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We question the widespreod assumption that linguistic theory should guide the 
formuiotion of mechanistic accounts of human language processing. We develop 
a pseudo-linguistic theory for the domain of linguistic stress, based on observa- 
tion of the ieorning behavior of a perceptron exposed to a variety of stress pat- 
terns. There are significant similarities between our analysis of perceptron stress 
learning and metrical phonology, the linguistic theory of human stress. Both 

approaches attempt to identify salient characteristics of the stress systems under 
examination without reference to the workings of the underlying processor. Our 
theory and computer simulations exhibit some strikingly suggestive correspon- 
dences with metrical theory. We show, however, that our high-level pseudo- 
linguistic account bears no causal relation to processing in the perceptron, and 
provides little insight into the nature of this processing. Because of the persua- 

sive similarities between the nature of our theory and linguistic theorizing, we 
suggest that linguistic theory may be in much the same position. Contrary to the 
usual assumption, it may not provide useful guidance in attempts to identify pro- 
cessing mechanisms underlying human language. 

The fundamental questions to be answered about language are, as Noam 
Chomsky has pointed out: (1) What is the system of knowledge in the mind/ 
brain of the speaker of English or Spanish or Japanese? (2) How does this 
knowledge come into being? (3) How is this knowledge used? and (4) What 
are the physical mechanisms serving as the basis for this system of knowl- 
edge, and for its use? (Chomsky, 1988, p. 3). 
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Linguistic theory is viewed, in the Chomskyan tradition, as illuminating 
the nature of mind, and as guiding the search for lower level processing. 
Thus, according to Chomsky, to the extent that the linguist can provide 
answers to the first three questions above, the brain scientist can begin to 
explore answers to the fourth question, that is, can begin to explore the 
physical mechanisms that exhibit the properties revealed in the linguist’s 
abstract theory. In the absence of answers to the first three questions, brain 
scientists do not know what they are searching for (Chomsky, 1988, p. 6). 

Chomsky distinguishes three levels of analysis in linguistic inquiry: 
observation, description, and explanation; these are the tasks for linguistics 
(Chomsky, 1988, p. 60-62). Explanation is via the formulation of Universal 
Grammar, which is viewed as providing a genuine explanation of the phe- 
nomena (Chomsky, 1988, p. 62). Universal Grammar reveals the principles 
of the mind (Chomsky, 1988, p, 91), and thus constitutes the abstract 
theory that is needed to guide the search for actual brain mechanisms. 

This view can be stated more generally as the claim that the abstract for- 
mulations of linguistic theory are the appropriate framework within which 
to organize the search for the lower-level processing mechanisms of 
language. Our aim in this paper is to draw attention to the fact that this is an 
assumption, and one with important consequences. To the extent that this 
claim is true, it suggests that formulation of accounts of language process- 
ing, as well as the search for the neural substrates of language, should be 
guided by the constructs of linguistic theory. To the extent that this claim is 
false, the use of linguistic constructs as the basis for processing accounts 
and neural investigation may be misguided, and misleading. 

Our goal, then, is to examine whether it is necessarily true that the con- 
structs of linguistic theory play a valuable role in formulation of accounts 
of lower-level processing. In this paper, we will develop &pseudo-linguistic 
theory’ for the domain of linguistic stress, based on observation of the 
learning behavior of a perceptron exposed to a variety of stress patterns. We 
will then compare this theory with metricalphonology, the actual linguistic 
theory of stress, showing how our theory exhibits many of the kinds of 
regularities and predictions of metrical theory. Thus, our theory will be 
analogous, in important ways, to metrical theory. It predicts, for example, 
that certain stress systems will be unlearnable. We will then analyze the 
behavior of the underlying perceptron model in terms of its actual process- 
ing. This will show that our theoretical predictions of non-learnability bear 
no relation to the low-level, causal explanation we develop as part of the 
processing account. 

’ We call our theory pseudo-linguistic only because it is based on data generated by the 
perceptron rather than humans. 
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In short, we will demonstrate that a lower-level account may not be iso- 
morphic (or even similar) to a higher-level account, and that under these cir- 
cumstances, the higher-level account may provide little insight into the 
underlying phenomena. Furthermore, since the nature and the mode of 
development of our higher-level account are closely analogous to the nature 
and development of bodies of linguistic theory, this constitutes a strong 
argument against assuming that the high-level accounts of linguistic theory 
will necessarily illuminate lower-level processing mechanisms, and against 
assuming that linguistic theory is the appropriate conceptual framework 
within which to organize the search for these mechanisms. Such arguments 
have of course been made before (Pylyshyn, 1973; Rumelhart 8c McClelland, 
1987; Smolensky, 1988). However, the present work substantiates the argu- 
ment with a concrete demonstration of how an analytical framework that 
bears a close resemblance to linguistic theory can fail to have an analogue in 
the underlying processing mechanisms. 

The organization of the paper is as follows. The first section provides 
some background information about the domain of linguistic stress, while 
the second section describes our perceptron simulations of stress learning. 
The third section develops our pseudo-linguistic theory, and discusses corre- 
spondences between aspects of the perceptron simulations, our theory, and 
metrical theory. In the fourth section, we show that our theory in reality 
offers only an abstract account that is unrelated to low-level processing 
characteristics. Having shown that a high-level account need not illuminate 
underlying processing, we turn in the fifth section to a consideration of 
some other reasons why the analyses of metrical theory might not be appro- 
priate primitives for a processing model. In view of all this, we conclude 
that the Chomskyan assumption that linguistic theory should guide investi- 
gation of processing mechanisms may be unwarranted. 

1. BACKGROUND: STRESS SYSTEMS IN LANGUAGE 

1.1. Motivation for Choice of Domain 
In order to examine a subsystem of linguistic theory in terms of its implica- 
tions for lower-level processing, a prerequisite is, of course, that the theory 
be clearly specified. According to Dresher and Kaye (1990), stress systems 
are an attractive domain for investigation because: (a) the linguistic theory 
is well-developed, so that compared with syntax, there is a relatively com- 
plete description of the observed phenomena, and (b) stress systems can be 
studied relatively independently of other aspects of language (Dresher & 
Kaye, 1990, p. 138). We therefore chose to construct our pseudo-linguistic 
theory with respect to linguistic stress, since it is regarded as a well-defined 
domain for which theoretical analyses provide good coverage. 
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1.2. Evolution of the Linguistic Theory 
The analysis of stress has evolved through a number of phases: 
1. 

2. 

3. 

4. 

5. 

Linear analyses presented stress as a phonemic feature of individual 
vowels, with different levels of stress representing different levels of ab- 
solute prominence. This approach was taken in Trager & Smith (1951), 
and culminated in Chomsky and Halle’s seminal The Sound Pattern of 
English (1968). 
Metrical theory, as developed by Liberman & Prince (Liberman, 1975; 
Liberman & Prince, 1977), introduced both a non-linear analysis of 
stress patterns (in terms of metrical trees), and the treatment of stress as 
a relative property rather than an absolute one; however, the stress 
feature was retained in the analysis. 
In subsequent developments (Prince, 1976; Selkirk, 1980), reliance on 
this feature was eliminated by incorporation of the idea that subtrees of 
metrical trees had an independent status (metrical feet), so that stress 
assignment rules could make reference to them. 
The positing of internal structure for syllables (McCarthy, 1979a; 
McCarthy, 1979b; Vergnaud & Halle, 1978) provided a means of dis- 
tinguishing light and heavy syllables, a distinction to which stress patterns 
are widely sensitive, but which had been problematic under previous 
analyses. 
An analysis of metrical tree geometries (Hayes, 1980) provided an ac- 
count of many aspects of stress systems in terms of a small number of 
parameters. 

Through the development of metrical theory, there has been debate over 
whether the autosegmental representations for stress are metrical trees only 
(Hayes, 1980), metrical grids only (Prince, 1983; Selkirk, 1984), or some 
combination of the two (Halle & Vergnaud, 1987a; Halle & Vergnaud, 
1987b; Hayes, 1984a; Hayes, 1984b; Liberman: 1975; Liberman & Prince, 
1977). 

1.3. Syllable Structure 
A syllable is analyzed as being comprised of an onset, which contains the 
material before the vowel, and a rime. The rime is comprised of a nucleus, 
which contains the vocalic material, and a coda, which contains any remain- 
ing (non-vocalic) material. For further discussion, see Kaye (1989, pp. 
54-58). 

A syllable may be open (it ends in a vowel); or closed (it ends in a conso- 
nant). In terms of syllable structure, an open syllable has a non-branching 
rime (the rime has a nucleus, but not a coda), and a closed syllable has a 
branching rime (the rime has both a nucleus and a coda). 
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In many languages, stress tends to be placed on certain kinds of syllables 
rather than on others; the former are termed heavy syllables, and the latter 
light syllables. What counts as a heavy or a light syllable may differ across 
languages in which such a distinction is present, but, most commonly, a 
heavy syllable is one that can be characterized as having a branching rime, 
and a light syllable can be characterized as having a non-branching rime 
(Goldsmith, 1990, p. 113). Languages that involve such a distinction (between 
heavy and light syllables, i.e., between the weights of syllables) are termed 
quantity-sensitive, and languages that do not, quantity-insensitive. Note 
that in quantity-insensitive languages syllables can occur both with and 
without branching rimes, but the distinction between these kinds of 
syllables has no relevance for the placement of stress. 

1.4. Metrical Phonology 
There seems to be theoretical agreement that stress patterns are sensitive to 
information about syllable structure, and in particular, to the structure of 
the syllable rime, and not the syllable onset. We follow this assumptior?. 
Thus rime structure is taken to be the basic level at which accounts of stress 
systems, are formulated. (For an overview of metrical theory, see Goldsmith 
(1990, Chapter 4), Kaye (1989, pp. 139-145), van der Hulst & Smith (1982), 
or Dresher & Kaye (1990, pp. l-8)). Stress patterns are controlled by 
metrical structures built on top of rime structures. The version of metrical 
structure adopted here is metrical feet. We assume the parameters for- 
mulated by Dresher and Kaye (1990, p. 142): 

W) The word-tree is strong on the [Left/Right] 
WI Feet are [Binary/Unbounded] 
(P3) Feet are built from the [Left/Right] 
(P4) Feet are strong on the [Left/Right] 
(P5) Feet are Quantity-Sensitive (QS) [Yes/No] 
0’6) Feet are QS to the [Rime/Nucleus] 
0?7) A strong branch of a foot must itself branch [No/Yes] 
WV There is an extrametrical syllable [Yes/No] 
(P9) It is extrametrical on the [Left/Right] 
(Pw A weak foot is defooted in clash [No/Yes] 
Wl) Feet are non-iterative [No/Yes] 

As an example of the application of these parameters, consider the stress 
pattern of Maranungku, in which primary stress falls on the first syllable of 
the word and secondary stress on alternate succeeding syllables. Figure 1 

‘See, for example, Dresher & Kaye (1990, p. 141) or Goldsmith (1990, p. 170). Note, 
however, that some researchers have presented evidence that onsets may in fact be relevant to 
the placement of stress (Davis, 1988; Everett & Everett, 1984). 
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Word-tree 

Flgure 1. Metrlcal structures for a six-syllable word In Moranungku. 

shows an abstract representation of a six-syllable word, with each syllable 
represented as u. The assignment of stress is characterized as follows. 
Binary, quantity-insensitive, left-dominant feet are constructed iteratively 
from the left edge of the word. Each foot has a “strong” and a “weak” 
branch (labeled “S” and “W,” respectively, in the figure). The strong, or 
dominant branch assigns stress to the syllable it dominates. Since the feet 
are left-dominant, odd-numbered syllables are assigned stress. Over the 
roots of these metricalfeet, a left-dominant word-tree is constructed, which 
assigns stress to the structure dominated by its leftmost branch. The third 
and fifth syllables are each dominated by the dominant branch of one 
metrical structure (a foot), while the first syllable is dominated by the domi- 
nant branches of two structures (a foot, and the word-tree). Even-numbered 
syllables are dominated only by nondominant branches of feet. The result is 
that even-numbered syllables receive no stress; the third and fifth syllables 
receive one degree of stress (secondary stress); and the first syllable receives 
two degrees of stress (primary stress.) The parameter settings characterizing 
Maranungku are [Pl Left], [PZ Binary], [P3 Left], [P4 Left], [PS No], [P7 
No], [P8 No], [PlO No], [Pll No]. Parameters P6 and P9 do not apply 
because of the settings of parameters P5 and P8, respectively. 

1.5 Principles and Parameters 
Metrical theory illustrates the principles and parameters approach to lan- 
guage, one of whose central hypotheses is that language learning proceeds 
through the discovery of appropriate parameter settings. Every possible 
human language can be characterized in terms of parameter settings; once 
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these settings are determined, the nature of structure-sensitive operations 
and the structures on which they operate is known, so that the details of lan- 
guage processing are automatically determined (at an abstract level). Subse- 
quently, the assignment of stress in the actual production or processing of 
language is assumed to involve neural processes that correspond quite 
directly with the abstract process of application of these parameter settings 
as guidelines to the construction and manipulation of metrical feet. 

1.6. Previous Computational Models of Stress Learning 
Computational models of stress systems in language have been developed 
by Dresher & Kaye (1990) and by Nyberg (1990, 1992). The focus of these 
models is on the learning of the parameters specified by metrical theory; 
they therefore take as a starting point the constructs of that theory, and in- 
corporate its assumptions. What they add to the linguistic theory is what 
Dresher 8~ Kaye term a learning theory: a specification of how the data the 
language learner encounters in its environment are to be used to set 
parameters. The following features characterize these models: 

1. 

2. 

3. 

4. 

