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Abstract 

Theories of language acquisition propose an early and 
important role for perceptual processes, but often present 
these processes as separate from the short-term sequencing 
processes and long-term linguistic knowledge that also 
contribute to the development of language.  Using nonword 
repetition as a measure that reflects the interaction of these 
processes, we present a computational model that integrates 
all three of these processes into a single system and 
examine the similarity between the relationship of these 
three processes found in the model and the relationship 
found in adolescent humans. 

Keywords: language acquisition; short-term memory; 
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Processes of Vocabulary Acquisition 
While there is an acknowledged role for perceptual 
processes in language acquisition by models of language 
acquisition, the precise relationship between these 
processes and higher-level lexical processes tends to be 
left unspecified.  Specifically, it has been argued that 
phonological learning involves the organization of sound 
whereas lexical learning involves the organization of 
meaning and this shared organizational principle could 
theoretically be supported by stimulus-general processes 
(Jusczyk, 2000, p. 1-3).  Other theories support the idea 
that accomplishing the former helps to accomplish the 
later. 

For example, the Competition Model (Bates & 
MacWhinney, 1987) claims that perceptual units must be 
isolated from irrelevant and variable contextual factors.  
Once these perceptual units are isolated and can be 
reliably recognized, then the mapping between these 
perceptual units and their function in the language can 
begin.  This process is similar to the discovery of 
variability and stability in mapping word forms to lexical 
function, but statistical relationships between these 
processes are rarely discussed and the bulk of the 
empirical work related to this model has focused on the 
ability to map between lexical and syntactic knowledge.   

One potential benefit to lexical growth suggested by 
these perspectives is through a benefit to parsing abilities 
as a result of enhanced stimulus acuity.  The rapid rate of 
speech transmission and the context-dependent nature of 
speech perception makes one's perceptual ability in the 
early stages of language acquisition, before lexical cues 
can aid processing, an important part in parsing and 
analyzing the audio-perceptual stream (Jusczyk, 2000, p. 
204; Bates & MacWhinney, 1987).  Having precise 
representations of the auditory environment may 
contribute to the development of an efficient recognition 
system and aid in the formation of reliable mappings 
between sound and meaning. 

However, acuity may also hinder processing as the 
lexicon grows by preventing generalization based on the 
similarity between new words and known words during 
the process of vocabulary acquisition.  Developmental 
data, such as that presented by Stager and Werker (1997) 
show changes in phonetic sensitivity in a word-learning 
task as a function of age (and thus, they argue, experience 
with learning new words).  Certain phonological contrasts 
were not maintained in word-learning tasks and may 
become less important as the lexicon grows and known 
words aid the processing of unknown words.  Thus, the 
system may be jointly influenced by perceptual and 
memory processes and must ultimately balance forces of 
acuity and generalization. 

The statistical learning literature (e.g., Saffran, Aslin, & 
Newport, 1996) provides additional information on the 
function of memory processes by focusing on the 
acquisition of knowledge about the stimulus environment. 
Here the focus is not on acuity, but on the ability to learn 
the statistical structure of an environment.  This 
knowledge contributes to vocabulary acquisition by 
helping to parse the stream into the appropriate units for 
learning about a particular aspect of language.  Thus, it is 
the function of a domain-general  learning mechanism 
that contributes to vocabulary growth and the impact of 
individual differences in phonological processing is felt 
somewhat indirectly through the effects on memory. 
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Theoretically, it is clear that both perceptual and 
memory processes contribute to vocabulary acquisition, 
but empirically the nature of this relationship remains 
unclear.  Perceptual and memory processes appear to be 
studied independently though they make joint 
contributions to vocabulary acquisition and may also 
interact with one another.  A good starting point for 
bringing together these investigations is to ask how 
changes in the representation of auditory information, 
which would be determined largely by the function of 
perceptual processes, might impact the memory processes 
responsible for vocabulary acquisition in humans and in a 
model of vocabulary acquisition. 

A recent connectionist model (Gupta & Tisdale, 
submitted) provides a framework for examining the 
potential impact of phonological representations on 
vocabulary acquisition processes.  Here it has been 
demonstrated that short-term memory for phonological 
information (also known as PSTM) can be conceptualized 
as a causal factor in determining one's vocabulary and that 
both PSTM and vocabulary causally determine the 
generalization and sequencing ability demonstrated by 
participants in a nonword repetition (NWR) task, a task 
that has long been thought to measure the functioning of 
the memory processes responsible for vocabulary 
acquisition (Gupta & Tisdale, submitted). 

