3

2 Deltasone 6.09 5.30 3

2 Serentil 5.76 4.77 4

3 Micronase 7.25 6.79 2

3 Wycillin 5.77 6.25 2

3 Prinivil 6.95 6.29 1

3 Clozaril 5.91 6.24 2

3 Stelazine 6.29 6.08 2

3 Humibid 6.67 6.15 2

3 Florinef 5.99 6.03 2

3 Pancrease 5.78 7.16 1

3 Serevent 6.55 6.90 2

3 Acular 5.78 6.26 2

3 Restoril 6.81 6.72 2

3 Diprosone 5.84 6.32 2

3 Natalins 6.44 6.72 2

3 Naprosyn 7.51 6.06 2

3 Ambenyl 6.07 6.21 2

3 Skelaxin 6.38 6.29 1

3 Tegretol 6.99 6.51 2

Table 1 (continued)

Cell Name SF NF ND

3 Pondimin 6.25 6.34 2

3 Isordil 7.17 6.27 2

3 Vistaril 7.02 6.51 2

4 Reserpine 5.82 3.10 1

4 Dexedrine 5.99 3.86 2

4 Phentermine 6.40 3.82 1

4 Flexeril 7.28 4.36 1

4 Unasyn 5.74 3.64 2

4 Tolinase 5.96 5.23 2

4 Cyclogyl 6.32 3.84 1

4 Prazosin 5.99 5.06 1

4 Elimite 6.01 5.28 2

4 Nicoderm 6.09 4.28 2

4 Ocuflox 6.02 5.85 1

4 Provera 7.41 5.22 2

4 Pamelor 6.87 4.55 2

4 Tenormin 7.40 3.21 1

4 Bellergal 5.71 3.01 1

4 Depakote 6.69 5.50 2

4 Fosamax 5.97 4.25 1

4 Monopril 6.70 4.79 2

4 Inapsine 5.81 4.47 1

4 Fulvicin 5.85 4.72 1

5 Alfenta 5.13 6.14 3

5 Idenal 3.34 6.65 4

5 Trobicin 3.06 6.41 3

5 Desferal 5.19 6.71 3

5 Ketalar 4.93 6.35 4

5 Travasol 4.38 6.43 3

5 Activase 5.25 6.73 4

5 Solatene 4.34 6.07 3

5 Parnatal 4.01 6.29 4

5 Norethin 4.28 6.50 5

5 Hexadrol 5.30 6.39 5

5 Dynabac 5.50 6.36 5

5 Betadine 4.77 6.11 5

5 Cytadren 4.91 6.35 3

5 Catarase 4.23 6.88 3

5 Pavulon 4.61 6.39 3

5 Altoco 4.83 6.10 4

5 Virilon 4.40 6.03 5

5 Moderil 4.19 6.90 3

5 Regroton 4.94 6.57 3

6 Hydrocort 5.16 5.13 4

6 Pentetra 4.19 4.92 3

6 Propacet 5.60 5.18 4

6 Procamide 3.08 5.05 3

6 Isolyte 4.24 4.46 3

6 Iotuss 2.98 5.32 3

6 Mantadil 4.38 4.54 4

6 Estraval 3.55 5.28 3

6 Ancobon 2.95 5.06 3

6 Isoclor 3.74 4.15 4

6 Senokot 5.22 4.81 3

6 Panmycin 3.88 5.34 3

6 Tegison 5.36 4.68 3

6 Thiola 3.97 5.24 4

6 Fentanyl 5.64 4.71 3
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definition of neighborhood. As noted in the introduc-

tion, an orthographic neighborhood has typically been

defined as the set of words (of the same length) that

differ from the target word by only one letter in one

position (Andrews, 1997). An equivalent way to describe

this set of words is that they have an ‘‘edit distance’’ of 1

from the word itself (Stephen, 1994). This definition has

most commonly been applied to single syllable, three-

letter, consonant–vowel–consonant words. This defini-

tion struck us as too restrictive because (a) most drug

names are multisyllabic (Lambert, Chang, & Lin, 2001a)

and (b) because documented pairs of confusing names

typically differ by several letters in several positions (in

fact the mean edit distance for more than 1000 reported

confusing pairs was 4) (Lambert et al., 1999). Since the

modal drug name in the US is three syllables, we chose

to use three syllable names, and we extended the

definition of neighborhood to be any name that fell

within an edit distance of 3 edits from the target name

(i.e., one letter insertion, deletion or substitution per

syllable, a logical extension of the traditional definition)

(Lambert et al., 2001a, 1999). Neighborhood frequency

has typically been defined as a dichotomous variable

that was equal to one if the neighborhood contained at

least one word whose frequency was greater than the

target word (Andrews, 1997). We chose instead to define

neighborhood frequency as the mean frequency of all

the words in the target word’s neighborhood. This

definition reflected our belief that all of the names in a

neighborhood potentially compete with the target name,

not just the most frequent name. Finally, neighborhood

density was the number of names that fell within an edit

distance of 3 from the target name.