They assume the existence of processes explicitly corresponding to the 
linguistic notion of parameter setting. 
They propose a learning theory as an account of that parameter-setting 
process. 
They assume that the process of production (i.e., of producing appropri- 
ate stress contours for input words after learning has occurred) involves 
explicit .representational structures and structure-sensitive operations 
directly corresponding to metrical-theoretic trees and operations on 
those trees. 
They assume no necessary relationship between the processing mecha- 
nisms involved in learning vs. those involved in production. That is, 
learning is accomplished by supplying values for the parameters defined 
by metrical theory; these values then form a knowledge base for stress 
assignment, whose processing involves, for example, the construction 
of binary trees from right to left-an operation having no necessary cor- 
respondence with those by which the parameter values were acquired. 

The above models exemplify the assumption we are interested in examin- 
ing in the present work: that abstract linguistic formulations are the appro- 
priate starting point for processing models. 

Processing in the perceptron will differ from the Dresher & Kaye and 
Nyberg models with regard to the above noted characteristics: 

1. There is no explicit incorporation of parameters in the perceptron 
model. 
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2. The learning theory employed consists of one of the general learning 
algorithms common in connection& modeling, and is not an account 
of parameter-setting. 

3. The process of production does not involve explicitly structured repre- 
sentations in the classical sense. 

4. The processing mechanisms and structures involved in production are 
essentially the same as those involved in learning. 

Thus, to the extent that we are successful in contructing an abstract, 
pseudo-linguistic theory that predicts behavior of the perceptron model, it 
will not be merely by virtue of having “built in” the constructs of metrical 
theory to begin with. 

2. OVERVIEW OF MODEL AND SIMUL.ATIONS 

2.1. Nineteen Stress Systems 
Nine quantity-insensitive (QI) languages and ten quantity-sensitive (QS) 
languages were examined in our experiments. The data, summarized in 
Table 1, were taken primarily from Hayes (1980). Note that the QI stress 
patterns of Latvian and French, Maranungku and Weri, Lakota and Polish, 
and Paiute and Warao are mirror images of each other. The QS stress pat- 
terns of Malayalam and Yapese, Ossetic and Rotuman, Eastern Permyak 
Komi and Eastern Cheremis, and Khalka Mongolian and Aguacatec Mayan 
are also mirror images). 

2.2. Structure of the Model 
In separate experiments, we taught a perceptron to produce the stress pat- 
tern of each of the nineteen languages. The domain was limited to single 
words, as in the previous learning models of metrical phonology developed 
by Dresher and Kaye (1990) and Nyberg (1990). Again as in the other 
models, the effects of morpho-syntactic information such as lexical cate- 
gory were ignored, and the simplifying assumption was made that the only 
relevant information about syllables was their weight. 

Two input representations were used. In the syllabic representation, used 
for QI patterns only, a syllable was represented as a [l, l] vector, and [0, 0] 
represented no syllable. In the weight-string representation, which was 
necessary for QS languages, the input patterns used were [l, O] for a light 
syllable, [0, l] for a heavy syllable, and [0, O] for no syllable. For stress 
systems, with up to two levels of stress, the output targets used in training 
were 1.0 for primary stress, 0.5 for secondary stress, and 0 for no stress. For 

’ Descriptions somewhat more complex than ours have been reported for Polish (Halle & 
Vergnaud, 1987a, pp. 57-58) and Malayalam (Hayes, 1980, pp. 66, 109). However, this does 
not detract from our discussion in any way, as stress systems corresponding to our simplifica- 
tions are reported to exist: Swahili (Halle & Clements, 1983, p. 17) and Gurkhali (Hayes, 1980, 
p. 66), corresponding to Polish and Malay&m, respectively. 
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I I OUTPUT UNIT 
J (PERCEPTRON) 

-6 -5 -4 -3 -2 -1 0 +l t2 t3 t4 t5 t6 

INPUT LAYER (2 x 13 units) 

Figure 2. Perceptron model used in simulotlons. 

stress systems with three levels of stress, the output targets were 1.0 for 
primary stress, 0.6 for secondary, 0.35 for tertiary, and 0 for no stress. The 
input data set for all stress systems consisted of all word-forms of up to 
seven syllables. With the syllabic input representation there are seven of 
these, and with the weight-string input representation, there are 254 distinct 
patterns.’ The perceptron’s input array was a buffer of 13 syllables; each 
word was processed one syllable at a time by sliding it through the buffer (see 
Figure 2). The desired output at each step was the stress level of the middle 
syllable of the buffer. Connection weights were adjusted at each step using 
the back-propagation learning algorithm.* (Rumelhart, Hinton, & Williams, 

’ In practice, we used weight string training sets in which there were an equal number of in- 
put patterns of each length. Thus, there was one instance of each of the 128 (=2’) seven- 
syllable patterns, and 64 instances of each of the two monosyllablic patterns. This length 
balancing was necessary for certain languages for successful traning. We do not know how well 
it agrees with the actual frequency of forms in these languages, though as a general rule high- 
frequency forms are probably shorter. 

’ Note that although the architecture of the model is two-layered, with a single output unit, 
as in a simple perceptron, we used the back-propagation algorithm (BP) rather than the 
Widrow-Hoff algorithm (WH); (Widrow & Hoff, 1960). BP adds to WH the scaling of the 
error for each output unit by a function (the derivative) of the activation of that output unit, 
and thus performs a more sensitive and example-tuned weight adjustment than WH. Note that 
BP and WH algorithms for two layers are guaranteed by the perceptron convergence procedure 
to be equivalent in terms of learning capabilities, for binary-valued outpu&. However, outputs 
in the present simulations are not always binary; they sometimes take on intermediate values. 
As a result, the different computation of the error term in BP turned out to provide better 
learning than WH. 
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1986). One epoch consisted of one presentation of the entire training set. 
The network was trained for as many epochs as necessary to ensure that the 
stress value produced by the perceptron was within 0.1 of the target value, 
for each syllable of the word, for all words in the training set. A learning 
rate of 0.05 and momentum of 0.90 were used in all simulations. Initial 
weights were uniformly distributed random values in the range of f 0.5. Each 
simulation was run at least three times, and the learning times averaged. 

2.3. Training the Perceptron 
To enable precise description, let the input buffer be regarded as a 2 X 13 
array as shown in Figure 2. Let the 7th, that is, center, column be numbered 
0, let the columns to the left of the center be numbered negatively - 1 
through -6 going outwards from the center, and the columns to the right 
of the center be numbered positively + 1 through + 6, going outwards from 
the center. 

As an example of processing, suppose that the next word in the training 
set for some quantity-insensitive language is the four-syllable pattern [S S S 
S’, and the associated stress contour (i.e., target), is [O 0 0 11, indicating that 
the final syllable receives stress, and all other syllables are unstressed6. The 
first syllable enters the rightmost element of the input buffer (element + 6). 
This is the first “time step” of processing. At the next time step, the first 
syllable (in the rightmost input buffer position, that is, element +6) is 
shifted left to buffer element + 5, and the second syllable enters the input 
buffer in element +6. 

After two further time steps, elements + 3, + 4, + 5, and + 6 of the input 
buffer contain the four syllables of the current word. At the next two time 
steps, the leftward flow of syllables through the input buffer continues, un- 
til at time step 6, the word’s four syllables are in elements + 1 through +4. 
At time step 7, the first syllable moves into element 0 of the input buffer, 
and the four syllables of the word occupy elements 0 through + 3 of the buf- 
fer. At this time step, training of the network occurs for the first time: the 
perceptron is trained to associate the pattern in its input buffer (the four 
syllables of the word, in buffer elements 0 through +3) with the target 
stress level for the syllable currently in buffer element 0. At the next time 
step, the syllables of the word are shifted left again, and occupy buffer 
elements - 1 through +2. The network is trained to associate this pattern 
with the target stress level for the second syllable, which is now in element 0. 
Similarly, at the next two time steps, the perceptron is trained to produce 
the stress levels appropriate for the third and fourth syllables of the word, 
as they come to occupy element 0 of the input buffer. 

6 To simplify discussion here, each syllable is represented as an “S” token, rather than as 
an “H” or ‘IL”. For quantity-insensitive systems, this information suffices to determine place- 
ment of stress. 
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At this point, the buffer is flushed (all elements are set to zero), and one 
“trial” is over. The next word in the training set can now enter, beginning 
the next trial. 

Thus, the processing of one word, syllable by syllable, constitutes one 
trial. One pass through all the words in the training set constitutes an epoch. 

It should be noted that sequential processing of syllables is not a neces- 
sary part of this model. Exactly the same effect can be obtained by a parallel 
scheme of 13 perceptron-like units whose weight vectors are tied together by 
weight-sharing (Hertz, Krogh, & Palmer, 1991, p. 140). All 13 units would 
learn in unison, and words could be processed in one parallel step. 

3. PERCEPTRON STRESS LEARNING: 
A PSEUDO-LINGUISTIC ACCOUNT 

In this section, we analyze the characteristics of the various stress patterns 
to which the perceptron is exposed, and relate them to the perceptron’s 
learning behavior, with a view to developing a pseudo-linguistic theory. In 
the same way that metrical phonology attempts to provide an account of 
linguistic stress in humans, our pseudo-linguistic theory will attempt to pro- 
vide an account of the learning of stress in a perceptron. 

We first present an analysis of factors affecting learnability for the QI 
stress systems. We develop an analytic scheme that enables us both to char- 
acterize the patterns and to predict the ease or difficulty of their learning. 
We then include QS systems and show that one analytical framework can 
take into account both QI and QS systems. This overall framework con- 
stitutes our pseudo-linguistic theory. 

3.1. Learnability of QI Systems 
We begin by noting that learning times’ differ considerably for (Latvian, 
French}, {Maranungku, Weri}, {Lakota, Polish} and Garawa, as shown in 
the last column of Table 2. Moreover, Paiute and Warao were unlearnable 
with this model*. 

’ These are learning times with the syllubic input representation. 
* A case could perhaps be made that monosyllables are special (Elan Dresher, personal 

communication, March 16, 1992), so that it might be plausible to assume that there are no 
stressed monosyllables in the data. We investigated this possibility in two ways. First, if mono- 
syllables are treated as receiving no stress, then the stress patterns of Paiute and Warao become 
learnable within the current architecture: It takes 45 epochs for the network to learn the stress 
pattern of Paiute, and 36 epochs for Warao. Second, if monosyllables are removed from the 
data set, the learning times are 44 epochs for Paiute, and 46 epochs for Warao. Note also that 
both stress patterns were learnable, even with the stressed monosyllables, using either a two- 
layer architecture with two output units (targets were [0, O] for no stress, [l, 0] for secondary 
stress, and [1, l] for primary stress), or a three-layer architecture. We present the finding of 
nonlearnability within the present model in order to maintain a consistency of analysis in one 
model, and since the two-layer model with a single output unit facilitates analysis of connec- 
tion weights and their contribution to processing. 
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TABLE 2 
Prellminory Analysis of Learning Times for QI Stress Systems 

IPS SCA Ah Mt's MSL QI LANGUAGES &F EPCXHS 

(syllabic) 

00 00 0 Latvian Ll 17 

French L2 16 

00 10 1 Maranungku L3 37 

Weri L4 34 

01 10 1 Garawa L5 165 

10 00 0 Lakota L6 255 

Polish L7 254 

10 10 1 Paiute L8 ** 

Warao L9 ** 

Note. These learning times were obtained using the syllabic input representation. 
IPS = Inconsistent Prlmory Stress; SCA = Stress Clash Avoidance; Alt = Alternotion; 
MPS = Multiple Primary Stresses: ML = Multiple Stress Levels. Symbols Ll-L9 refer to 
Table 1. 

Examination of the inherent features of these stress patterns suggests 
various factors as being relevant to learning: 

Alternation of stresses (as opposed to a single stress) is suggested by the 
difference between learning times for {Latvian, French} and {Maranungku, 
Weri}, which also suggest that the number ofstress levels may be relevant. 

Recall from Table 1 that, in.Garawa, primary stress is placed on the first 
syllable, secondary stress on the penultimate syllable, and tertiary stress on 
alternate syllables preceding the penultimate, but that no stress appears on 
the second syllable. The primary, secondary, and tertiary stress patterns 
potentially lead to stress appearing on both the first and the second syllables; 
however, this is avoided (stress is never placed on the second syllable). This 
exemplifies the tendency in human languages to avoid the appearance of 
stress on adjacent syllables. The greater learning time for Garawa suggests 
that such stress clash avoidance is computationally expensive. 

Iq languages such as Latvian, French, Maranungku, Weri, and Garawa, 
prinia@ stress is always on a syllable at the edge of the word. In Lakota and 
Polish, for which learning times are substantially greater than those of the 
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other languages, primary stress is always at a non-edge syllable, except in 
mono- and d&syllables. (Paiute and Warao are identical with respect to the 
placement of primary stress to Lakota and Polish, respectively, but are 
unlearnable). Thus, placement of primary stress seems computationally 
relevant. In particular, it appears more difficult to learn patterns in which 
primary stress is assigned at the edges inconsistently. 

To test these assumptions, and to determine what features of Paiute and 
Warao led to their nonlearnability, we constructed hypothetical stress pat- 
terns that exhibit more combinations of the above features than may actually 
exist. These stress patterns are described in Table 3. We trained networks 
on these variations in order to evaluate the effects of the various features. 

The following factors emerged as determinants of learnability for the 
range of QI patterns considered: 

gr) 

On 

(In) 

(IV) 

09 

Inconsistent Primary Stress (IPS): it is computationally expensive to 
learn the pattern if neither edge receives primary stress except in 
mono- and d&syllables; this can be regarded as an index of computa- 
tional complexity that takes the values (0, 1): 1 if an edge receives 
primary stress inconsistently, and 0, otherwise. 
Stress class avoidake @CA): if the components of a stress pattern 
can potentially lead to stress clash, then the language may either 
actually permit such stress clash, or it may avoid it. This index takes 
the values (0, 1): 0 if stress clash is permitted, and 1 if stress clash 
is avoided. 
Alternation (Alt): an index of learnability with value 0 if there is no 
alternation, and value 1 if there is. Alternation means a pattern of 
some kind that repeats on alternate syllables. 
Multiple Primary Stresses (MI’S): has value 0 if there is exactly one 
primary stress, and value 1 if there is more than one primary stress. It 
has been assumed that a repeating pattern of primary stresses will be 
on alternate, rather than adjacent syllables. Thus, [Alternation = 0] 
implies [MPS = 01. The hypothetical stress patterns examined include 
some with more than one primary stress; however, as far as is known, 
no actually occurring QI stress pattern has more than one primary 
stress. 
Multiple Stress Levels (MSL): has value 0 if there is a single level of 
stress (primary stress only), and value 1 otherwise. 