Further, this model demonstrates these relationships 
within a single processing system: a recurrent network.  
Within this system, PSTM is operationalized as the 
recurrence in the model and vocabulary knowledge lies in 
the weights between layers of the network.  The goal of 
the current work is to incorporate the concept of 
perceptual processing into this model based on the 
theoretical relationship presented above and the empirical 
observations presented below. 

This new model characterizes NWR as a product of 
both vocabulary and PSTM.  NWR measures how the 
processing of novel linguistic information is impacted by 
PSTM processes and vocabulary.  Thus, we see NWR as a 
measure that captures the interaction between the 
processes responsible for vocabulary.   For this reason, we 
focus on NWR as our dependent measure instead of a 
measure of vocabulary acquisition.  The question we 
attempt to answer is whether or not perceptual processing 
(measured by phoneme discrimination) predicts the 
efficacy of these processes based on their shared reliance 
on both acuity and generalization. 

Behavioral Integration 
In order to have a better understanding of the relationship 
between perceptual processes, PSTM, and vocabulary, we 
performed a multiple regression analysis on a set of 
previously collected data.  These data are part of a larger 
longitudinal study of children with Specific Language 
Impairment (SLI; a disorder of language in children with 
no neurological cause) and their developmental cohorts 
(Tomblin, Zhang, Buckwalter, & O'Brien, 2003).  As 

such, measures were taken at different time points, but 
were completed by the same experimenters in the same 
testing locations. 

Data from 57 adolescents were included in the analysis 
based on the availability of data on the tasks of interest.  
These participants were between 15 and 17 years old at 
the latest testing session.  No attention was paid to the 
participants language status as the interest in the group 
lies in the inclusion of participants with a wide range of 
language abilities, rather than the inclusion of participants 
from a specific population. 

Perceptual Processing 
Perceptual processing was assessed during the latest 
testing session using a phoneme discrimination task that 
had participants discriminate between tokens of English 
words whose initial consonant had a varying voice onset 
time (VOT) resulting in a b/p continuum.  On the "b" end 
of this continuum, was a /bol/ token ("bowl") recorded by 
a human speaker with a VOT of 0 ms.  This initial token 
was spliced to create a range of additional stimuli with 
VOTs of 10 �– 50 ms in 10 ms increments. Stimuli were 
presented through headphones with experimental 
parameters that limited the memory components of the 
task.  The participants' task was to discriminate between 
tokens; reporting whether the tokens were the "same" or 
"different" (stimulus creation and experimental methods 
can be found in Coady, Kluender, & Evans, 2005).  

The relevant measure for this task is proportion correct 
on "different" trials involving two within-category tokens 
(i.e., VOT 0 vs. VOT 20 and VOT 30 vs. VOT 50) and 
two between-category tokens (i.e., VOT 10 vs. VOT 30 
and VOT 20 vs. VOT 40).  Limitations of the data set 
prevented the calculation of a useful d' as will be done in 
the modeling data. 

Short-Term Memory Processing 
For assessing STM ability using novel linguistic stimuli, a 
NWR task was given.  For assessing ability using known 
linguistic stimuli, a digit span (DS) task was given. These 
tasks were completed in the same testing session, one year 
prior to the discrimination task. 
Nonword Repetition In the NWR task, participants were 
presented with blocks of 20 nonwords from an established 
corpus of novel linguistic stimuli (Gupta et al., 2004).  
Within each block, participants were presented stimuli of 
a single syllable length, beginning with 2-syllable 
nonwords and ending with 7-syllable nonwords.  Each 
syllable had a consonant-vowel (CV) structure, except for 
the final syllable, which had a CVC structure.  Stimuli 
were presented through headphones and the participants' 
task was to simply repeat each word immediately upon 
hearing it.  The measure for this task was percentage of 
whole words correctly repeated at each syllable length. 
Digit Span In the DS task, participants were presented 
with lists of digits in blocks of 8 lists.  Each list in a block 
was presented through headphones at a rate of 1 digit per 
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second.  Lists were initially 2 items in length and grew by 
1 item with each subsequent block.  Participants 
continued to a new block if they accurately recalled more 
than 50% of the lists in a given block.  The measure for 
this task is the longest list length at which the 50% 
performance criterion was exceeded. 

Vocabulary 
Participants completed the expressive subtest of the 
Comprehensive Receptive and Expressive Vocabulary 
Test (CREVT; Wallace & Hammill, 1994) as a measure 
of expressive vocabulary.  Participants completed the 
Peabody Picture Vocabulary Test-III (PPVT-III; Dunn & 
Dunn, 1997) as a measure of receptive vocabulary. Scores 
on these two components were then used to create a 
composite z-score for vocabulary.  These assessments 
were completed during the same session as NWR and DS. 