Examples. High log stimulus frequency (SF) names

(i.e., those with log SF>7) included Ventolins, Dya-

zides, and Proveras. Low log SF names (log SFo3)

included Vistazines, Antispass, and Protaphanes.

Flexerils is an example of a name from a sparse

neighborhood: it had no neighbors in the combined

NAMCS/NHAMCS database. An example of a name

from a dense neighborhood is Dynabacs, whose

neighbors included: Synalars, Rynatans, Dynapens,

Dynacircs, and Dynacins. Another name from a high-

density neighborhood is Virilons, whose neighbors

included: Verelans, Uridons, Trilions, Miradons, and

Daricons. Tables 1 and 2 together describe the

frequency and neighborhood characteristics of the

stimulus names.

Success of stratification. In cell-to-cell comparisons,

sets of names at the same level of a stratum (e.g., all

names at high levels of stimulus frequency) did not differ

statistically from one another on their scores for that

factor. Conversely, names from cells at different levels of

a sampling stratum did differ significantly from one

another. All cell-to-cell comparisons were based on

Tukey’s Honestly Significant Difference. Table 2 gives

descriptive statistics for stimulus frequency, neighbor-

hood frequency, and neighborhood density for all 8

cells. Table 3 shows the correlation between stimulus

frequency, neighborhood frequency and neighborhood

density.

Stimulus degradation. The names were degraded

(i.e., masked by noise) using the degradation features

built into the PsyScopes experiment program (Cohen,
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Table 1 (continued)

Cell Name SF NF ND

6 Norinyl 5.53 5.50 3

6 Loniten 5.16 5.18 4

6 Renova 4.84 4.89 4

6 Hetrazan 2.52 4.55 3

6 Carmustine 4.71 4.36 3

7 Adipost 4.45 6.06 1

7 Dantrolene 3.85 6.52 1

7 Mivacron 4.37 7.08 2

7 Inpersol 3.44 6.95 2

7 Vistazine 2.63 6.72 2

7 Dymelor 4.48 6.91 2

7 Testoderm 4.36 6.28 2

7 Triphenyl 4.44 6.58 1

7 Tramadol 4.44 7.07 2

7 Cardilate 3.01 6.84 1

7 Indomed 3.52 6.76 2

7 Keralyt 4.66 6.58 2

7 Phenelzine 3.82 6.10 2

7 Donnagel 2.88 6.57 2

7 Nebupent 4.37 6.61 1

7 Surgicel 4.81 7.05 1

7 Maxiflor 4.83 6.46 1

7 Theovent 3.44 6.90 2

7 Benzonate 4.69 6.78 2

7 Flaxedil 4.36 7.28 1

8 Orinase 5.52 5.66 2

8 Polymox 5.40 3.14 1

8 Dobutrex 4.35 2.74 1

8 Humafac 4.57 4.42 1

8 Norcuron 4.96 3.12 1

8 Brethancer 4.71 5.53 0

8 Zefazone 4.13 4.81 2

8 Natabec 3.71 5.43 2

8 Ipecac 3.48 3.74 2

8 Regitine 5.13 5.64 2

8 Hydergine 5.55 3.81 2

8 Cefizox 5.19 3.99 2

8 Gaviscon 5.28 4.07 1

8 Pravastan 5.14 4.81 1

8 Nysolone 3.57 5.94 2

8 Bronkodyl 3.78 4.96 1

8 Esidrix 5.42 5.06 2

8 Antispas 2.43 5.30 2

8 Protaphane 2.21 2.82 1

8 Theodrine 4.14 3.89 1

Note: SF—log stimulus frequency. NF—log neighborhood

frequency. ND—neighborhood density.
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MacWhinney, Flatt, & Provost, 1993). We used fore-

ground degradation of 50% and background degrada-

tion of 10%. Foreground degradation randomly

removes pixels from the foreground image. Background

degradation randomly adds black pixels to the back-

ground image. Overall, the effect resembles a type-

written name received through a fax machine with a

dirty print cartridge that was running out of ink. (It was

not possible to capture a screen shot of the degraded

stimuli as they appeared within the PsyScope program,

but interested individuals can reproduce the effect

precisely by using the freely available software and the

specifications given above.)

Procedure

Individuals were approached in the exhibit halls

and corridors of the convention center and asked: (a)

if they were currently a licensed, practicing pharmacist

in the US and (b) if they were interested in partici-

pating in a study of drug name confusion. Those who

agreed were directed to a meeting room where the

experiment was being conducted. Participants read a

consent form, filled out a brief demographic question-

naire, and then seated themselves in front of a

Macintosh computer with a 17-in color monitor. The

experiment began by presenting the instructions on

the computer screen. Participants were told that their

task was to correctly identify a series of briefly

presented, blurry, typewritten drug names. Each trial

began when the participant pressed any key on the

keyboard. A row of capital X’s then appeared at

the center of the screen in 36-point Times font. When

the participant pressed any key, the X’s disappeared

and a noise-masked drug name appeared. Each name

appeared for 3 s, with its first letter capitalized, in the

center of the screen in 36-point Times font. After 3 s,

the name was replaced by another row of capital X’s

for 750ms. Finally, a text box appeared in which the

participant typed the name of the drug they thought

they saw. Although participants were allowed to

leave a blank, they were encouraged to generate an

answer (a guess) whenever possible. Participants were

urged to check the spelling before proceeding. This

process was repeated until each of the 160 names had

been presented.
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Table 2

Descriptive statistics for stimulus frequency, neighborhood frequency, and neighborhood density (n ¼ 20 names per cell)