It is possible to order these factors with respect to each other to form a 
five-digit binary string characterizing the ease/difficulty of learning. That 
is, the computational complexity of learning a stress pattern can be charac- 
terized as a S-bit binary number whose bits represent the five factors above, 
in decreasing order of significance. Table 2 shows that this characterization 
captures the learning times of the QI patterns quite accurately. As an example 



TA
BL

E 
3 

De
sc

rip
tio

ns
 

of
 

Hy
po

th
et

ica
l 

QI
 

St
re

ss
 

Pa
tte

rn
s 

Re
f 

La
ng

ua
ge

 
De

sc
rip

tio
n 

of
 

St
re

ss
 

Pa
tte

rn
 

hl
 

h2
 

h3
 

h4
 

h5
 

h6
 

h7
 

h8
 

h9
 

hl
0 

hl
l 

h1
2 

h1
3 

h1
.t 

h1
5 

h1
6 

h1
7 

h1
8 

h1
9 

h2
0 

h2
1 

h2
2 

h2
3 

h2
.t 

h2
S 

h2
6 

h2
7 

h2
8 

h2
9 

h3
0 

La
tvi

an
lst

re
ss

 
La

tvi
an

ds
tre

ss
 

Fr
en

ch
Bt

re
ss

 
Fr

en
cM

str
es

s 
La

fv
ia

nZ
ed

ge
 

La
tvi

an
Pe

dg
e2

str
es

s 
M

or
on

un
gk

u3
str

es
s 

W
er

its
tre

ss
 

La
tvi

an
2e

dg
e2

sfr
es

s-
alf

 
Go

ra
wa

-S
C 

Ga
ra

wo
Ss

tre
ss

-S
C 

M
or

an
un

gk
uls

tre
ss

 
W

er
ils

tre
ss

 
La

fv
io

nP
ed

ge
-o

h 
Ga

ra
wa

lst
re

ss
-S

C 
La

tvi
on

Ze
dg

eZ
str

es
s-

lol
t 

Go
ra

wa
-n

on
-o

lt 
Lo

tv
io

n3
st

re
ss

2e
dg

eS
CA

 
Lo

tv
io

n2
ed

ge
-S

CA
 

Lo
tv

io
n2

ed
ge

2s
tre

ss
-S

CA
 

Ga
ra

wa
2s

fre
ss

 
.L

at
vio

n2
ed

ge
2s

tre
ss

-e
lf-

SC
A 

Ga
ra

wo
lst

re
ss

 
La

tv
io

nl
ed

ge
-a

lt-
SC

A 
Lo

tv
io

n2
ed

ge
2s

tre
ss

-lo
lt-

SC
A 

Lo
ko

to
Ps

tre
ss

 
La

ko
ta

2e
dg

e 
La

ko
ta

2e
dg

e2
str

es
s 

La
ko

ta
-o

lt 
La

ko
ta

lst
re

ss
-o

lt 

M
ai

n 
str

es
s 

on
 

fir
st 

sy
lla

bl
e,

 
se

co
nd

ar
y 

on
 

se
co

nd
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
se

co
nd

ar
y 

on
 

se
co

nd
, 

te
rti

ar
y 

on
 

th
ird

 
sy

llo
bl

e 
M

ai
n 

str
es

s 
on

 
fin

al
, 

se
co

nd
ar

y 
on

 
an

te
pe

nu
lf 

M
ai

n 
str

es
s 

on
 

fin
al

, 
se

co
nd

ar
y 

on
 

pe
nu

lt,
 

te
rti

ar
y 

on
 

an
te

pe
nu

lt 
M

ai
n 

str
es

s 
on

 
fir

st 
an

d 
la

st
 

sy
llo

bl
es

 
M

ai
n 

str
es

s 
on

 
fir

st 
an

d 
lo

st
, 

se
co

nd
ar

y 
on

 
an

te
pe

nu
lt 

M
ai

n 
str

es
s 

on
 

fir
st,

 
se

co
nd

ar
y 

on
 

pe
nu

lt,
 

al
te

rn
at

e 
pr

ec
ed

in
g 

te
rti

ar
y 

an
d 

se
co

nd
ar

y 
str

es
se

s 
M

ai
n 

str
es

s 
on

 
lo

st
, 

se
co

nd
ar

y 
on

 
on

te
pe

nu
lt,

 
al

te
rn

at
e 

pr
ec

ed
in

g 
te

rfi
ar

yo
nd

 
se

co
nd

ar
y 

str
es

s 
M

ai
n 

str
es

s 
on

 
fir

st,
 

se
co

nd
ar

y 
on

 
pe

nu
lf 

an
d 

al
te

rn
at

e 
pr

ec
ed

in
g 

sy
lla

bl
es

 
M

ai
n 

str
es

s 
on

 
fir

st,
 

se
co

nd
ar

y 
on

 
pe

nu
lt,

 
te

rti
or

y 
on

 
al

te
rn

at
e 

pr
ec

ed
in

g 
sy

lla
bl

es
 

M
oi

n 
str

es
s 

on
 

fir
st,

 
se

co
nd

ar
y 

on
 

pe
nu

lt 
an

d 
al

te
rn

at
e 

pr
ec

ed
in

g 
sy

lla
bl

es
 

M
ai

n 
str

es
s 

on
 

fir
st 

an
d 

al
te

rn
at

e 
su

cc
ee

din
g 

sy
lla

bl
es

 
M

ai
n 

str
es

s 
on

 
la

st
 

an
d 

ol
te

rn
at

e 
pr

ec
ed

in
g 

sy
lla

bl
es

 
M

ai
n 

str
es

s 
on

 
fir

st 
an

d 
la

st
 

an
d 

al
te

rn
ot

e 
pr

ec
ed

in
g 

sy
lla

bl
es

 
M

ai
n 

str
es

s 
on

 
fir

st,
 

an
d 

pe
nu

lt 
an

d 
al

te
rn

at
e 

pr
ec

ed
in

g 
sy

lla
bl

es
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
an

d 
an

te
pe

nu
lt 

an
d-

al
te

rn
at

e 
pr

ec
ed

in
g 

sy
lla

bl
es

, 
se

&d
or

y 
on

 
fin

al
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
se

co
nd

ar
y 

on
 

pe
nu

lt,
 

te
rti

ar
y 

on
 

an
te

-a
nt

ep
en

ul
t, 

no
 

str
es

s 
on

 
se

co
nd

 
M

ai
n 

str
es

s 
on

 
fir

st,
 

se
co

nd
ar

y 
on

 
la

st
, 

te
rti

ar
y 

on
 

an
te

pe
nu

lt,
 

no
 

str
es

s 
on

 
se

co
nd

 
M

ai
n 

str
es

s 
on

 
fir

st 
an

d 
lo

st
 

bu
t 

no
 

str
es

s 
on

 
se

co
nd

 
M

oi
n 

str
es

s 
on

 
fir

st 
an

d 
la

st
, 

se
co

nd
ar

y 
on

 
an

te
pe

nu
lt,

 
no

 
str

es
s 

on
 

se
co

nd
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
se

co
nd

ar
y 

on
 

pe
nu

lt 
an

d 
al

te
rn

at
e 

pr
ec

ed
in

g 
sy

lla
bl

es
, 

no
 

str
es

s 
on

 
se

co
nd

 
M

ai
n 

str
es

s 
on

 
fir

st,
 

se
co

nd
ar

y 
on

 
la

st
 

an
d 

al
te

rn
ot

e 
pr

ec
ed

in
g 

sy
lla

bl
es

, 
no

 
str

es
s 

on
 

se
co

nd
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
an

d 
pe

nu
lt 

an
d 

al
te

rn
at

e 
pr

ec
ed

in
g 

sy
lla

bl
es

, 
bu

t 
no

 
str

es
s 

on
 

se
co

nd
 

M
ai

n 
str

es
s 

on
 

fir
st,

 
on

d 
lo

st
 

an
d 

al
te

rn
at

e 
pr

ec
ed

in
g 

sy
llo

bl
es

, 
no

 
str

es
s 

on
 

se
co

nd
 

M
oi

n 
str

es
s 

on
 

fir
st,

 
an

d 
an

te
pe

nu
lt 

an
d 

ol
t 

pr
ec

ed
in

g 
sy

lla
bl

es
, 

se
co

nd
ar

y 
on

 
la

st
, 

bu
t 

no
 

str
es

s 
on

 
se

co
nd

 
M

ai
n 

str
es

s 
on

 
se

co
nd

, 
se

co
nd

ar
y 

on
 

pe
nu

lt 
M

ai
n 

str
es

s 
on

 
se

co
nd

 
an

d 
pe

nu
lt 

sy
lla

bl
es

 
M

ai
n 

str
es

s 
on

 
se

co
nd

 
an

d 
pe

nu
lt,

 
se

co
nd

ar
y 

on
 

fo
ur

th
 

sy
lla

bl
e 

M
ai

n 
str

es
s 

on
 

se
co

nd
 

an
d 

al
te

rn
at

e 
su

cc
ee

din
g 

sy
lla

bl
es

, 
bu

t 
no

t 
on

 
la

st
 

M
ai

n 
str

es
s 

on
 

se
co

nd
 

an
d 

pe
nu

lt,
 

se
co

nd
ar

y 
on

 
fo

ur
th

 
an

d 
al

te
rn

at
e 

su
ce

ed
in

g 
sy

lla
bl

es
 



CONNECTIONIST MODELS AND LINGUISTIC THEORY 17 

of how to read Table 2, note that Garawa takes longer to learn than Latvian 
(165 vs. 17 epochs). This is reflected in the parameter setting for Garawa, 
“OllOl”, being lexicographically greater than that for Latvian, “OOOOO”. 

The analysis of learnability is summarized in Table 4 for all the QI stress 
patterns, both actual and hypothetical. It can be seen that the 5-bit charac- 
terization fits the learning times of various actual and hypothetical patterns 
reasonably well; there are, however, exceptions, indicating that this 5-bit 
characterization is only a heuristic. For example, the hypothetical stress pat- 
terns with reference numbers h21 through h25 have a higher 5-bit character- 
ization than some other stress patterns, but lower learning times. 

The effect of stress clash avoidance is seen in consistent learning time differentials 
between stress patterns of complexity less than or greater than binary “1000”. Learning 
times with complexity “0001” are in the range 10 to 25 epochs, while complexity “1001” 
patterns are of the order of 170 epochs; complexity “0010” is of the order of 30 epochs, and 
“lOlO”, 190 epochs, for patterns the only difference between which is the absence/ 
presence of stress clash avoidance (Latvian2edge and Latvian2edgeSCA, references h5 
and h19 respectively). A pattern with complexity “0011” (Latvian2edge2stress reference 
h6) has a learning time of 37 epochs, while a pattern differing only in the addition of SCA 
(Latvlan2edge2stressSCA, reference h20) takes 206 epochs. Complexity “0101” patterns 
are in the range 30 to 60 epochs, while complexity “1101” patterns are in the range 70 to 
170 epochs; in particular, while Garawa (reference L5) has a learning time of 165 epochs, 
the same pattern without SCA has a learning time of 36 epochs (Garawa-SC, reference 
hl0). A stress pattern of complexity “0111” takes 65 epochs to learn (Latvian2edge2stress- 
lalt, reference hl6), while addition of stress clash avoidance results in a learning time of 
129 epochs (Latvian2edge2stress-1 alt-SCA, reference h25). 

The effect of alternatlon Is seen in a contrast between learning times for patterns of 
complexity “001” (range: 10 to 25 epochs) and “101” (range: 30 to 60 epochs); “010” and 
“110” (30 epochs vs. a range of 60 to 90 epochs); “011” and “111” (37 vs. 65 epochs). 

The effect of multlple primary stresses is seen in the contrast between the stress pat- 
terns: LatvianPstress (reference hl , complexity “OOl”, 21 epochs) and LatvianPedgePstress 
(reference h6, complexity “01 l”, 37 epochs); Latvian2edge2stresealt (reference h9, com- 
plexity “101 ‘I, 56 epochs) and Latvian2edge2strese1 alt (reference h16, complexity “1 11 “, 
65 epochs). 

The effect of lnconslstent primary stress is considerable: stress patterns with the most 
significant bit 1 are learnable in the perceptron model only if all the other bits are 0; such 
patterns (Lakota, Polish, references L6, L7, complexity ~“lOOOO”, 255 epochs) have a 
higher learning time than any of the patterns with most significant bit 0. All the examined 
stress patterns of complexity greater than “10000” were unlearnable In the perceptron 
model. Recall that Paiute and Warao were unlearnable; the present framework is consistent 
with that result, since under the present analysis, these two patterns have complexity 
“10101 ‘I. Recall also from footnote 6 that if we assume no stressed monosyllables in Paiute 
and Warao, then these stress patterns become learnable, in approximately 35-45 epochs. 
Under these circumstances, the complexity index of the two stress systems is “00101”. As 
can be seen from Table 2 and Table 4, a learning time of approximately 40 epochs Is com- 
pletely consistent with the learning times obtained for other stress patterns with this index. 
That is, our scheme for indexing complexity is consistent with the results of Paiute and 
Warao, whether or not there are assumed to be stressed monosyllables. 