Results  
The independent predictors of the regression model 
consisted of the two measures of within category 
discrimination, the two measures of between category 
discrimination, the DS measure, and the vocabulary 
measure.  These predictors were applied to the NWR 
scores of the group at each syllable length, for a total of 
six analyses.  Correcting for these multiple comparisons, 
the regression model was significant (p < .008) for 
accuracy on 3-, 4,-, 5-, & 6-syllable nonwords.  The 
variance explained by these models ranged from 29.8 - 
37.5%.  For the purpose of in-depth analysis, we chose to 
focus on the strongest model, which was for 4-syllable 
nonwords (see Table 1).  Incidentally, this length was the 
mode digit span score for the group, so it represents 
performance on stimuli that are near the boundary 
between capacity and supra-capacity for these 
participants. 
        c 

Table 1: Standardized regression model coefficients for 
accuracy on 4-syllable nonwords.  Significant 

predictors are in bold. 
 

 Statistical Values 

Variable Std.  p 
Intercept -.256 .251 
Discrimination - Within   
     00 vs. 20 
     30 vs. 50 

-.087 
.039 

.481 

.768 
Discrimination �– Between 
     10 vs. 30 
     20 vs. 40 

 
.283 
-.320 

 
.029 
.011 

Other Cognitive Measures 
     Digit Span 
     Vocabulary 

 
.574 
.160 

 
<.001 
.172 

In the case of 4-syllable nonwords, only measures of 
between category discrimination are a significant 
predictor of NWR in addition to DS.  The coefficients for 
these two measures have opposite signs, suggesting 
individual differences in the category boundaries of our 
participants.  For some participants, categorical 
discrimination occurs in the 10 v. 30 contrasts occur, but 
not the 20 v. 40 and vice versa.  For some other 
participants, categorical discrimination may occur in both.  
Future analysis will be needed to entangle the nature of 
this relationship, however it is clear that such a 
relationship exists. 

Success on between-category discrimination indicates a 
generalization of stimulus properties that leads to strong 
VOT categories.  This generalization affects NWR 
positively as it can help the system process novel stimuli 
that align with the phonological structure of its 
vocabulary.  Failure on between-category discrimination 
indicates a representation of specific acoustic detail rather 
than general categories, however these data suggest that 
one can still succeed at NWR under these conditions.  
Though the locus of these effects are not evident in these 
data, it is most likely the sequencing processes associated 
with both NWR and DS (the later of which is also a 
positive contributor to NWR) that are supporting NWR. 

Computational Integration 
The interpretation of the behavioral data just presented 
assumes an integrated system of vocabulary acquisition 
that incorporates phonological processing, STM, and 
vocabulary knowledge.  Such a system has previously 
integrated STM and vocabulary knowledge (Gupta and 
Tisdale, submitted), but can it integrate phonological 
processing and show the same effects of specification and 
generalization observed in the behavioral data? 

Model Architecture 
The model is a modified version of a connectionist model 
developed by Botvinick and Plaut (2006) to model 
immediate serial recall within a recurrent network (for 
details on the psychological and technical motivations for 
architectural details see Botvinick & Plaut; Gupta & 
Tisdale, submitted).  The model consists of an input layer 
that represents the individual syllables of a word.  This 
layer has 21 units that can represent the constituent 
phonemes of a syllable within a CCVCC phoneme frame.  
5 units are dedicated to representing the phonemes that 
may legally occupy the initial C slot of the frame 
(according to the phonological constraints of English), 3 
units are dedicated to the second C slot, 5 units are 
dedicated to the V slot, 3 are dedicated to the penultimate 
C slot, and 5 are dedicated to the ultimate C slot (see 
Figure 1).  The input layer also has 1 control unit that 
cues the network to recall a sequence. 

The input layer is fully connected to a 200-unit hidden 
layer that is fully recurrent.  That is, the hidden layer 
connects to itself through a set of modifiable weights that 
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can transform the current activation of the hidden layer 
and affect processing at this layer for sequences of 
information.  The hidden layer is also fully-connected, in 
an interactive fashion, to the output layer, which has the 
same representational scheme as the input.  The only 
difference in the output layer is that the single control unit 
is replaced with a single unit that lets the network indicate 
the end of its recall of a sequence. 

Training 
The model was trained by having it shadow and recall a 
set of 4,386 English words that were between 2 and 4 
syllables in length.  These words were selected from a 
larger set of 130,000 phonologically distinct words that 
accompany the Festival speech synthesis software (Black 
& Taylor, 1997).   