High NF Low NF

Variable Mean SD Min Max Mean SD Min Max

High SF High ND SF 6.39 0.45 5.65 7.28 6.60 0.64 5.69 7.66

NF 6.44 0.25 6.10 6.94 4.91 0.41 3.66 5.43

ND 3.80 0.89 3.00 5.00 3.70 0.66 3.00 5.00

Low ND SF 6.47 0.55 5.77 7.51 6.30 0.56 5.71 7.41

NF 6.40 0.31 6.03 7.16 4.40 0.82 3.01 5.85

ND 1.85 0.37 1.00 2.00 1.45 0.51 1.00 2.00

Low SF High ND SF 4.58 0.63 3.06 5.50 4.33 0.98 2.52 5.64

NF 6.42 0.26 6.03 6.90 4.92 0.37 4.15 5.50

ND 3.75 0.85 3.00 5.00 3.35 0.49 3.00 4.00

Low ND SF 4.04 0.67 2.63 4.83 4.43 0.99 2.21 5.55

NF 6.70 0.32 6.06 7.28 4.44 1.01 2.74 5.94

ND 1.60 0.50 1.00 2.00 1.45 0.60 0.00 2.00

Overall

Variable Mean SD Max Min

SF 5.39 1.27 7.66 2.21

NF 5.58 1.07 7.28 2.74

ND 2.62 1.22 5.00 0.00

Table 3

Correlations between log stimulus frequency, log neighborhood

frequency, and neighborhood density for N ¼ 160 drug names

SF NF

NF �0.040 —

ND 0.122 0.171n

npo0:05:
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Analysis plan

The goal of our analysis was to determine the main

effects of stimulus frequency, neighborhood frequency,

and neighborhood density on the probability of making

an error in visual perceptual identification. We were also

interested in any two- and three-way interactions

between the main effects. The independent variables

were (a) stimulus frequency, a continuous variable

representing the log10 of the 5-year cumulative

NAMCS/HAMCS frequency for each name; (b) neigh-

borhood frequency, a continuous variable representing

the mean log frequency of all names within an edit

distance of 3 edits from the stimulus name; and (c)

neighborhood density, an ordinal variable representing

the number of other drug names that can be found

within an edit distance of 3 edits of the stimulus name.

The dependent variable was probability of error, a

dichotomous variable scored as 1 if the name was

identified incorrectly, and 0 if the name was identified

correctly. The only control variable was trial, an ordinal

variable representing the sequential position of a name

within the 160 trials.

Data were analyzed using MIXOR, a system for

doing mixed effects, logistic regression modeling of

dichotomous and ordinal data. The mixed-effects

logistic regression model accommodates nesting of

experimental conditions within subjects for a binary

outcome and a mixture of discrete and continuous

covariates that can vary either at the level of the subject

or the experimental condition (Hedeker, 1999; Hedeker

& Gibbons, 1994; Hedeker & Gibbons, 1996).

Our modeling strategy included multiple steps. First

we centered all variables at their mean values. The next

step was to identify the correct scale for each indepen-

dent and control variable. We did this by separately

plotting the log odds of error as a function of each

independent or control variable. If these plots were

linear, terms were entered as simple linear terms. If the

plot revealed an obvious nonlinearity, we selected a scale

to fit the nonlinear form of the function (Hosmer &

Lemeshow, 1989; Selvin, 1996). In this case, we

primarily considered quadratic terms. Having identified

the appropriate scale for each independent and control

variable, we used Kleinbaum’s method of backward

elimination to decide which variables to include in the

final model (Kleinbaum, 1994). According to this

method, the analyst begins with a full model and then

proceeds to eliminate as many terms as possible, using

likelihood ratio tests (analogous to partial F-tests in

ordinary least-squares regression) to decide which terms

contribute significantly to the model’s fit. Higher order

terms (e.g., interaction terms, squared terms) were

eliminated first, then first-order terms. If a higher-order

term was kept in the model due to a significant

likelihood ratio test, all lower order terms contained in

the higher order term were kept in the model as well,

regardless of their z-score or likelihood ratio test

(Kleinbaum, 1994).

The final step in our modeling strategy was to assess

goodness-of-fit. Unlike the case of ordinary least-

squares regression, where R2 provides a widely agreed-

upon measure of fit, in logistic regression, there is no

consensus measure of goodness-of-fit (Hosmer &

Lemeshow, 1989; Kleinbaum, 1994; Pedhazur, 1997;

Selvin, 1996). Rather multiple measures are available.