TABLE 4 
Analysis of Quantity-Insensitive Learning 

Epochs 
IPS SCA Ah MPS MSL Lanauaae Ref (svllablc) 

0 0‘ 0 Latvian Ll 17 
French L2 16 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

Latvlan2stress :: 21 
LatvianJstress 11 
FrenchSstress h3 23 
French3stress h4 14 

LatvianPedge h5 30 

LatvianPedgePstress h6 37 

fmposslble 

Maranungku L3 37 
Weri L4 34 
Paiute (unstressed monosyllables) LB’ 45 
Warao (unstressed monosyllables) L9’ 36 
Maranungkutstress h7 43 
WeriSstress h3 41 
Latvian2edge2stress-alt h9 53 
Garawa-SC hlo 33 
Garawa2stressSC hll 50 

Maranungkulstress h12 61 
Werilstress h13 65 
Latvian2edge-alt h14 70 
Garawal stress-SC h15 33 

1 1 1 Latvian2edae2stress-lalt h16 85 

1 0 0 0 lmpossfble 

1 ’ 0 0 1 Garawa-non-alt h17 164 
Lotvian3stress2edaeSCA hl3 163 

0 1 0 

0 1 1 

1 0 1 

1 1 0 

1 1 1 

0 0 0 

0 0 1 
0 1 0 
0 1 1 
1 0 1 

1 1 0 
1 1 1 

Latvian2edgeSCA 

Latvian2edge2stressSCA 

Garawa 
Garawa2stress 
Lotvian2edge2stress-alt-SCA 

Garawalstress 
LatvianZedge-alt-SCA 

Latvian2edge2stress-lalt-SCA 

Lakota 
Polish 
LakotaPstress 
LakotaPedge 
LakotaPedgePstress 
Paiute 
Warao 
Lakota-alt 
Lakotalstress-alt 

h19 194 

h20 206 

:1 165 
71 

h22 91 

h23 121 
h24 126 

h25 129 

L6 255 
254 

1;726 l * 

h27 ** 
h23 ** 
L3 ** 

l * 

:9 ** 
h30 l * 

Note. These learning times were obtained using the syllabic input representation. 
IPS = Inconsistent Primory Stress: SCA = Stress Clash Avoidance; Aft = Alternation; 
MPS = Multiple Primary Stresses: MSL = Multiple Stress Levels. Symbols Ll-L9 refer to 
Table 1, and hl-h30 to Table 3. 

18 
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The impact of multiple stress levels is relatively smaller, and less uniform, both of which 
motivate this factor’s being treated as least significant. Thus, though there are several in- 
stances where a stress pattern with a greater number of stress levels has a higher learning 
time (hl vs. Li; h3 vs L2; h6 vs. h5; h7 vs. L3; h6 vs. L4; h21 vs. L5), there are also cases in 
which a stress pattern with a higher number of stress levels has a lower learning time than 
one with fewer stress levels (h2 vs. hl; h4 vs. h3; hll vs. h15; h21 vs. h23): 

The effect of a particular factor seems to be reduced when a higher-order bit has a non- 
zero value. Thus, the effects of alternation are less clear when there is stress clash 
avoidance: Without SCA, the range of learning times for patterns without alternation Is 10 to 
40 epochs, and with alternation 30 to 90 epochs; but with SCA, the range without alterna- 
tion Is 160 to 210 epochs, and with alternation 70 to 170 epochs. 

In summary, the “complexity measure” suggested here appears to iden- 
tify a number of factors relevant to the learnability of QI stress patterns 
within a minimal connectionist architecture. It also assesses their relative 
impacts. The analysis is undoubtedly a simplification, but it provides a 
framework within which to relate the various learning results. 

3.2. Incorporating QS Systems 
We now turn to a consideration of quantity-sensitive (QS) stress systems. 
For QS patterns, information about syllable weight needs to be included in 
the input representation-the input has to consist of (encoded) sequences of 
“H” and “L” tokens. A purely syllabic input representation is, by defini- 
tion of quantity-sensitivity, inadequate. Weight-string representations were 
therefore adopted, as discussed in Section 2.2. To maintain consistency of 
analysis across QI and QS stress patterns, simulations for the QI languages 
were re-run using the weight-string representation. Note that the stress pat- 
terns for all possible weight strings of length n are the same for a QI 
language. 

Learning times are shown in Table 5 for simulations for all QI and QS 
stress systems. The section on the left shows QI learning times, while the 
section on the right shows QS learning times. Note that in this table, learn- 
ing times for all languages are reported in terms of the weight-string repre- 
sentation rather than the unweighted syllabic representation used for the 
previous QI studies. 

The differences in learning times across QI patterns are less marked than 
the differentials in Table 2. This is the result of the increased training set size 
with the weight-string representation as compared with the syllabic repre- 
sentation. However, learning times are completely consistent with the 
overall learnability analysis developed in the previous section, so that the 
analysis of QI systems is in no way affected. The reader may wish to com- 
pare the learning times for QI systems in Table 5 (weight-string input repre- 
sentations) with those in Table 2 (syllabic input representations). 
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In order to incorporate QS systems, the learnability analysis proposed in 
Section 3.1 on the basis of QI patterns turns out to require some refinement 
(although the analysis of QI systems themselves will remain unchanged; see 
below). Inconsistent Primary Stress (IPS) was previously hypothesized as 
taking binary values; a value of 1 for IPS indicated that primary stress was 
assigned inconsistently at the edge of words; a value of 0 indicated that this 
was not the case. If this measure is modified so that its value indicates the 
proportion of cases in which primary stress is not assigned at the edge of a 
word, the learning results for both QI and QS patterns can be integrated, to 
a large extent, into a unified account. Recall that learning times for QS 
systems are those shown in the right-hand section of Table 5. 

The learning times for Malayalam and Yapese are approximately 20 
epochs, while those for Ossetic and Rotuman are approximately 30 epochs. 
The difference between these pairs of stress patterns is: for Malayalam and 
Yapese, primary stress is placed at the end except when the edge vowel is 
short and the next vowel long (i.e., except 0.25 of the time); for Ossetic and 
Rotuman, primary stress falls at the edge except when the edge vowel is 
short, that is, except in 0.5 of the cases. 

The five factors discussed earlier were: Inconsistent Primary Stress 
(IPS); Stress Clash Avoidance (SCA); Alternation (Ah); Multiple Primary 
Stresses (MPS); and Multiple Stress Levels (MSL). The values of these indices 
respectively, for both Malayalam and Yapese, are [0.25 0 0 1 01, and for 
both Ossetic and Rotuman, [0.5 0 0 1 01. The difference between learning 
times for these pairs of otherwise identical patterns can then be accounted 
for in terms of differing values of the IPS measure. Note that the earlier 
analysis of QI languages remains unchanged: stress patterns that had IPS 
value 0 still do, and those that had IPS value 1 still do as well. 

The learning times of Komi and Cheremis are substantially higher than 
those of Koya, Eskimo, Malayalam, Yapese, Ossetic, and Rotuman. Recall 
the stress pattern of Komi: stress the first heavy syllable, or the last syllable 
if there are no heavy syllables. That is, for Komi, a particular syllable S 
receives primary stress under the following conditions: (1) there are no 
heavy syllables to the left of S in the syllable string; and (2) S is Heavy or S is 
the last syllable. The second clause of the conditional involves single-posi- 
tional information: information either about the syllable S itself (S is Heavy), 
or about the absence/presence of a syllable right-adjacent to S in the 
weight-string. (If there is no syllable to the right of S in the weight-string, 
then S is the last syllable; if there is a syllable right-adjacent to S, then S is 
not the last syllable). The first clause of the conditional, however, involves 
aggregative information: information about alf the syllables to the left of S 
in the weight-string. We see that in assigning stress to syllable strings in 
Komi, one must somehow “scan” the input string to extract this aggrega- 
tive information; similarly for Cheremis. 
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Komi and Cheremis can therefore be analyzed as stress patterns that re- 
quire uggregative information for the determination of stress placement; 
none of the other stress patterns require such information. For example, for 
Koya, a syllable S should receive stress if it is the first syllable (which can be 
determined from information about the presence/absence of a syllable in 
the left-adjacent weight-string position), or if it is heavy, both of which are 
single-positional kinds of information. For Ossetic, a syllable S should be 
stressed if (a) it is the first syllable and it is heavy (which requires single- 
positiona! information about the left-adjacent weight-string position, and 
about S itself); or if (b) it is the second syllable (single-positional information 
about the weight-string element two positions to the left of S) and the syllable 
in the left-adjacent position is light (also single-positional information). 

The difference in learning times between Komi and Cheremis on the one 
hand, and Koya, Eskimo, Malayalam, Yapese, Ossetic and Rotuman, on 
the other, can now be analyzed in terms of differing informational re- 
quirements. Whether or not aggregative information is needed therefore 
seems to be a further factor relevant to the learnability of stress patterns. 

We further need to consider the fact that the patterns of Mongolian and 
Mayan have very much higher learning times than those of any other stress 
patterns, including Komi and Cheremis. Recall the stress pattern of 
Mongolian: stress the first heavy syllable, or the first syllable if there are no 
heavy syllables. Notice how it differs from that of Komi, whose pattern is: 
stress the first heavy syllable, or the last syllable if there are no heavy 
syllables. 

Thus, for Mongolian, if the current syllable S is heavy it should receive 
stress if it is thefirst heavy syllable. If the current syllable S is light, then it 
should receive stress only if (a) there is no syllable to its left in the weight-, 
string (which indicates that it is the first syllable), and (b) there is no heavy 
syllable to its right in the weight-string. That is, for Mongolian, there is 
aggregative information required about heavy syllables both to the left of 
the current syllable and to its right. Information about heavy syllables to the 
left of S is relevant if S is heavy; information about heavy syllables to the 
right is relevant if S is light. This requirement for keeping track of dual 
kinds of aggregative information seems to be what makes the pattern so dif- 
ficult to learn. This contrasts with Komi, for which aggregative information 
is required only about syllables to the left of S. 

A.,parallel analysis can be made for Mayan. For both Mongolian and 
Mayan, then, the very high learning times result from the requirement for 
two kinds of aggregative information, in contrast with only one kind for 
Komi and Cheremis. Acquiring this information requires bidirectional scan- 
ning of the input string for Mongolian and Mayan, as compared with uni- 
directional scanning, as discussed above, for Komi and Cheremis. 
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The results from Komi, Cheremis, Mongolian, and Mayan thus suggest 
an additional factor that is relevant for determination of learnability, but 
that comes into play only in the case of QS pattern: how much scanning is 
required for aggregative information. This can be treated as a sixth index of 
computational complexity that takes on the values (0, 1,2}. We, therefore, 
have the following factor, in addition to the five previously discussed: 
(VI) Aggregative Information (Agg): has value 0 if no aggregative infor- 

mation is required (single-positional information suffices); value 1 if 
unidirectional scanning is required (Komi, Cheremis); and 2 if bi- 
directional scanning is required (Mongolian, Mayan). 

With these modifications (viz., refinement of the IPS measure, and addi- 
tion of the Aggregative measure), the same parameter scheme can be used 
for both the QI and QS language classes, with good learnability predictions 
within each class, as shown in Table 5. 

We note, moreover, that learning times for the QS stress patterns of 
Koya and Eskimo fit right in with the analysis. The characterization of 
Koya in terms of our complexity measure is “OOOOO1”, while that of Eskimo 
is ‘900010”. Learning times for these systems, accordingly, fit in between 
the learning times for the QI systems of Latvian and French (complexity 
index “‘OOOOOO”) and Maranungku and Weri (complexity index “000101”). 

As can also be seen, differences in learning times between QS stress pat- 
terns also fit in more generally with the analysis developed earlier, and with 
the analysis of single-positional vs. aggregative informational requirements 
developed in this section. 

Thus, both the QI and QS results fall into a single analysis within this 
generalized parameter scheme and weight-string representation, although 
with a less perfect fit than the within-class results. For example, the QI 
stress patterns of Lakota and Polish have higher complexity indexes than 
the QS stress patterns of Malayalam, Yapese, Ossetic, and Rotuman, but 
lower learning times. Quantity-sensitivity thus appears to affect learning 
times, as seems reasonable to expect, due to the distribution of the weight- 
string training set (see discussion in Section 2.2). However, no “measure” 
of its effect will be offered here. The analytical framework developed thus 
far appears to hold within QI languages, and within QS languages; further 
analysis would be needed to relate learning results across the two kinds of 
stress patterns. 

Finally, it is worth noting that learning times for these stress patterns 
have also been obtained with a three-layer architecture. Differences between 
learning times for different stress patterns were somewhat reduced. 
However, learning times were ordered exactly as in the two-layer model 
results shown in Table 5, suggesting that these learning results are robust 
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with regard to architectural differences. In the discussion throughout this 
paper, however, we focus on results from the two-layer model only, since 
the two-layer model with a single output unit facilitates analysis of connec- 
tion weights and their contribution to processing. 

3.3. Markedness and Learning Times: 
Correspondences with Metrical Theory 

So far, we have used our perceptron learning results to devise an analytical 
framework for stress. It should be clear how our theory is analogous to con- 
ventional linguistic theory: it is an account of stress systems based on obser- 
vation of the behavior of a perceptron exposed to those systems, in very 
much the same way that metrical theory is an account of linguistic stress, 
based on observations of what human beings learn. The stress pattern 
descriptions given to the perceptron are at the same level of abstraction as 
those that form the starting point for metrical theory. But since our account 
is based on learning time rather than surface forms and distributional data, 
we refer to it as a pseudo-linguistic theory. 