In each training epoch, the model was presented with 
each of these 4,386 words in a random order.  For each 
word, the model was presented with one syllable at a time 
at the input layer and the target of the output was the 
syllable that was being presented.  Following the last 
syllable of each word the "Recall" unit of the input layer 
was activated. This cued the network to enter the recall 
phase of training in which the model had to repeat each of 
the syllables that had just been presented, in the same 
order that they had been presented.  No input was 
provided at the input layer and the target in this phase was 
the relevant syllable that was to be recalled.  For the final 
syllable, the model was trained to activate the "Stop" unit 
of the output layer in addition to the phonological 
representation of the final output.  Weight changes were 
made at the end of each word (including the recall phase) 
using recurrent back-propagation through time 
(Rumelhart, Hinton, & Williams, 1986).  The context 
layer was reset between each word.  The model was 
trained for a total of 100 epochs with a learning rate of 
0.005 and no momentum term. 

Vocabulary and Short-Term Memory 
Gupta and Tisdale (submitted) showed that a network 
trained as described above could learn a substantial 
vocabulary and engage in NWR (i.e., repeat back words it 
had never processed before).  Further, they (along with 
Botvinick and Plaut's [2006] initial demonstration in the 
domain of list recall) showed that STM can be thought of 
as the recurrence in this system and vocabulary 
knowledge can be thought of as the weights in the system.  
In this way, the model encodes not just the specific words 
it has seen, but information about the phonological 
structure of the language it is learning. 

Vocabulary was measured in the current model by 
presenting each of the 4,386 words from training and 
measuring the accuracy of the output for each syllable 
during recall.  If the mean squared error for the output 
vector of a particular syllable was less than .1, then that 
syllable was marked as correct.  If all of the syllables in 
the word were correct, then that word was marked as 

correct.  No weight changes were made during this, or any 
other, testing procedure. 

NWR was measured in the model by presenting 2-, 3-, 
and 4-syllable nonwords (2 at each length) to shadow and 
recall.  These nonwords were selected from the same 
corpus as those that were presented to the humans.  
Accuracy was measured in the same way as when 
assessing vocabulary.  Reported values for both 
vocabulary and NWR are proportion correct. 

Discrimination 
A key insight provided by Botvinick and Plaut (2006) was 
that this type of network can eventually configure its 
weights so that upon recall, an entire list (remember, their 
task was list recall) is represented by the activation vector 
at the hidden layer when the recall cue is presented.  This 
situation arises because this vector is the only information 
the model has to carry out its recall of the sequence it has 
just heard.  For recall, the model systematically 
transforms this initial vector using the weight matrix that 
supports recurrence to produce each of the individual 
elements of the list. 

Gupta and Tisdale (submitted), have subsequently 
shown that the same representation arises with whole 
words when the task is word recall. The whole word is 
initially represented at the hidden layer and is transformed 
to produce each of the individual syllables within the 
word.  In this way, the activation of the hidden layer 
represents the similarity between different words and this 
information can theoretically be used to discriminate one 
word from another. 

In the current model, we tested this idea by presenting 
the phonological representations of seven different 
categorical consonant contrasts and their intermediate 
representations.  For example, in the implementation of 
the b/p continuum, the model was presented with "bowl" 
(/bol/) and "pole" (/pol/) as well as gradient 
representations of intermediate consonants.  Specifically, 
the representation of "b" or VOT 0 was [0 0 1 0 0], the 
representation of "p" or VOT 50 was [0 0 0 0 1] and the 

 
Figure 1: Architecture of the model, including the 
syllable structure that is represented at input and 

output.  For the input and hidden layers, the 
number of units is given in parentheses. 

 C          C           V           C C          Stop 

C (5)     C (3)      V (5)      C (3)      C (5)   Recall (1)

Hidden Layer (200) 
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intermediate representations reflected a shift between 
these two tokens by capturing the negative relationship 
between the two units that encode these consonants.  VOT 
10 was represented by [0 0 .8 0 0 .2], VOT 20 by [0 0 .6 0 
0 .4], and so on.  For each categorical contrast, we 
constructed the same number of intermediate 
representations by varying the value of the negatively 
related inputs.  Each of these representations were then 
presented to the model during test and the activation 
vector at the hidden layer was recorded.  The other six 
categories that were use were t/d, k/g, p/g, p/d, and r/l.  
The first five were consonants were presented along with 
/ol/ and r/l was presented along with / k/.  While these 
are representations of English words, they were not words 
that were a part of the training corpus. 