For each model, we report two different indices of

goodness-of-fit: classification accuracy and Hosmer–

Lemeshow’s C test based on deciles of risk. To calculate

classification accuracy, we imposed a threshold on

predicted probability scores to generate classifications

(e.g., if predicted probability >0.5, then classify as

error). We selected, via systematic search, the threshold

that maximized overall accuracy. We reported sensitiv-

ity, specificity and overall accuracy at the selected

threshold (Hosmer & Lemeshow, 1989).

For the Hosmer–Lemeshow test, we sorted observa-

tions into deciles of risk using their predicted probability

of error as the sort key. We then compared the observed

and expected number of errors and correct responses

within each decile of risk (Hosmer & Lemeshow, 1989;

Selvin, 1996). Hosmer and Lemeshow’s C is a w2 statistic
with 8 degrees of freedom (when deciles are used); the

null hypothesis is that the data come from the same

distribution (i.e. that the model fits). Plots of predicted

versus observed frequencies are provided for each

experiment. All statistical tests used a ¼ 0:05:

Results and discussion

Each of the 45 participants responded to 160 stimuli,

producing 7200 total responses. The mean error rate for

blurred, briefly presented typewritten stimuli was 60.6%

(4362/7200, std. dev.=0.489). This error rate may seem

unrealistically high compared to the rates observed in

real world practice settings. Because one subsidiary aim

of our investigation was to generate a large number of

errors for subsequent analysis, we intentionally inflated

the overall error rate (in this experiment and the next) by

increasing the amount of degradation and decreasing

exposure times. As a result, we now have a large

database of actual errors that can be examined in an

effort to learn more about the way similarity is

represented in the minds of pharmacists. Results of the

detailed analysis of errors are presented here only

briefly, and a full presentation will be published

elsewhere.

On average, each participant incorrectly identified 97

of 160 names (range 51 to 145, median=95, mode=99).

Table 4 gives the error rate at each level of the

independent variables. Table 5 gives the parameter

estimates and associated probabilities for the final

random effect logistic regression model (i.e., the model

arrived at after following Kleinbaum’s backward
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elimination procedure). The model had sensitivity of

72.38%, specificity of 60.29%, and overall accuracy of

67.61% when a predicted probability threshold of 0.55

was used for classification.

Fig. 4 shows the fit between observed and predicted

error frequencies at each decile of risk. Although the fit

appears to be fairly good, the Hosmer–Lemeshow C test

on deciles of risk showed evidence of lack of fit

(X 2ð8Þ ¼ 68:07; p ¼ 0:01). In other words, the hypoth-

esis that predicted and observed distributions came from

the same population was rejected. Our decision not to

include personal characteristics (e.g., age, gender,

ethnicity, visual acuity, years of experience, practice

context) as predictors may account for some of the lack

of fit. Imprecision in the frequency data may also have

contributed to lack of fit. In addition, the NAMCS/

NHAMCS databases that were used to compute

neighborhood characteristics may not have accurately

represented each individual pharmacist’s personal lex-

icon. We return to these issues in the Limitations

section.

The model revealed a powerful main effect of stimulus

frequency. As stimulus frequency increased, the log odds

of error sharply decreased (see Fig. 5). The effect of

neighborhood density was also significant, although

weaker than the stimulus frequency effect. Names in

high-density neighborhoods were more difficult to

perceive than names in low-density neighborhoods.

These effects were contained within a significant two-

way interaction between stimulus frequency and neigh-

borhood density (see Fig. 5). The beneficial effect of

stimulus frequency on perceptual accuracy was greater

for names in high-density neighborhoods than in low-

density neighborhoods. Another way of describing the

same interaction would be to say that the detrimental

ARTICLE IN PRESS

0

100

200

300

400

500

600

700

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Decile

F
re

q
u

en
cy

Predicted

Observed

Fig. 4. Fit between predicted and observed number of errors at

each decile of risk for Experiment 1.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Log SF

E
rr

o
r 

R
at

e

High ND

Low ND
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neighborhood density. The dotted line represents low neighbor-

hood density.

Table 4

Experiment 1: Error rates at various levels of stimulus

frequency, mean neighborhood frequency, and neighborhood

density

SF ND NF

High Low

High High 0.47 0.43

Low 0.41 0.45

Low High 0.82 0.81

Low 0.74 0.73

Variable High Low

SF 0.44 0.78

NF 0.61 0.60

ND 0.63 0.58

Table 5

Experiment 1: Parameter estimates for random effects logistic

regression model predicting visual perception errors (type-

written names)

Variable Beta SE Z

Intercept 0.96 0.13 7.61**

SF �0.78 0.03 �25.29**
NF 0.06 0.05 1.23

ND 0.10 0.04 2.32*

SF�ND �0.11 0.03 �3.68**
NF�ND 0.05 0.03 1.69

Trial �0.01 0.01 �1.91

Note: Terms were kept in the model if likelihood ratio tests of

their removal were significant and/or if a higher-level interac-

tion involving a term was significant. In some cases, likelihood

ratio tests were significant at p ¼ 0:05; but Z-scores (or Wald

tests on the parameter estimates) were not. In such cases,

likelihood ratio tests are believed to be more reliable, and hence

they were used.