In this section, we will discuss the ways in which our learning time results 
are in good agreement with some of the “markedness” predictions of 
metrical theory. That is, our results exhibit a correspondence with theoreti- 
cal predictions, strengthening the analogy between our theory and metrical 
theory. As we will show, learning results such as these could also provide an 
additional source of data for choosing between theoretical alternatives.g 

Within the dominant linguistic tradition, a universal grammar of stress 
should incorporate a theory of markedness, so as to predict which features 
of stress systems are at the core of the human language faculty and which 
are at the periphery. The distributional approach to markedness treats as 
“unmarked” those linguistic forms that occur more frequently in the world’s 
languages. Another approach to markedness is learnability theory, which 
examines the logical process of language acquisition’O. Thus, for example, 
Dresher & Kaye take iteration to be the default or unmarked setting for 
parameter Pll, because there is evidence that can cause revision of this 
default if it’turns out to be the incorrect setting: the absence of any secon- 
dary stresses serves as a diagnostic that feet are not iterative (Dresher & 

) Nyberg’s parameter-based model also provides such data, but in terms of how many ex- 
urn&s of a stress pattern have to be presented to the stress learner (Nyberg, 1990). 

lo As an example, the Subset Principle (Berwick, 1985; Wexler & Manxini, 1987) hos im- 
plications for markedness. Suppose that two possible settings u and b for parameter P result in 
the learner respectively accepting sets S,, and Sb of linguistic forms. If S,, is a subset of St,, then, 
once P has been set to value b, no positive evidence can ever re-set it to a, even if that was the 
correct setting. Unmarked values for parameters should therefore be the ones yielding the most 
constrained system. 
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TABLE 6 

Learning Times far Ql and QS Stress Patterns, Grouped by Theoretical Analysis 

Lanauaae Characterization Epochs 

7 

a 

9 

Latvlan, French 
Koya 

Eskimo 
Maranungku, Weri 
Lokota, Polish 
Malayalam, 

Yapese 
Ossetic, 
Rotuman 
Koml, Cheremls 

Monglian, 
Mavan 

Word-tree, no feet 
Word-tree, Iterative unbounded QS feet 
No word-tree, iterative unbounded QS feet 
Ward-tree, Iterative binary Ql feet 
Word-tree, non-iterative binary Ql feet 
Word-tree, non-iterative binary QS feet, 

dominant node branches 
Word-tree, non-iterative binary QS feet 

Word-tree, non-iterative unbounded QS feet 

Word-tree, non-iterative unbounded QS feet, 
dominant node branches 

2 
2 
3 
3 

10 
19 

(*:; 
214 

W) 
2302 
(f4) 

Note. These learning times were obtained using wefght-strfng input representations for 
both Ql and QS patterns. Each figure Is the average learning time for languages In the group. 

Kaye, 1990, p. 191). If non-iteration were the default, their learning system 
might not encounter evidene that would enable it to correct this default 
setting, if it were in fact incorrect. It should be noted that, while this is a 
representative application of subset theory, the choice of default parameter 
values depends on the particular learning algorithm employed. 

Table 6 shows the stress systems grouped by their theoretical analyses in 
terms of the parameter scheme discussed in Section 1.4. The last column ‘of 
.the table shows the average learning time in epochs for each group of stress 
patterns (these are the same learning times shown in Table 5)“. As can be 
seen, there appears to be a fairly systematic differentiation of learning times 
for groups of stress patterns with different clusters of parameter settings.” 

‘I As noted in Section 2.2, weight-string representations are necessary for QS stress pat- 
terns. For QI systems, syllabic representations are sufficient. Of course, weight-string repre- 
sentations can be used for QI systems, although the information about syllable weight will be 
redundant. To obtain learning times that might reflect differences between the stress patterns 
themselves, rather than merely reflecting differing input representations and training set sizes, 
we ran simulations for both QS and QI patterns using weight-string input representations. The 
learning times in Table 6 are based on use of this weight-string representation for both QI and 
QS patterns. 

I’ The stress system of Garawa, as described in Hayes (1980, pp. N-55), cannot be char- 
acterized in terms of the parameter scheme adopted here. The stress systems of Paiute and 
Warao cannot be learned by a perceptron, as already discussed in Section 3.1, and as will be 
discussed in more detail in Section 4.2. (Recall, however, that they can be learned (a) using a 
two-layer architecture with two output units, or (b) a three-layer architecture with “hidden” 
units, or (c) within the present perceptron architecture, if monosyllabic stress is not included.) 
Learning results for these three stress systems have therefore been excluded from the present 
analysis, as either the parameterized characterization or learning times cannot be established. 
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Learning times appear to be significantly higher for stress systems in 
groups 5 through 9, which have non-iterative feet, than for those in groups 
1 through 4, which either do not have metrical feet at all, or else have 
iterative feet. This makes the interesting prediction that non-iterative feet 
are more difficult to learn, and hence marked. This prediction corresponds 
with both Halle & Vergnaud’s Exhaustivity Condition’3, and with the choice 
of marked and unmarked settings in Dresher 8c Kaye’s parameter scheme 
(Parameter Pl 1)“. 

Comparison of learning times for group 1 vis-a-vis groups 2,3 and 4 also 
suggests that a stress system with only a word-tree (i.e., with no metrical 
feet) is easier to learn than one with (iterative) metrical feet. 

The dramatic difference in learning times between groups 8 and 9 sug- 
gests that it is marked for the dominant node to be obligatorily branchingls. 
Group 8 differs from group 9 only in not having obligatory branching, and 
average learning times were 214 epochs vs. 2302 epochs. 

This prediction agrees with the distributional view that obligatory branch- 
ing is relatively marked 16, but runs counter to Dresher & Kaye’s choice of 
default values (parameter P7)*‘. 

However, comparison of group 6 with group 7 suggests that systems with 
obligatory branching may be more easily learned: group 6, with obligatory 
branching, has a learning time of 19 epochs, compared with group 7, with- 
out obligatory branching, but with a learning time of 29 epochs. This runs 
counter to the distributional argument, but agrees with the learnability view. 

Two points are worth noting. First, it is interesting that where there is a 
conflict between the distributional and learnability theory predictions of 
markedness, there is also conflicting evidence from the perceptron simula- 
tion. Second, these conflicting perceptron results highlight the fact that it 
may be infeasible to analyze the effects of different settings for individual 
parameters; it may only be possible to make broader analyses of the effects 
of clusters of parameter settings. Strong interactions between parameters 
have also been observed in other computational learning models of metrical 
phonology (Eric Nyberg, personal communication, August, 1991). 

I’ “The rules of constituent boundary construction apply exhaustively.. .” (Halle L 
Vergnaud, 1987a, p. 15). 

I’ In Dresher 8c Kaye’s model, iteration is the default or unmarked parameter setting 
because there is evidence that can cause revision of this default. The absence of any secondary 
stresses serves as a diagnostic that feet are not iterative (Dresher 8c Kaye, 1990, p. 191). 

I’ This means that the strong branch of a foot must dominate a heavy syllable, and cannot 
dominant a light one. 

I6 Thus, Hayes (1980, p. 113): “the maximally unmarked labeling convention is that which 
makes all dominant nodes strong . . . the convention that wins second place is: label dominant 
nodes as strong if and only if they branch”. 

I7 Obligatory branching is the default because evidence (the presence of any stressed light 
syllables that do not receive stress from the word-tree) can force its revision (Dresher & Kaye, 
1990, p. 193). 
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In view of the greater differential in learning times between Groups 8 and 
9 than between Groups 6 and 7, we conclude that the effect of obligatory 
branching is to increase learning time. That is, we view our learning results 
as supporting the markedness of obligatory branching. This raises the inter- 
esting possibility that learning results such as those from the percent percep- 
tron simulations can provide a new source of insight into questions of mark- 
edness. The distributional view of the markedness of obligatory branching 
(Hayes, 1980, p. 113) seems to conflict with the learnability view (Dresher & 
Kaye, 1990, p. 193). The present simulations seem to agree with the 
distributional view, and could perhaps serve as a fresh source of evidence. 

This potential contribution to theoretical analysis can be further illu- 
strated for the stress systems of Lakota and Polish, which are mirror 
images, Recall that in Lakota, primary stress falls on the second syllable of 
the word. The analysis so far adopted for Lakota is that it has non-iterative 
binary right-dominant QI feet constructed from left to right, with a left- 
dominant word-tree”. Let us call this Analysis A. As illustrated in Figure 3, 
this leads to the construction of one binary right-dominant QI foot at the 
left edge of the word. This, together with the left-dominant word-tree, 
results in the assignment of primary stress to the second syllable. As has 
been shown, under this analysis the perceptron learning results support the 
markedness of non-iteration (recall the differing learning times of Groups 1 
through 4, vs. Groups 5 through 9). 

However, an alternative analysis is that Lakota has a left-dominant 
word-tree with no metrical feet, and the first syllable is extrametrical 
(Dresher & Kaye, 1990, p. 143). Let us call this Analysis B. As illustrated in 
Figure 3, the leftmost syllable is treated as “invisible” to the stress rules, 
and the word-tree assigns primary stress to the leftmost of the “visible” 
syllables. The result is that the second syllable receives’ primary stress. 
Under this analysis, Lakota and Polish (Group 5, in Table 6) differ from 
Latvian and French (Group 1 in Table 6) only in having an extrametrical 
syllable. The differing learning times for the two groups (1 epoch vs. 10 
epochs) then suggest that extrametricality is marked. However, this runs 
counter to both the distributional view (Hayes, 1980, p. 82)lg and the learn- 
ability theory view (Dresher & Kaye, 1990, pp. 189, 191)“‘. 

‘I This is based on Hayes’ analysis of penultimate stress (Hayes, 1980, p. 55). 
I9 Hayes argues for the importance of the device of extrametricality to the theory because 

of its,role in accounting for a variety of stress phenomena. Thus, extrametricality is unmarked 
in the sense previously referred to: that of being “attested to in a fair variety of languages”. 

lo In Dresher & Kaye’s formulation, the presence of stress on a leftmost or rightmost 
syllable can rule out extrametricality. However, there is no positive cue that unambiguously 
determines the presence of extrametricality. Hence, the default value for parameter P8 is that 
there is extrametricality (PE[yes]). If the default were PE[No], but this was an incorrect setting, 
there would be no cue that could lead to detection that this is incorrect. 
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Figure 3. Two metrical analyses far a four-syllable word in Lakota. Strong branches are 
labeled “S’, and weak branches “W”. Analysts A: construction of one binary right-dominant 

Ql foot at the left edge of the word, together with a left-dominant word-tree, results in the 
assignment of primary stress to the second syllable. Analysis 3: the leftmost syllable is 
treated as “invisible” to the stress rules (extrametrtcal), and the word-tree assigns primary 
stress to the leftmost of the “visible” syllables. The result is that the second syllable 
receives primary stress. 

To summarize, Analysis A views Lakota and Polish as having non-iterative 
feet, which both the distributional/theoretical and learnability approaches 
treat as marked. Analysis B views these stress patterns as having an extra- 
metrical syllable, which both approaches treat as unmarked. So far, there is 
nothing theory-external to help choose between the analyses. Simulation 
results such as these provide such a means: since the learning results are con- 
sistent with the theoretical markedness of non-iteration, but not with the 
unmarkedness of extrametricality, they provide at least weak support for 
preferring Analysis A over Analysis B. 

4. LOWER LEVEL PROCESSING: THE CAUSAL ACCOUNT 

In the previous section, we developed our abstract “pseudo-linguistic 
theory” of the learning and assignment of stress by a perceptron. This high- 
level account was based on observation of perceptron learning results, with- 
out knowledge of processing mechanisms within the perceptron. 
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In this section, we open up the “black box” of the perceptron and ex- 
amine whether our high-level theory is useful in elucidating the lower-level 
processing mechanisms. 

First, we will examine the connection weights that develop within the 
perceptron when it has learned particular stress patterns. We will show that 
these connection weights bear a structural resemblance to the metrical 
theoretic characterizations of the corresponding stress patterns. 

Second, we will show that, despite these suggestive similarities, there is 
no analogue between the constructs of metrical theory (or our pseudo-lin- 
guistic theory) and actual processing in the perceptron. Thus, despite the 
fact that the perceptron’s mechanisms yield (a) connection weights that 
look like linguistic constructs, and (b) learning results that give rise to a 
pseudo-linguistic theory, neither of these high-level accounts is useful in 
understanding low-level processing. 

Finally, we will show that certain non-learnability results can be explained 
only at the level of perceptron processing, and that this explanation has 
little in common with the non-learnability analyses of our pseudo-linguistic 
account. 

4.1. Connection Weights and Metrical Theory 

Connection Weights and Perceptron Learning 
In learning a stress pattern, the perceptron has acquired and encoded in its 
connection weights its “knowledge” of that pattern. Connection weights 
for the 16 stress patterns discussed in Section 3.3 are shown in Figure 4. 
Each display is a representation of the network as a whole. The large grey 
shaded rectangle represents the input buffer of the network, organized as 
two rows of 13 values, corresponding to the rows marked “L” and “H” in 
Figure 2. The single square protruding from the left is the perceptron’s bias 
connection. The perceptron unit itself is represented by the protruding 
square at the top. 

A blob in a particular position denotes a weight on that input connec- 
tion. White blobs denote positive weights, and black blobs negative weights. 
The size (area) of the blobs is proportional to the absolute magnitude of the 
weight. Weights are scaled so that the largest absolute magnitude is depicted 
in each display as a perfect square; other weights in that display appear as 
blobs of proportionate size. The scale is shown in the title bar of each dis- 
play. Thus, for Maranungku, the absolute magnitude of the largest weights 
is 2.18; these are the large (black) negative weights left of center in the input 
layer. 
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Figure 4. Learned connection weights for sixteen stress patterns. Each display is a repre- 
sentation of the network as a whole. The large grey shaded rectangle represents the input 
buffer of the network, organized as two rows of 13 values. The single square protruding 

from the left is the perceptron’s b/as connection, The perceptron unit itself is represented 
by the single protruding square at the top. A blob in a particular position denotes a weight 
from the unit in that position to the output unit. White blobs denote positive weights, and 
black blobs negative weights. The area of the blobs is proportional to the absolute magni- 
tude of the weight. Weights are scaled so that the largest absolute magnitude is depicted in 
each display as o perfect square: other weights in that display appear as blobs of propor- 

tionate size. The scale is shown in the title bar of each display. Thus, for Maranungku, the 
absolute magnitude of the largest weights is 2.18; these are the large (black) negative 
weights left of center in the input layer. 