The measure of discrimination was derived from the 
normalized dot product (or similarity) of vectors 
associated with the representations of the contrasts 
between tokens that the humans made.  From these dot 
products, we averaged across within- and between-
category token discriminations to get a single measure of 
within- and between-category discrimination.  We then 
calculated an overall d' for the model to capture how well 
it was distinguishing within- and between-category 
contrasts across each of the seven consonant contrasts. 

Gain 
In order to model individual variation in phonological 
representation and implement the differences in acuity 
and generalization that we believe to be evident in the 
human data, we manipulated the gain variable of the 
logistic function used to calculate activation values in the 
model.  It is important to point out that this parameter is 
not one that has been developed specifically for the 
current application.  Rather, it is an intrinsic and task-
general parameter used in the implementation of many 
connectionist models.  Further, we are making no claims 
that a neural gain equivalent leads to the individual 
differences in human perception in which we are 
interested.  Gain is simply a way of changing the acuity of 
the representation, though other implementations could be 
used to the same effect. 

Using gain instead of temperature in a traditional 
logistic activation function (cf. Rumelhart & McClelland, 
1988, p. 71) results in the equation: 
 

activation 1
1 e neti *gain  

where neti is the net activation received by a given unit.  
As gain increases in this equation, the resulting activation 
that arises from the same net activation sharpens (see 
Figure 2).   

In the current framework, the effect of gain is to make 
words easier to discriminate at the hidden layer of the 
model.  We trained and tested 310 different models using 
the method described above.  For each gain value 
(ranging from .05 to 3.15 in .05 increments) 5 different 

models (i.e., different initial random weights) were 
trained and tested. 

Averaging across each of the 5 simulations for a given 
gain value and then treating each gain value as an 
individual 'participant' allows us to perform a regression 
model using the models' overall vocabulary and d' to 
predict performance on NWR. 

Results 
NWR, vocabulary, and d' all vary as a function of gain 
(see Figure 3).  The model performed best on these three 
measures when gain values were set between .5 and 1.25.  
Below .5, performance on all three measures dropped in a 
relatively linear fashion.  Above these values, 
performance also dropped in a relatively linear way.  
However, at values above 2.35 vocabulary acquisition and 
NWR performance was exceptionally poor, while 
discrimination ability began to improve.  We believe this 
pattern is likely due to the limits of representational 
flexibility as a function of the number of hidden layer 
units, and the number of connection weights with 
extremely high gain values.  At higher gain values, the 
model may be forced into an unstable weight space that 
causes a form of catastrophic interference and prevents 
the acquisition of a large vocabulary, which also affects 
NWR.  We are currently investigating this hypothesis 
with models that have 400 hidden layer units. 

The regression model explains 93.7% of the variance in 
NWR performance.  This is a significant amount, F(2,60) 
= 458.53, p < .05, and each of the predictors are also 
significant.  The strongest predictor is vocabulary with a 
standardized  of .932, p < .05, followed by the intercept, 

 = -.142, p < .05, and d',  = .097, p < .05.  Thus, for 
both the human participants and the model, a measure of 
discrimination shows a significant relationship with NWR 
that is independent of a measure of vocabulary. 

 
Figure 2: The effect of changes in gain on the logistic 
activation function given in equation 1.  Here gain 

changes from .1 to 1.5 and the activation function gets 
progressively steeper. 

QuickTime�™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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NWR, Vocabulary, and Phoneme Discrimination as a Function of Gain
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Discussion 
In both the human data and the computational model, 

the exact relationship between phoneme discrimination, 
NWR, and vocabulary is far from clear, but it has been 
demonstrated that a relationship exists and that it is a 
useful field of inquiry for the purposes of further 
explicating models of language acquisition.  In the 
humans, only between-group categorization was 
predictive of NWR and the nature of this relationship 
varied depending on the exact stimulus tokens that were 
being used.  In the model, manipulations of gain, or the 
sharpness of the activation function, had an effect on 
vocabulary, NWR, and phoneme discrimination.  Further, 
a regression analysis on the modeling results showed a 
predictive relationship of phoneme discrimination and 
vocabulary on NWR.  While the modeling and human 
measures are not equivocal, they are analogous and the 
existence of a relationship in both is a theoretically 
important contribution that deserves a more precise 
comparison and further investigation. 

Overall, phonological processing, STM, and vocabulary 
acquisition can be thought of as a single integrated system 
whose overall functioning is reflected in the measure of 
NWR, but their exact relationship will take further 
untangling.  The model presented here provides a specific 
computational framework for integrating the three 
processes discussed in this paper into a single account and 
investigating the relationship that they have with one 
another. 
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