*po0:05; **po0:001:
�2 log likelihood=8249.801.
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effect of neighborhood density operates primarily on

low-frequency names. There was also a significant

interaction between neighborhood frequency and neigh-

borhood density. (This term had a non-significant z-

score but a significant likelihood ratio test when it was

removed from the model. Thus it was retained.) At low

levels of neighborhood density, increasing neighborhood

frequency reduced the error rate whereas at high levels

of neighborhood density, increasing neighborhood

frequency increased the error rate (see Fig. 6). Finally,

there was a weak but significant effect of trial, with

accuracy increasing slightly as participants gained more

experience with the task.

Error analysis. Detailed analysis of the errors revealed

that there were 234 omission errors and 4128 substitu-

tion errors. Of the 4128 substitution errors, 2623

(63.5%) were names of other drugs (e.g., Indocins

instead of Indomeds, prednisone instead of Prama-

sones). The remaining 1505 (36.5%) substitution errors

were spelling errors (e.g., Catapress instead of Cata-

press, Cyclogel instead of Cyclogyls) or other non-drug

responses (e.g., Alena instead of Alfentas, Seldene

instead of Solatenes). Fig. 7 shows the frequency

distribution of substitution errors at different edit

distances.

Fig. 7 shows that many substitution errors were

within only 1 edit of the target name, suggesting that

these may have been typographical errors or mis-

spellings rather than misperceptions. In light of this

possibility, we built another model assuming a correct

response was any response that fell within 1 edit of the

target name. The model was essentially unchanged

except that a significant stimulus frequency by neighbor-

hood frequency interaction emerged with the more

lenient scoring criterion (details not shown). Given the

similarity of these models, we will only interpret the

initial model.

Results supported Hypothesis 1. All other things

being equal, high-frequency drug names (e.g., Dilantins,

Proventils, Tagamets) were perceived more accurately

than low-frequency names (e.g., Hetrazans, Prota-

phanes, Antispass). This is an example of word

frequency effect, one of the oldest and most robust

effects in all of psycholinguistics (Balota, 1994; Grainger

& Dijkstra, 1996; Grainger & Segui, 1990; Monsell,

1991; Whitlow & Cebollero, 1989). The beneficial effects

of frequency are presumably due to the higher resting

activation of high-frequency names or to decisional

biases that favor high-frequency names when stimuli are

ambiguous or degraded. Hypothesis 2 was not sup-

ported, as there was no reliable main effect of

neighborhood frequency. Hypothesis 3 was supported;

names in high-density neighborhoods were more likely

to be misperceived than names in low-density neighbor-

hoods. For example, all other things being equal, a name

like Betadines, with five neighbors in the NAMCS/

NHAMCS database, is more likely to be misperceived

than a name like Cyclogyls, which has only one

neighbor.

These main effects, however, must be interpreted in

the context of the significant two-way interactions

between stimulus frequency and neighborhood density

and between neighborhood density and neighborhood

frequency. For example, although the main effect of

neighborhood density is significant, examination of the

interaction with stimulus frequency reveals that density

has its effects primarily on low-frequency stimulus

names. To understand this effect, recall that the

detrimental effects of density are due to competition

between similar names; whereas, the beneficial effects of

stimulus frequency are due to high levels of resting

activation and/or decisional biases. The observed inter-

action between neighborhood density and stimulus

frequency can be explained by noting that the effects

of density are of a much smaller magnitude than the

effects of stimulus frequency. For high stimulus fre-

quency names, the detrimental effects of density,
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although operating, are overwhelmed by the beneficial

effects of stimulus frequency. Hence, the observed

density effects obtain only at low stimulus frequency.

Concretely, competition from the five neighbors of a

relatively low-frequency name such as Moderils will

make Moderils vulnerable to misperception, but a high-

frequency name such as Nolvadexs will be relatively

unaffected by competition from its five neighbors.

A related explanation can be offered to account for

the observed interaction between neighborhood fre-

quency and neighborhood density. In this case, neigh-

borhood frequency increases the error rate in high-

density neighborhoods but has the opposite effect in

low-density neighborhoods. The more frequent a word

is, the more perception is biased in its favor. Thus, one

can see neighborhood frequency as amplifying compe-

titive density effects. In contrast, stimulus frequency

dampens such effects. If one considers two equally dense

neighborhoods, the one with higher frequency neighbors

will create more competition with the stimulus word

than the one with low-frequency neighbors, since the

ability to compete is in proportion to the frequency of a

neighbor. This is the effect described by the dotted line

in Fig. 6. In contrast, neighborhood frequency has a

small, almost negligible, beneficial effect on percept-

ibility among names in low-density neighborhoods. The

small facilitatory effects of neighborhood frequency may

be due to increased bottom-up activation coming from

neighbor words that share letters with the stimulus word

(Andrews, 1997; Zagar & Mathey, 2000). For example, a

name like Altocos, which has four neighbors with high

average prescribing frequency, will be more vulnerable

to competition than a name like Mantadils, which has

four relatively low-frequency neighbors.