We extend the numbering scheme for input connections given in Section 
2.3. The central weights are numbered WOL and WOI-I, corresponding to rows 
“L” and “H”; they are referred to collectively as wo. The pair of weights 
immediately to their left is numbered w- 1, and so on. Let us consider some 
examples of the interpretation of connection weights: 
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For Latvian, the large negative weights w-1 enable detection of the left edge of a word: 
only the first syllable of a word passing through the Input buffer from right to left will be un- 
affected by these weights when it Is the “current Input”, that Is, in position 0 In the buffer 
(see Section 2.2 for discussion of processing In the networks). When any non-initial syllable 
of any word Is the current input, there will be some other (“previous”) syllable to Its left in 
the buffer. Net Input to the perceptron will be negative, since the magnitude of w-1 Is 
greater than the magnitude of the positive blas weight. The output will therefore be low, 
denoting zero stress. The Initial syllable of any word, however, will have no syllables to its 
left In the buffer, and so W-I will have no effect. Net input to the perceptron will therefore be 
positive (from the bias connection), and so the output will be high, representing primary 
stress. For French, only the last syllable of a word will escape the effect of the large 
negative weights W+I, and thus only the last syllable will receive stress. Connection 
welghts for French are the mirror image of those for Latvian, just as the stress patterns 
themselves are mirror images. 

For Weri, the largest weights are W+I; these are large negative weights. Consider the 
processing of, say, a six-syllable word. When the leftmost syllable Is the “current input”, 
and the target output is therefore zero stress, there will be four medium-strength positive 
weights (w+s and w+q) and four medium-strength negative weights (w+s) and w+s), 
roughly canceling each other out, applying to four of the representations of syllabic 
elements in the buffer. There is also a pair of large negative weights (w+l). The net input 
will therefore be negative, resulting in an output of zero stress. When the second syllable 
element is the current input, the large negative weights W+I still apply, as do the medium 
positive weights w+p and w+4. However, the medium negative welghts applicable are now 
only w+a; and so the net input is larger than for the previous syllable, producing an output 
representing secondary stress. A similar pattern of alternation continues for all the syllables 
of the word: in each case, there will be either a balance of medium positive and negative 
weights applicable (resulting in zero stress), or one more pair of positive than negative 
weights, resulting in secondary stress. The exception is the last syllable: when this is the 
current input, none of the weights w+p through w+s apply. In addition, there will not be the 
large negatlve welghts w+l to cancel the positive bias connection. As a result, the net input 
will be higher for this syllable than for any other, resulting, as desired, in an output repre- 
senting primary stress. An analogous analysis can be made for Maranungku, whose 
weights are the mirror image of those for Weri. 

For Lakota, if the “current input” is a monosyllable, the bias activation triggers primary 
stress. However, when the current input Is the first syllable of a polysyllabic word, the 
negative weights W+I override the bias activation. If the current input is the second syllable 
of a word, the perceptron receives high positive activation from w-1 In addition to the bias; 
this is sufficient to overcome the negative weights w+l. However, any syllable after the sec- 
ond triggers the strong inhibitory contribution of w-2, and so cannot receive stress. The 
analysis for Polish is simllar. 

The connection weights indicate systematic encoding of knowledge of the 
patterns by the networks. The fact that two stress patterns are mirror images 
is reflected in the connection weights as well as in the similarity of learning 
times. 

Correspondences with Metrical Theory 
In this section we will further show that there are correspondences between 
the form of the encoded knowledge and the characterization of the stress 
pattern in terms of parameters, thus providing a further analogy between 
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our analyses of perceptron learning and metrical theory. In the discussion 
which follows, connection weights for the learned patterns refer to Figure 4. 
Interpretation of the displays is as previously discussed. As in Section 3.3, 
we will consider the stress systems grouped by their theoretical analyses in 
terms of Dresher & Kaye’s parameter scheme (see Table 6, p. 25). 

Maranungku and Weri are the only stress systems with iterative binary feet (Group 4, 
Table 6). For these systems, but for no others, there is a very clear binary alternating pattern 
of positive and negative weights. If, as is natural, we take a positive weight to correspond to 
the strong branch, and a negative weight to correspond to the weak branch of a foot, then 
for Maranungku we see left-dominant binary feet, and for Weri right-dominant binary feet- 
just as in the theoretical analysis 21. It does not seem too far-fetched to say that the per- 
ceptron has discovered a version of iterative binary feet. 

The single set of negative weights for Latvian and French (immediately to the left and 
right of center, respectively) can perhaps be Interpreted as a left-dominant and right- 
dominant word-tree. 

Recall that Lakota has noniterative binary right dominant QI feet constructed from left to 
right, and that Polish has noniterative binary left dominant Qi feet constructed from right to 
left. That is, there will be a single blnary tree, constructed at the left edge of the word for 
Lakota, and at the right edge for Polish. Under this analysis, the weights to left and right of 
center of Lakota and Polish can be interpreted respectively as (single) right-dominant and 
left-dominant binary QI feet. 

The weight patterns for Koya and Eskimo are close to mirror images, but not completely 
symmetric. Koya assigns primary stress to the first syllable and secondary stress to non- 
initial heavy syllables, while Eskimo assigns only one level of stress to final and heavy 
syllables. The chief theoretical difference between the two languages is that the former, but 
not the latter, has a word-tree. This difference is reflected in the fact that there are two mag- 
nitudes, or levels, of connection weights for Koya in the two central buffer positions (the 
large negative weights in buffer position w-1, and the smaller positive weight in WO), 
whereas for Eskimo, there is only one level of weights (the positive and negative weights in 
ws and w- 1 are approximately equal.) This can be viewed as analogous to the two levels of 
metrical structure in Koya (metrical feet and word-tree) versus the single level of structure in 
Eskimo (metrical feet only.) 

Table 6 shows that Malayalam, Yapese, Ossetic, and Rotuman (Groups 6 and 7) are the 
only languages with noniterative binary QS feet. These are also the only patterns that have 
more than two large negative weights grouped together to the left (for Malayalam and 
Ossetic) or right (for Yapese and Rotuman) of center. We can take these three-or-four nega- 
tive weight structures to correspond to a noniterative binary QS foot. There is a clear struc- 
tural difference as compared with the (analogues 09 noniterative binary QI feet in the 
weights for Lakota and Polish. 

Komi, Cheremis, Mongolian, and Mayan are the only languages with noniterative un- 
bounded QS feet (Groups 6 and 9, Table 6, p. 25). The connection weights for these system 
terns show a pattern of nearly-identical negative weights spanning a set of several input 
units, and such a pattern does not occur for any of the other stress systems. Such a set of 
“spanning” weights seems analogous to an unbounded foot. The pattern of weights for 

‘I As discussed previously, Maranungku has binary, left-dominant QI feet constructed 
iteratively from the left edge of the word. Weri has binary, right-dominant QI feat constructed 
iteratively from the right edge of the word. 
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Komi seems to correspond to an unbounded right-dominant QS foot, while weights for 
Cheremls seem to correspond to an unbounded left-dominant QS foot (note the single 
positive weight at the right and left, respectively, of the sets of weights, similar to the domi- 
nant branch of the foot). The difference In analysis between Komi & Cheremls and 
Mongolian & Mayan Is that feet In the latter pair have obligatory branching, meaning the 
strong node of the foot must domlnate a heavy syllable. As for Koml and Cheremls, the 
weights for Mongolian and Mayan show a pattern that can be Interpreted as an unbounded 
QS foot. However, they additlonally have a set of weights adjacent to the positive weight 
(i.e., to the “dominant branch” of the unbounded foot), which are not present for Komi and 
Cheremls; these addltlonal weights can loosely be Interpreted as corresponding to a 
branching dominant node. 

4.2. Opening Up the Black Box: Learning Difficulty 
It should already be clear from discussion in the previous section that our 
pseudo-linguistic analysis of Weri as a language of complexity “000101” 
(see Table 5) does nothing to illuminate the perceptron’s processing. Our 
pseudo-linguistic theory thus provides quite a good predictive framework, 
but no guidance toward discovery of the perceptron’s actual processing 
mechanisms. In view of the overall resemblance between the nature of our 
theory and metrical theory, we think the implications are clear: there is no 
guarantee that linguistic analyses bear a relation to the underlying process- 
ing mechanisms, and hence no guarantee that they can usefully guide the 
search for those mechanisms. 

Furthermore, although the connection weights established when the per- 
ceptron learns Weri are structurally suggestive of “binary trees”, the actual 
processing involved in the assignment of Weri stress has nothing to do with 
tree structures. It is interesting that we can “see” binary feet in the connec- 
tion weights, but this notion does not aid in understanding the perceptron’s 
assignment of Weri stress. 

In this section, we will further emphasize these points. As a starting 
point, recall the earlier analysis of the learning difficulty of Komi, 
Cheremis, Mongolian, and Mayan in Section 3.2. There, we suggested an 
explanation in terms of types of aggregative information and a “scanning” 
mechanism. Here, we will examine the learning of these systems in terms of 
actual processing. We will proceed by analyzing the connection weights for 
these QS systems. 

It may at this point be helpful to review the discussion of perceptron pro- 
cessing in Section 2.3. Note that, with the weight-string representation for 
inputs, a light syllable is represented by a [ 1, 0] vector, and a heavy syllable 
by a [0, l] vector. For light syllables, therefore, there will be a 1 in the top 
row (row L) of the input buffer, and a 0 in the bottom row (row H); for 
heavy syllables, the reverse. Thus, with the weight-string representation the 
contents of the two rows of the input buffer are usually not identical, and 
this is relevant to understanding how the connection weights encode knowl- 
edge of stress patterns. 
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Connection weights for the learned patterns are as shown in Figure 4 (see 
p. 30). Interpretation of the displays is as discussed in Section 4.1. 

Consider the stress pattern of Koya: primary stress on the first syllable, and secondary 
stress on heavy syllables. In the weight-diagram for Koya, the bias weight supplies a fairly 
high positive activation; there is also high positive activation when a heavy syllable is the 
“current input,” arising from wc~. If the current input is the first syllable, then the large 
negative weights w-1 have no effect, and the bias activation results in an output denoting 
primary stress. If the current input is not the first syllable, then w-1 produce a large 
negative input, whether the syllable in position w-1 is heavy or light, thus offsetting positive 
activation from the bias connection; the net input will be low, resulting in a low output 
denoting zero stress, unless the current input is a heavy syllable, in which case the large 
positive weight WOH contributes substantially. This positive activation plus that of the bias 
unit together produce a greater positive net input than is offset by the negative activation 
from w-1, and so the output is medium, representing secondary stress. In other words, the 
weights encode the stress pattern: stress the first syllable, and assign secondary stress to 
heavy syllables. 

As a further example, in Malayalam, the current syllable is stressed if it is the first syllable 
and either it Is heavy (large positive activation from WOH, and the large negative weight 
w-1~ has no effect), or It is light but the second syllable is also light (in which case the 
negative weight W+IH will have no effect). If the current syllable is the first, but is light, and 
the second syllable is heavy, then WOH will provide no stress, and additionally, W+IH will 
damp stress provided by the bias connection. If the current input is the second syllable, it 
receives stress only if it is heavy (positive activation from WOH) and the preViOUs syllable was 
light (no negative activation from w-TV.) No syllable other than the first or second will be 
stressed because two of the four large negative weights in W-I and w-p will always be 
triggered. The analysis of Yapese Is similar. 

We now turn to an examination of processing and connection weights for Komi and 
Cheremis: Recall the stress pattern of Komi: stress the first heavy syllable, or the last 
syllable if there are no heavy syllables. If the current syllable is heavy, it should be assigned 
primary stress only If there have been no preceding heavy syllables. A heavy current 
syllable receives stress from WOH and from the bias term, and this is sufficient to offset the 
effect of the negative weights W+IH and w+~L; but if there Is a heavy syllable to its left, this 
stress is overridden by the weights W-1H through W-6H. Thus a heavy syllable will be 
stressed if end on/y if it is the first heavy syllable. 

If the current input is light, it should be assigned primary stress only if it is the last syllable 
endthere have been no heavy syllables in the word. The connection weights make no provi- 
sion for positive activation from any buffer position containing a light syllable. When a light 
syllable is the current input, therefore, positive activation comes only from the bias unit; this 
Positive activation, however, is offset by negative activation arising from W+I, and by 
negative activation arising from W-1~ through w-sH. The positive bias is not outweighed by 
negative activation just in case there are no syllables succeeding the current input in the 
buffer, and also no heavy syllables preceding the current input, that is, just in case the cur- 
rent input is the last syllable in a word without any heavy syllables. The analysis of weights 
for Cheremis is analogous to that for Komi. 

Recall that the analysis of Komi in Section 3.2 was that determination of 
whether or not there are any heavy syllables to the left of the current syllable 
in the buffer requires uggregative information about several syllables; and 
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this suggested the involvement of a special process that “scanned” the 
buffer. 

What is really happening, however, is that the weights w- 1~ through 
W-&H determine whether or not there is a heavy syllable preceding the cur- 
rent one. The connection weight displays of Figure 4 illustrate the fact that 
none of the other QS stress patterns (except Mongolian and Mayan) require 
establishment of more than two or three weights of larger magnitude; for 
Komi and Cheremis, by contrast, there is a string of large weights across the 
buffer. It takes longer for the perceptron to learn Komi and Cheremis, 
therefore, not because it has to learn to perform a special “scanning” 
operation not required by other languages, but rather, because without 
weight-sharing it takes a gradient-descent learning algorithm longer to 
establish a large cluster of weights of significant and roughly equal 
magnitude, especially when the leftmost buffer elements receive fewer non- 
zero weight updates than more central elements.” 

In arriving at this low-level explanation of perceptron learning time dif- 
ferences, our higher-level .account was not particularly helpful. Had we 
been unable to analyze the workings of the perceptron, we might well have 
hypothesized some lower level mechanism involving a scanning process, and 
incorporated such into our theory of how the perceptron worked. Alterna- 
tively, we might have devised symbolic learning models with an “Aggrega- 
tion” parameter, whose unmarked value was “no-aggregation-required”, 
and whose marked value was “aggregation-required”. In suchmodels, it 
would naturally take longer to learn a stress system with the “marked” 
value than one with the “tmmarked” value. The implications for linguistic 
theory should be clear. 