The next experiment sought to replicate these results

in the context of handwritten drug names.

Experiment 2: Perceptual identification of handwritten

drug names

Methods

Design

The design of Experiment 2 was identical to that used

in Experiment 1 except that in this experiment, hand-

written drug names were used as stimuli instead of

typewritten names (Brodell et al., 1997). This experiment

also used a slightly different type of degradation

(described below).

Participants

Participants were 37 licensed, practicing, community

pharmacists recruited from the exhibit halls and

corridors of the 2000 annual meeting of the National

Community Pharmacists Association in San Antonio,

Texas. All participants were adults who consented to

participate. All procedures were approved by the local

IRB.

Stimulus materials

The stimulus materials were the same 160 names used

in Experiment 1 (see Tables 1–3). However, in this

experiment, the names were handwritten by 5 practicing

physicians from the University of Illinois Hospital and

Clinics. The physicians included one fourth-year psy-

chiatry resident, one senior attending physician specia-

lizing in occupational medicine, and three internal

medicine residents. Physicians were paid US$20 to write

each of the 160 names on a multi-page list. Although

they were told that the names were to be used in a study

of drug name confusion, they were explicitly instructed

to write in their normal manner—not to make any extra

effort to make their writing neat or legible. The actual

handwriting samples used in the experiment were

randomly selected from the 5 sets of 160 names. The

names were scanned on a Hewlett-Packard ScanJet

ADF at 600 dpi and saved as TIFF files. Scanned images

were then imported into Adobe Photoshops, saved in

JPEG format, and degraded with Gaussian noise as well

as vertical and horizontal graining. The precise proce-

dure for adding noise can be obtained from the authors.

(As in Experiment 1, the purpose of added degradation

was to ensure that a large number of errors would be

generated for subsequent analysis.) Final images were

360 pixels wide and 150 pixels high with 144 pixels per

inch resolution. Fig. 8 shows examples of one drug name

from each of the five physicians. Due to a programming

error, 4 names appeared twice in the experiment

(Mellarils, Pancreases, Restorils, and Zefazones)

and 4 names never appeared (Nolvadexs, Stelazines,

Aculars, and Brethancers). Data from the second

appearance of the repeated names were deleted, and all

subsequent analyses were based on 156 names.

Procedure and analysis plan

We used the same procedure and analysis plan as in

Experiment 1.

Results and discussion

Thirty-seven participants each responded to 156

names, producing 5772 total responses. The error rate

was 45.7% (2637/5772). On average, each participant

incorrectly identified 71 of 156 names (std. dev.=17.76,

range, 44 to 131, median=67). Detailed analysis of

errors revealed that there were 202 (7.7%) omission

errors and 2435 (92.3) substitution errors. Of the 2435

substitution errors, 1148 (47.1%) involved spelling

errors or non-drug names, and 1287 (52.9%) involved

other drug names. Fig. 9 shows a histogram of edit

distances for drug and non-drug substitution errors.
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Table 6 gives the error rates at each level of the

independent variables.

The model had sensitivity of 63.37%, specificity of

69.51%, and overall accuracy of 66.70% when a

predicted probability threshold of 0.45 was used for

classification. Fig. 10 shows the fit between observed and

predicted error frequencies at each decile of risk. The

Hosmer–Lemeshow C test on deciles of risk led to the

rejection of the hypothesis that the observed and

predicted distributions came from the same population
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Fig. 8. Examples of degraded handwritten names from five

different physicians (from top to bottom: Trilafons, Unasyns,

Ventolins, Solatenes, and Betadines).
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tion errors in Experiment 2. See text for details.

Table 6

Experiment 2: Error rates at various levels of stimulus

frequency, mean neighborhood frequency, and neighborhood

density

SF ND NF

High Low

High High 0.28 0.36

Low 0.28 0.31

Low High 0.68 0.61

Low 0.59 0.52

Variable High Low

SF 0.31 0.60

NF 0.46 0.45

ND 0.48 0.43
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Fig. 10. Fit between predicted and observed number of errors

at each decile of risk for Experiment 2.
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(i.e., there was evidence of lack of fit between model and

data) (X 2ð8Þ ¼ 89:79; po0:01). The lack of fit was likely

due to the same causes identified in Experiment 1.

Table 7 gives the parameter estimates for the random

effect logistic regression model. There was a powerful

main effect of stimulus frequency, with the log odds of

error decreasing sharply as stimulus frequency in-

creased. There was a significant main effect of neighbor-

hood density, with errors being more likely as density

increased. The main effect of neighborhood frequency

was not significant. There were significant two-way

interactions between stimulus frequency and neighbor-

hood density and between stimulus frequency and

neighborhood frequency. These were contained within

a significant three-way interaction between stimulus

frequency, neighborhood frequency, and neighborhood

density (see Fig. 11). By definition, a three-way interac-

tion occurs when a two-way interaction differs across

levels of a third variable (Keppel, 1991). In this case,

stimulus frequency and neighborhood density interacted

at high neighborhood frequency but not at low

neighborhood frequency. At high neighborhood fre-

quency, stimulus frequency had a stronger dampening

effect on names from high as opposed to low-density
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Table 7