We now again consider the patterns of Mongolian and Mayan, which 
have very much higher learning times than those of any other stress pat- 
terns, including Komi and Cheremis. Compare, once again, the stress pat- 
terns of Mongolian and Komi. For Mongolian: stress the first heavy 
syllable, or the first syllable if there are no heavy syllables. For Komi: stress 
the first heavy syllable, or the fast syllable if there are- no heavy syllables. 

For Mongolian, if the current input is heavy, then it should receive stress 
if it is the first heavy syllable; thus, as for Komi, each of the weights w-1~ 
through w-6~ must be capable of damping the positive activation from 
WM. If the current syllable is light, then it should receive stress only if (a) 
there is no syllable to its left in the buffer (if there is, then one of w-~H or 
w- 1~ will override the bias activation), and (b) there is no heavy syllable to 
its right in the buffer. Note that this requires a set of weights, w+ 1~ through 
w+m to the right of the current input, to determine whether there is a heavy 
syllable. 

I1 We thank Oary CottreU (personal communication, February 2,1993) for pointing out the 
disparity in error signals seen by different buffer elements. 
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Thus, for Mongolian, there is a requirement to establish a set of weights 
to determine the presence of heavy syllables both to the left of the current 
input and to its right, unlike for Komi, which required the establishment of 
weights only to the left. Furthermore, the weight ws~ must be large enough 
to overcome all of w+lH through w+6, and so must be rather large; but 
also, each of W-IH through w-m must be able to override WOH, and so 
each of these must be even larger. Thus, several very large weights are needed, 
as evidenced by the magnitude of the largest weights for Mongolian: 28.04, 
as against a range of approximately 9 to 11 for the other QS patterns. More- 
over, there are three levels of weight values to be established, two of which 
must copied across whole clusters of connections. 

Establishing all these weights correctly is what makes the pattern so dif- 
ficult to acquire using gradient descent learning. The solution space is much 
further from the initial state due to the large magnitudes of the weights. In 
addition, there are many more constraints between pairs of non-zero 
weights that must be satisfied. This is a very different explanation than our 
high-level account, which hypothesized that the difficulty lay in having to 
perform dual aggregation by ‘bidirectional scanning”. Again, it should be 
evident that our pseudo-linguistic account is of little help in determiningthe 
nature of actual processing in the perceptron. 

4.3. Opening Up the Black Box: Unlearnable Systems 
We next re-consider our earlier analysis of the nonlearnability of Paiute and 
Warao. (Recall that in Paiute, primary stress falls on the second syllable, 
secondary stress on alternate succeeding syllables, and monosyllables were 
treated as stressed. The pattern for Warao is the mirror image of Paiute). In 
Section 3.1, our “parameter” scheme was seen to reflect the nonlearnability 
of these languages in that the 5-bit characterizations of those stress patterns 
was greater than “lOOtlO”. We now undertake a more rigorous analysis of 
those nonlearnability results, and show once again that our high-level 
analysis provides little insight into low-level processing. 

The two-stress patterns were learnable for training sets containing words 
of up to four syllables (a “length4” training set); the learning time was 54 
epochs. With the addition of five-syllable words, however, (a “length-S” 
training set), no solution could be found by the perceptron model. The con- 
nection weights established for Paiute with the “length-4” training set are 
displayed in Figure 5a. Figure 5b is a schematic illustration of the same 
weights. It abstracts away from the weight-string input scheme, which is 
non-essential for a QI language; the figure also abstracts away the bias con- 
nection. The buffer positions A, B, C, 0, E and Fin Figure 5b correspond 
respectively to the positions w-4, w-s, w-2, w-r, wo and w+i in Figure 5a. 
However, 5b depicts a larger buffer than is shown in 5a. 
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Figure 5. Connection weights for Paiute. (a) Connection weights for the Quantity-lnsensi- 
tive stress pattern of Paiute, learned for words of up to four syllables. (b) A schematic 
depiction of those weights in a buffer capable of processing words of up to five syllables. E 
has a modest positive weight to the output unit, and D is a large positive weight. f hos a 
large negative weight, and C a very large negative weight. 

When the first syllable of a four-syllable word is the current input, the large negative 
weight F offsets the positive effect of E, resulting in a low net input (and corresponding zero 
stress). When the current input is the second syllable, the appropriate output is primary 
stress, which is ensured by the positive activation from D and E combined, which is greater 
than the negative activation from F. When the third syllable is the current input, the negative 
weights C and F combined offset the positive activation of D and E combined, so that the 
output corresponds to zero stress. For the fourth syllable, the positive weights 9, D, and E 
combined are sufficiently greater than the negative weight C to yield an output correspond- 
ing to secondary stress, but not so much greater than C as to produce an output corre- 
sponding to primary stress. 

The processing of the first three syllables of a five-syllable word is identical to that just 
described for a four-syllable word: the weights involved are C, D, E and F. When the fourth 
syllable of a four-syllable word is the current input, the word is spread over positions 6, C, D 
and E; the negative weight F plays no role. However, when the fourth syllable of a five- 
syllable word is the current input, the five-syllable word is spread over positions 6, C, D, E 
and F. The output should correspond to secondary stress, just as in the case of the fourth 
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syllable of the four-syllable word, for which the weights B, C, D and E were appropriate, as 
described above. For the five-syllable word, however, output is affected not only by those 
four welghts, but also by the welght F. For B, C, D and E to produce the appropriate output 
In the five-syllable case, F would have to be zero; however, for appropriate output on the 
first syllable of words of length greater than one, F must have the negative value shown. 
Thus there is a conflict In the requirements for f for the correct processing of “length-4” 
and “length-5 training sets. 

This is shown more formally here= in an argument similar to the now famous proof of 
noncomputability of XOR (Minsky and Papert, 1969). Let s1 be the minimum net input 
required for a response corresponding to primary stress; let f12 be the minimum net input re- 
quired for secondary stress. The following constraints must then hold: 

I:; 
E > 8, 
F< -E 

(3) E+f<& 
(4) e2 > E + F > e, + F 

+ e2 - e1 > F 
(5) el>(B+c+D+e>e2 

=j -0, < -(B + C + D + E) < -e, 
(6) e,>(B+C+D+E+F)>e2 

e2<(B+C+D+E+F)ce, 
m 3 e2-e,<F<e, -e2 

Inequality (1) expresses the constraint necessary for E to be able to produce primary 
stress for a monosyllable. Numbers (2) and (3) express the constraints necessary for E and 
F jointly to be able to suppress both primary and secondary stress for the first syllable of a 
polysyllabic word. Number (4) Is derived from (3) and (1) as shown, and establishes an up- 
per bound for the magnitude of F. Inequality (5) Indicates the constraint that must. be 
satlsfied for B, C, D and E to produce secondary stress when the current Input is the final 
syllable of a four-syllable word. So far, the constraints are all as required for correct asslgn- 
ment of stress in the “length-4” training set, and all the Inequalities can be satisfied. The 
additional constraint needed to assign secondary stress to the fourth syllable of a five- 
syllable word is Indicated in (6). This is the constraint that makes the “length-5” tralning set 
unlearnable. Summing (5) and (6) yields (7), which includes the condition 02 - rIl < F. 
However, we previously have (4) e2 - 0, > F. Thus, (4) and (7) impose contradictory con- 
straints on the value of F, as was previously discussed. The contradiction Is responsible for 
the nonlearnabliity of Paiute. An analogous demonstration can be made for Warao. 

Although Paiute and Warao are in fact learnable by humans (and by 
three-layer networks, or two-layer networks with two output units), the 
point here is that any high level description that (for example) declares cer- 
tain stress patterns unlearnable must have a corresponding low level of pro- 
cessing that grounds it. Our high-level account of the nonlearnability of the 
stress systems of Paiute and Warao was that stress systems with a 
characterization lexicographically greater than “10000” are unlearnable, 

” We thank Geoffrey Hinton for suggesting this approach. 
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and this was supported by the nonlearnability of the hypothetical languages 
h26 through h30. While this analysis is descriptively accurate at a high 
level based on observable properties of these various stress patterns, the 
causal explanation developed in this section can be expressed only in terms 
of complex low-level interactions of stress pattern with processing architec- 
ture. No such explanation is available to ground claims of nonlearnability in 
humans. 

There are significant similarities between the development of our six- 
parameter high-level analysis of perceptron stress learning and the develop- 
ment of the linguistic theory of human stress. Both approaches attempt to 
identify salient inherent characteristics of the stress systems under examina- 
tion. Both approaches are concerned with the learnability of the stress 
systems by the device under study (perceptrons or humans). Both ap- 
proaches were formulated without reference to the workings of the underly- 
ing processor. It is of course not currently possible to open up the black 
boxes of the human processor. Linguists seem to have assumed, never- 
theless, that progress can be made in understanding the nature of those 
black boxes by using linguistic theory as the guiding framework. In this sec- 
tion, however, we have shown that our pseudo-linguistic theoretical scheme 
bears little relation to lower-level processing, and has no value in developing 
a causal explanation, because there are no physical correlates of the six 
parameters. We feel we have provided a persuasive demonstration that 
linguistic theory may be in much the same position. 

5. THE ROLE OF LINGUISTIC THEORY 

In the next two sections we will consider other consequences of the assump- 
tion that linguistic analyses can usefully guide the search for processing 
mechanisms. In Section 5.1 we will argue that the analyses of metrical 
theory are divorced from real processing also in the sense that their con- 
structs are derived from simplified versions of the data, and involve several 
levels of abstraction. Processing models based on these,analyses therefore 
suffer some inherent limitations in their ability to account for performance 
phenomena. Purthermore, there is not even a suggested relationship between 
these theory-based processing mechanisms and what is known about real 
neural computation. There seems little reason to assume that the constructs 
of metrical theory will be appropriate primitives for a processing model. 

This, together with some methodological problems discussed in Section 
5.2, highlights the need to devise suitable lower-level processing accounts 
without assuming that higher-level theoretical accounts are indicative of 
what to look for. It is our view that the mechanisms of this lower level will 



CONNECTIONIST MODELS AND LINGUISTIC THEORY 41. 

look more like neural network formalisms than like the symbolic structures 
of the higher level, and that determining the architecture of this lower level 
will have to be guided by behavioral, neuropsychological, and computa- . 
tional neuroscience investigations. The analyses developed in this article 
exemplify how neural network modehng can generate results that make con- 
tact with the theoretical analyses of the higher level. 

5.1. Theoretical Constructs as Processing Primitives 
We will examine the data of two stress systems and show that these data 
have in some cases been significantly simplified in arriving at descriptions 
such as “stress syllables with branching rimes and closed syllables”. Conse- 
quently, we will argue, a computational account based on the constructs of 
metrical theory is necessarily a simplified account. As we noted in Section 1, 
the models of both Dresher and Kaye (1990) and Nyberg (1992) adopt this 
default strategy of employing theoretical constructs as primitives. As a 
result, they are limited in their ability to address processing and perfor- 
mance issues. We will show that, within such a framework, it may not even 
be possible to formulate a processing account of certain stress systems. 

West Greenlandic Eskimo 
The data on stress in West Greenlandic Eskimo are far less clear than the 
pattern in Table 1 (see p. 9) indicates. Rischel(l974, pp. 91-97) states that 
the category of stress has no well-defined status in the language’s phonol- 
ogy, and that it is very difficult to obtain agreement (from native speakers) 
on the stress patterns in a variety of word types. There is a strong tendency 
to hear stress on the last vowel, but Rischel suggests that this may actually 
be the effect of the intonational contour. Scholars have proposed various 
stress patterns. Thus, Kleinschmidt (1851) suggests that the word has one 
main accent, and that longer words also have a subsidiary accent which 
tends to fall either on the first or the last syllable. Very long words may have 
several subsidiary accents, which are distributed according to the principle 
that heavy syllables always attract the accent. 

Fortescue (1984, p. 340) states that there may be an auditory impression 
of relative stress on heavy syllables under the influence of certain intona- 
tional factors. He suggests that Kleinschmidt’s account of stress can pro- 
bably be reduced to the interaction of syllable weight with intonational 
nucleus. There may be some residual rhythmicity describable in terms of 
stress or pitch. 

Hayes, citing Schultz-Lorentzen (1945) (which it has not been possible 
for us to examine), presents a much cleaner description of the stress pattern: 
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. 
stress syllables with branching rimes (i.e., closed syllables) and the final 
syllable (Hayes, 1980, p. 58). In view of the lack of agreement over Eskimo 
stress mentioned by both Kischel and Fortescue, this seems to be a significant 
simplification of the stress pattern. 

Koya 
In Koya, according to Tyler (1969, pp. 32-33), stress within a word occurs 
on long syllables, with weak stress on short syllables. Strong stress also 
occurs on the final syllable under certain circumstances conditioned by the 
intonation contour. Stress within a phrase occurs on the first syllable. 

Hayes’ description, adopted in this paper, and citing Tyler, is that primary 
stress falls on the first syllable, and secondary stress on closed syllables or 
syllables with a long vowel. This corresponds with Tyler’s data under the 
assumption that phrasal stress (falling on the first syllable of the phrase, in 
Tyler’s description) has been conflated with word-level stress. In that case, 
Tyler’s description of stress within a word corresponds with Hayes’ descrip- 
tion of secondary stress within the word. Intonation-conditioned final- 
syllable stress also is ignored in Hayes’ analysis. 

Hayes (1980, p. 58) cites both Koya and West Greenlandic Eskimo as 
examples of languages that can be analyzed as having unbounded, quantity- 
sensitive feet, and thus as providing support for the very notion of “un- 
bounded quantity-sensitive foot” and its inclusion in the inventory of metrical 
theoretic constructs. The adopted descriptions of these stress patterns have 
been central in the development of metrical theory, but we see that in both 
cases, the description Hayes adopts is a simplification of the actual stress 
patterns. Now, to the extent that the details of these stress systems have been 
simplified, the theory built on these descriptions is an approximate theory. 
That is, metrical theory is a simplified analysis of the phenomena of linguistic 
stress. While this may appear a trivial or even tautological conclusion, it 
establishes the first part of our argument that a computational model based 
on theoretical linguistic constructs is necessarily a simplified high-level model. 

Computation and Principles and Parameters 
In the principles and parameters approach, an element or rule of linguistic 
analysis is taken to be part of an innate endowment (a “principle of Univer- 
sal Grammar”) if it is found to be applicable across languages, or to be so 
abstract that a language learner could not reasonably or logically be expected 
to learn it from exposure to linguistic data (Hyams, 1986, p. 2). The hypoth- 
esis is that the human language faculty is so organized as to make only certain 
linguistic structures available to human beings. The recurrence of these 
limited patterns of linguistic structure in the world’s languages is taken to be 
a reflection of the properties of the language faculty. 
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Language learning is taken to proceed through the discovery of appropri- 
ate parameter settings. For this approach to succeed, the relevant linguistic 
theory must be cast into the “parameter” mold clearly enough to specify (a) 
what the parameters are taken to be, and (b) what the possible settings of 
these parameters are, so that a given linguistic system X can be characterized 
in terms of parameter values Px. The most explicitly formulated such scheme 
of which we are aware is that of Dresher & Kaye, discussed in Section 1.4, 
and adopted here as the theoretical framework. 

Now it is clear that there are numerous stress systems that Dresher & 
Kaye’s scheme as presently formulated cannot describe. For example, the 
stress patterns of Garawa and Aklan do not seem amenable to characteriza- 
tion in terms of these parameters. Haye’s description of Garawa (Hayes, 
1980, pp. 54-55) involves three levels of stress, and his analysis involves the 
construction of binary feet both at the left edge of a word, and iteratively, 
starting at the right edge of the word. The combination of these operations 
has no analogue in the parameterized characterization adopted by Dresher 
& Kaye, whose discussion of Garawa sidesteps this difficulty by simplifying 
the pattern to just two levels of stress. To take another example, the stress 
pattern of Aklan is well-known for its complexity; Hayes’ analysis (Hayes, 
1980, pp. 20-33, p. 59) includes conditions that cannot be expressed purely 
in terms of Dresher BE Kaye’s paremeter scheme, and those authors do not 
discuss this pattern 14. Consequently, no existing parameter-based theory 
can account for these stress systems-which is to say that the parameter- 
based approach to universal grammar represents a further simplification 
from the data. 

To re-iterate, there are at least two levels of simplification involved. First, 
the actual data on various stress systems have been simplified to arrive at 
regular descriptions of those systems (for Koya: “primary stress falls o-n the 
initial syllable, secondary stress on closed syllables or syllables with a long 
vowel” (Hayes, 1980, p. 58)). This is the first level of simplification. 

These regular descriptions form the basis of metrical theory, yielding a 
set of abstract constructs in terms of which these stress pattern descriptions 
can be recast (again for Koya: “feet are unbounded, assigned on the rime 
projection. Both feet and word trees must be left dominant” (Hayes, 1980, 
P. 58)). 

In a second level of simplification, these abstract metrical constructs 
have been used to devise a system of parameters. To see that the parameter- 
ized formulation involves a further level of simplification from the data, 

” We were able to simulate the learning of Aklan using a three-layer version of our model. 
For a different kind of connectionist treatment of Aklan stress assignment, see Wheeler & 
Touretzky (1991). 
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recall that while the stress pattern of Garawa can be characterized in terms 
of Hayes’ metrical theory, it cannot be characterized in terms of the Dresher 
and Kaye parameter scheme. 

It should be clear, therefore, that the account provided by a computational 
model based on the theoretical parameters of metrical phonology is limited 
to whatever can be described by the underlying theoretical analysis. First, a 
computational account of processing/learning in a particular stress system 
X can be formulated at all only if the parameterized characterization of X 
has been formulated. Second, regularities or exceptions in the data that are 
not captured by the stress pattern as described for the purposes of analysis 
cannot be dealt with. This concludes our argument that any computational 
account of learning and/or processing based on principles and parameters 
will not only be abstract, but also simplified”. 

Now, it could be argued that a theoretical account is a descriptive for- 
malism, which serves to organize the phenomena by abstracting away from 
the exceptions in order to reveal an underlying regularity, and that it is there- 
fore a virtue rather than a failing of the theoretical analysis that it ignores 
“performance” considerations. However, it becomes difficult to maintain 
this argument with respect to a processing model that uses the descriptive 
formalism as its basis: the processing or learning account still has to deal 
with actual data and actual performance phenomena. 

5.2. Markedness and Impossibility 
So far, we have argued that although Universal Grammar is claimed to pro- 
vide guidance in the search for underlying processing mechanisms, its theo- 
retical constructs may not in fact provide such guidance and constraint. 

Now, in linguistic theory, another important motivation for development 
of a Universal Grammar is the placing of constraints on possible systems. 
Thus Dresher and Kaye argue that one of the motivations for adopting para- 
meters is that they greatly constrain the number of possible stress systems, 
and rule out crazy non-occurring stress systems that have never been observed 
(Dresher & Kaye, 1990, pp. 148-151). 

I1 Our perceptron model corresponds to the fist level of simplification noted above: inputs 
are based on the simplified descriptions. However, no further simplifications are made from 
the data. Note particularly that the simplifications incorporated in its inputs do not enter into 
its processing, since these mechanisms do not employ processing primitives derived from the 
data. As a result, while the connectionist model presented in this paper would produce different 
learning time results if presented with more realistic data, it is not at all clear how a learning 
system based on the parameters of metrical phonology would perform. For example, there may 
be no concise, theoretically satisfying parameter set that can describe the actual data of Eskimo, 
in which case it is hard to see how a parameter-based system could learn that data. 
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The questions of “possibility” and “markedness” are closely related. As 
we noted in Section 3.3, one approach to markedness is fearnubility theory, 
which examines the logical process of language acquisition, while the dis- 
tributional approach to markedness treats as unmarked those linguistic 
forms that occur more frequently in the world’s languages. 

We will argue in this section that there are methodological problems 
inherent in both these approaches, in dealing with the theoretically important 
notions of “markedness” and “possibility”. Thus, not only do the theo- 
retical constructs of Universal Grammar not necessarily constrain the search 
for processing mechanisms, they do not necessarily provide a clear-cut 
determination of “possible” and “impossible”. 

Difficulty of Determining Markedness 
Within learnability theory, various proposals have been made regarding the 
“markedness” of particular grammars. One proposed metric is the number 
of intermediate grammars that have to be gone through in getting from an 
initial grammar Go to a descriptively adequate grammar GL for language L 
(Rouveret & Vergnaud, 1980). That is, the length of the sequence GO,. . . , 
GL is a metric of its markedness. Similarly, Williams suggests taking the 
child’s initial hypothesis about the language to be the “unmarked” case 
(Williams, 1981). 

Under this view, the number of times the initial parameter settings have 
to be revised in arriving at the final parameter settings would indicate a 
language’s complexity or markedness. However, as has been noted previ- 
ously, the choice of initial or unmarked settings is related to the learning 
algorithm employed, and the nature of linguistic evidence assumed to be 
available in a particular model. 

As an example of this, consider the notion of extrametricality. In Dresher 
& Kaye’s formulation, the presence or absence of extrametricality is rep- 
resented by parameter P8 (see Section 1.4). Dresher & Kaye implicitly take 
the default value for parameter P8 to be PSryeS], meaning that there is extra- 
metricality (Dresher 8c Kaye, 1990, pp. 189,191). This is because the presence 
of stress on a leftmost or rightmost syllable can rule out extrametricality; 
however, there is no positive cue that unambiguously determines the presence 
of extrametricality. If the default were P8[No], but this was an incorrect set- 
ting, there would be no cue that could lead to detection that this is incorrect. 
In contrast, in Nyberg’s model (Nyberg, 1990; Nyberg, 1992), the default 
value of the same extrametricahty parameter is taken to be P8[No], and the 
performance of his stress learning system indicates that the presence of 
extrametricality is harder to learn, or marked. Thus, we have two models, 
based on the same set of parametersz6, one showing that extrametricality is 

I6 Nyberg adopts the Dresher & Kaye scheme as well. 
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unmarked, and the other demonstrating that extrametricality is marked. 
Clearly, what is marked or unmarked is by no means an absolute, even 
within a parameter-based formulation. 

It is therefore unclear how much this approach can contribute to deter- 
mining the “markedness” of different linguistic systems. Obviously, it 
would be of interest to examine stages of development that children might 
go through in arriving at the stress pattern of their language. Work by Gerken 
suggests that children have “different” metrical feet (Gerken, 1991). How- 
ever, as Dresher and Kaye note (Dresher & Kaye, 1990, p. 42), there seems 
to be little or no data in the stress acquisition literature relevant to stages of 
development. 

Impossible Stress Systems 
The distributional approach to markedness treats as “unmarked” those 
linguistic forms that occur more frequently in the world’s languages. This 
seems to be the approach taken by, for example, Hayes (1980, p, 50): 

In justifying a foot inventory as the unmarked one, a minimal requirement is 
to show that all the members of the inventory are attested in a fair number 
of languages. . . 

Such an approach can be criticized, however, on the grounds that the fre- 
quency of occurrence of some linguistic form does not necessarily determine 
its status or “core” or “peripheral”, and the nonoccurrence of some form 
does not show that it is “impossible.” The distribution of languages in the 
world is a function of many historical, nonlinguistic, factors, and does not 
necessarily have linguistic-theoretic significance. To quote Pullum (1982, p. 
343; p. 340): 

no one has any idea to what extent the history of the human race has skewed 
the distribution of [linguistic] types by skewing the distribution of people.. . 
to postulate a default assumption that, say, M-movement cannot be right- 
ward, merely because it is commoner (in currently well-studied languages) for 
it to be leftward, is surely perverse as well as unnecessary. Language acquisition 
takes place within the infant, not within the context of a statistical survey of 
currently attested languages. . . 

As noted previously, the only linguistic options that can be entertained 
by the human mind are taken to be those consistent with the principles and 
parameters of Universal Grammar. Stress systems not sanctioned by the 
principles and parameters of metrical theory are therefore supposedly impos- 
sible. Thus as we have already noted, Dresher and Kaye (1990, pp. 148-151) 
argue that one of the motivations for adopting parameters is that they greatly 
constrain the number of possible stress systems. One of the criticisms fre- 
quently made of connectionist models of language processing is that they 
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can “learn anything”, and, in particular, can learn systems not sanctioned 
by linguistic theory (Pinker & Prince, 1988). 

The trouble is that, if this reasoning is carried through, and given Dresher 
& Kaye’s parameters, the stress systems of Garawa and Aklan .already dis- 
cussed are impossible. Of course, it may be possible to extend the parameter 
scheme so as to describe these systems. But now, “possible” and ‘Ympos- 
sible” have been reduced to what has or has not been observed in the world. 
And, as discussed, such distributional grounding must be viewed with caution. 
The point we wish to make here, then, is that the principles and parameters 
notion of “possibility” should be seen as having heuristic value rather than 
as providing definitive prescriptions of what is possible or impossible. 

Certainly, the present perceptron model is unlikely to reflect the way that 
humans learn language, as it would probably be capable of learning “out- 
rageous” patterns quite easily *‘. However, it is important to recognize that 
judging such a system to be plausible or implausible on these grounds is 
really an appeal to distributional evidence and intuition. A system of par- 
ameters does not provide the litmus of possibility that is sometimes claimed 
for it. 

The only was to settle such questions would seem to be the ability or 
inability of the child to learn a particular stress system, irrespective of whether 
or not such a pattern is observed in the world’s languages. However, as in 
the case of determining the difficulty of learning, there are no relevant data. 

RECAPITULATION 

The purpose of this article was to examine an assumption about the role of’ 
linguistic theory exemplified in the following quotation (Chomsky, 1988, p. 
6-8): 

Insofar as the linguist can provide answers [to questions about the form and 
acquisition of linguistic knowledge], the brain scientist can begin to explore 
the physical mechanisms that exhibit the properties revealed in the linguist’s 
abstract theory . . . the discoveries of the linguist-psychologist set the stage for 
further inquiry into brain mechanisms. . . 

In Section 3 of the article, we used observations of the learning behavior 
of our perceptron model to develop a “pseudo-linguistic theory” of how 
the perceptron learns various stress systems. This theory is an account of 
stress systems based on observation of the learning behavior of a perceptron 
exposed to those stress systems, in very much the same way that metrical 

” Note that this is a comment on its specific architecture, and not on the general kinds of 
computational mechanisms it incorporates. 
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theory is an account of linguistic stress, based on observation of the stress 
patterns that occur in human languages. We showed that our learning results 
and predictions have correspondences with those of metrical theory. We 
further showed structural correspondence between the knowledge acquired 
by our perceptron model when learning various stress patterns and the 
metrical theoretic characterization of those stress patterns. 

In Section 4, however, we showed that, despite the strikingly suggestive 
parallels between our theory, perceptron connection weights, and metrical 
theory, neither our theory nor metrical theory provides any insight into the 
lower-level processing mechanisms of the perceptron. The way the perceptron 
computes stress turns out to be completely unrelated to the constructs used 
in our high-level theory. This is exemplified by the fact that our high-level 
theoretical account of why Paiute and Warao were unlearnable in the per- 
ceptron model bears no relation to the causal explanation of their nonlearn- 
ability, which could be stated only in terms of low-level processing; and by 
the fact that our high-level explanations of learning difficulty bear no relation 
to the actual processes involved in the establishment of connection weights. 

In the search for the mechanisms of human language processing, linguistic 
theory may be as misleading as our pseudo-linguistic theory of the percep- 
tron. The claim that “ . . . the discoveries of the linguist-psychologist set the 
stage for further inquiry into brain mechanisms. . . ” is an assumption that 
may be unwarranted. 
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