Experiment 2: Parameter estimates for random effects logistic

regression model predicting visual perception errors (hand-

written names)

Variable Beta SE Z

Intercept 0.13 0.15 0.88

SF �0.61 0.03 �18.47*
NF 0.10 0.05 1.78

ND 0.19 0.05 3.50*

SF�NF �0.21 0.04 �4.89*
SF�ND �0.12 0.03 �3.42*
NF�ND 0.03 0.04 0.73

SF�NF�ND �0.14 0.02 �6.07*

*po0:001:
�2 log likelihood=6949.931.
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Fig. 11. Three-way interaction between SF, NF, and ND in Experiment 2. Solid lines represent high ND. Dotted lines represent low

ND. Panel (a) illustrates a two-way interaction between SF and ND at high NF, but this interaction is not present at low NF (panel b).
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neighborhoods. At low neighborhood frequency, the

effect of stimulus frequency was the same regardless of

neighborhood density. In other words, high prescribing

frequency of a target name is most protective against

error in high-frequency, high-density neighborhoods,

where competition is fiercest. This makes sense given

that the ability to compete in perception is mostly a

function of frequency.

Results supported Hypothesis 1. All things being

equal, common names (e.g., Ativans) were more

accurately perceived than rare names (e.g., Proto-

phanes). Hypothesis 2 was not supported. The main

effect of neighborhood frequency was not reliably

greater than zero. Hypothesis 3 was supported. Neigh-

borhood density significantly increased the likelihood of

error, i.e., the more neighbors a name has, the harder

that name is to correctly identify. One must be cautious

in interpreting the main effects, however, since they were

contained within significant two- and three-way inter-

actions. The three-way interaction is still in need of

explanation.

At high neighborhood frequency, the interaction

between stimulus frequency and neighborhood density

is the same as that which was observed for typewritten

names, namely, that the effect of stimulus frequency was

greater on names from high as opposed to low-density

neighborhoods. To put it another way, in high-

frequency neighborhoods, high neighborhood density

had detrimental effects on low-frequency names but

beneficial effects on high-frequency names. In low-

frequency neighborhoods, there was no such interaction.

Instead, low-frequency names showed only the main

effects of neighborhood density and stimulus frequency.

Again we interpret this as neighborhood frequency

amplifying the effects of density. In low-frequency

neighborhoods, there is a density effect, but because

the neighbors are relatively rare names, they exert

relatively little competitive inhibition on the target

name—hence, the small main effect of neighborhood

density in low-frequency neighborhoods. In contrast,

neighborhoods that are dense with high-frequency

names compete very strongly with the target name,

creating the large density effect, especially on rarely

prescribed target names.

General discussion

Drug name confusions are a persistent source of

medication errors and an ongoing threat to patient

safety. In spite of all that has been written and all the

remedial steps that have been taken recently, new pairs

of confusing names continue to appear regularly

(Institute for Safe Medication Practices, 2002). One

way to minimize the incidence of these errors is to equip

decision-makers in the pharmaceutical industry and the

FDA with tools to make better name-approval deci-

sions. Such tools should be empirically validated and

based on principles of human factors engineering. When

it comes to drug name confusion, one of the funda-

mental human factors is visual perception (others are

short-term memory and auditory perception).

The present work provides new evidence regarding

what factors contribute to visual misidentifications of

drug names. Consistent with current theory in cognitive

psychology, the present results indicate that highly

frequent drug names are less likely to be misperceived

than less frequent drug names. Also consistent with

current theory, drug names that are similar to many

other drug names are more likely to be misperceived

than drug names that are similar to relatively few other

drug names. These findings have important implications

both for current pharmaceutical practice and for the

regulation of proposed new drug names. The implica-

tions are not obvious, however, and in order to

understand them, one must consider the ultimate goal

of those who might use the types of predictive models

described above.

The ultimate goal of decision-makers ought to be to

minimize harm (i.e., to maximize patient safety). Doing

so involves more than just predicting the probability

that a given name will be misperceived, which is all we

have done here. Harm is a function of the probability of

error, the number of opportunities for error and the

severity of the consequences of an error:

Harm ¼Probability of Error

�Number of Opportunities for Error

� Severity of Each Error:

Although our work clearly documents that rare names

are more likely to be misidentified than common names,

it does not necessarily follow that rare names pose the

most risk of harm. For example, imagine Drug A is

prescribed 1 million times per year and has a predicted

probability of error of 0.05. Imagine that Drug B is

prescribed 10,000 times per year and has a predicted

probability of error of 0.5. Alone, the probabilities of

error suggest that Drug B is 10 times more likely to be

misidentified than Drug A. One might be tempted to

conclude that Drug B is therefore 10 times more

hazardous, but this would be a misguided conclusion.

Given these hypothetical prescribing frequencies and

error probabilities, one would predict 0.05� 1 mil-

lion=50,000 errors for Drug A and 0.5� 10,000=

5000 errors for Drug B. The arithmetic is simple, but the

implications are somewhat counter-intuitive. The drug

with the lower probability of error (the frequently

prescribed Drug A) is likely to be involved in many more

errors than the much harder to perceive Drug B, by

virtue of the much greater number of opportunities for

error involving Drug A. Even this is not the whole
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picture, because the severity of the consequences of an

error has not been factored in. Five thousand fatal

errors would clearly cause more harm than 50,000 mild

allergic reactions.

The upshot of all this is that to make the drug name

lexicon safer, one must focus on harm reduction, and

that harm reduction involves more than just the

probability of error. It also involves the number of

opportunities for error and the amount of damage

caused by each error. It is worth noting that, in most

cases, harm is defined in terms of injury, disability, and

death to patients who get the wrong drug. But

sometimes harm may be defined in terms of commercial

damages, lost sales, trademark infringement, or trade-

mark dilution. Regulatory agencies like the US Food

and Drug Administration are likely to use the former

definition (injury) while drug companies, the courts and

other regulators like the US Patent and Trademark

Office may use the latter definition (commercial harm).

In neither case are valid and reliable measures for

quantifying the magnitude of harm very well developed.

This is clearly an area where more work needs to be

done.

Comparison of results for handwritten and typewritten

names

The main effects of stimulus frequency and neighbor-

hood density in Experiment 2 were in the same direc-

tion and of comparable magnitude as what was observed

in Experiment 1. Thus, the effects of stimulus frequency

and neighborhood density appear, for the most part,

to apply to both handwritten and typewritten names.

Similarly, the main effect of neighborhood frequency is

null for both handwritten and typewritten names. The

results obtained with the handwritten materials serve

two important purposes. First, they serve as a partial

replication of the results obtained with typewritten

materials, thus establishing the robustness of those

results. Second, they extend those results to the more

realistic domain of handwritten stimuli of the kind

that are more likely to be encountered in everyday

practice.

Limitations

Only pharmacists participated in these experiments.

To strengthen generalizations about other populations,

experiments should be repeated using physicians, nurses,

and lay people as participants. The names used as

stimuli were mostly 3-syllable brand names. General-

izing from these results to generic names or names of

different lengths may or may not be warranted. The type

of stimulus degradation used, which combined degraded

images with short presentation times, may not perfectly

simulate the real-world perceptual situation, where

names may be more or less degraded, handwriting may

be better or worse, and pharmacists may spend more or

less time examining ambiguous names. The task used

here may also be somewhat artificial in that we

encouraged participants to generate a guess whenever

possible whereas in the real world, a pharmacist would

presumably seek verification of an ambiguous name

rather than guessing. Furthermore, the task took place

in a quiet room, with none of the distractions that would

be present in the real world. No attempt was made to

model variation that may have been due to a partici-

pant’s age, years of experience, practice context, clinical

specialty, or level of visual acuity, nor were differences in

the legibility of the handwritten names taken into

account. The absence of these variables may, in part,

explain the lack of fit between observed and predicted

data. In addition, the lexicon used here included names

only from the NAMCS and NHAMCS databases.

Limitations in the precision of NAMCS/NHAMCS

frequency data may have affected the precision of our

frequency-based parameter estimates. Use of a different

reference database would alter the neighborhood

characteristics of the stimulus names and the resulting

neighborhood effects. Finally, the observed error rates

primarily reflect characteristics of the experimental task

such as the brief exposure duration and the nature and

degree of stimulus degradation. The absolute error rates

observed here (45–60%) are perhaps an order of

magnitude higher than what one might expect in a

real-world practice setting. Hence, interpretation of

these results should focus on the trends in error rates

as a function of frequency and density, not on the

absolute error rates. To put it more formally, inter-

pretations should focus on the slopes of the models, not

their y-intercepts.

Conclusion

Pharmacists’ visual perception of briefly presented,

blurry drug names is affected in predictable ways by

objectively measurable properties of names (e.g., pre-

scribing frequency, neighborhood frequency, and neigh-

borhood density). All other things being equal, rare

names and names in high-density neighborhoods are

more likely to be misperceived than common names and

names from low-density neighborhoods. The main

effects of neighborhood frequency are negligible,

although this factor does interact in important ways

with neighborhood density and stimulus frequency (i.e.,

neighborhood frequency tends to amplify the effects of

density). The complex interactions observed for both

handwritten and typewritten stimuli suggest that all

three factors must be simultaneously taken into account

when assessing visually intelligible or visually confusing

drug names. Models such as the ones presented here, or

refinements thereof, can be used for this purpose. People
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responsible for coining and approving drug names can

and should consider the factors identified here when

they make decisions. However, the models presented

here only pertain to the probability of error. In order to

minimize harm, which ought to be the goal of

practitioners, industry, and government alike, one must

also take into account the number of opportunities for

error and the severity of the consequences of each error.

We hope to have facilitated the process of harm

reduction by offering insight into the factors that affect

the probability of error. Traditional pharmaceutical

marketing techniques should be able to estimate the

number of opportunities for error (i.e., the prescribing

frequency of a drug), and further work is needed to

quantify the harm associated with each error.
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