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ABSTRACT

The use of computational models to simulate unimpaired
human psychological behavior is now fairly common, and use of such
models to simulate impaired behavior has also increased. In this article I
discuss the relation of computational models to behavioral investigation
and to theory, with a view to clarifying what a computational model is,
and what its value may be in investigating unimpaired and pathological
human psychological behavior.

KEYWORDS: Computational models, simulation, cognitive

behavior, language pathology, multiple determination

Learning Outcomes: As a result of this activity, the reader will be able to (1) explain the value of using a

computational model of language or other cognitive abilities as a tool to understand the organization of the ability, and

(2) explain how a computational model can be used to investigate unimpaired or pathological cognitive behavior.

Computational models are now fairly
commonly used as a means of investigating
human psychological behaviors. A computa-
tional model is constructed, it is demonstrated
that the model succeeds in simulating certain
behaviors in the domain of interest, and then
the investigators suggest that the model offers a
good account of the cognitive mechanisms
underlying that particular human performance.
(For example, a computational model that
yields simulated processing times for reading
garden path sentences such as ‘‘The horse raced

past the barn fell’’ might be constructed and
show a good correspondence of its simulated
processing times at different parts of the
sentence with human eye-fixation durations
for reading the same sentences.) It is not un-
common in such work for some aspect of the
model to be manipulated, and for the effect of
the manipulation on the model’s output to be
viewed as a simulation of a pathology in
that behavioral domain. (For example, in the
hypothetical computational model just cited,
the functioning of some processing element
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might be deliberately ‘‘impaired,’’ and it might
be shown that the model’s simulated processing
times under such conditions show a good
correspondence with eye-fixation durations of
individuals with Broca’s aphasia when they
read garden path sentences. It might then be
proposed that the impairment in the model is
suggestive of an underlying impairment in
Broca’s aphasia.)

Such use of computational models is re-
garded as a powerful tool for psychological
investigation. However, two general questions
about this approach should be answered. First,
what is the value of demonstrating that a
particular computational model can simulate
a particular set of behaviors? Second, what
implications do such demonstrations have for
pathological conditions? Although most re-
searchers do not ignore these points, they are
usually tied to the specifics of the particular
model, often somewhat implicitly.

In this article, I discuss these questions
both explicitly and generally. I use examples
from my own work as illustrations. My goal is
not to argue for or defend a particular model
but rather simply to use it as a means of
illustrating broader points about computational
models in general.

THE ESSENCE OF A
COMPUTATIONAL MODEL
How do computational models differ from
more typical behavioral investigation? Suppose
an investigator hypothesizes that the phono-
logical similarity of the words in a sentence
affects how accurately the sentence can be
comprehended. If this is an accurate hypoth-
esis, then it would suggest that the cognitive
processing mechanisms that underlie sentence
comprehension use a representational code that
includes phonological information.

To investigate this hypothesis behavior-
ally, the researcher might construct two sets of
sentences. In one set, words in each sentence
would have high phonological similarity to
each other (Set A). In the other set (Set B),
words in each sentence would have low
phonological similarity to each other. Subjects’
comprehension would be assessed for the two
sets of sentences. If comprehension was found

to be significantly better for Set A, this would
constitute evidence for the original hypothesis,
assuming there were no other differences in the
experimental procedure that could explain the
results. This result would support the idea that
sentence comprehension processes are based, at
least in part, on a phonological encoding. Note
that the focus would be on examining the effect
of an independent variable (within-sentence
phonological similarity) on a dependent variable
(the measure of comprehension performance),
and on attempting to control all sources of
variability other than the independent variable.

To investigate the same hypothesis through
computational modeling, the researcher would
construct a computational model that simulates
sentence comprehension, with the aim of
examining whether simulated sentence com-
prehension in this model is affected by the
within-sentence phonological similarity of
words. Before actually examining the effect
of phonological similarity, the researcher
would seek to demonstrate that the model
provides a plausible account of sentence com-
prehension, not just with respect to any effect
of phonological similarity, but in general,
by comparing its performance with that
of humans under some selected variety of
conditions other than variation in phonolog-
ical similarity. This is the first aspect of a
computational model, as follows:

Aspect 1 To argue for its plausibility, the
model’s output (i.e., behavior) is typically
compared with that of humans, across a
range of situations in the psychological
domain of interest.

Once the model’s plausibility is established
in this manner, the researcher next examines
whether the effect of within-sentence phono-
logical similarity on the model’s comprehension
performance matches the effect of phonological
similarity on human sentence comprehension
performance. That is, the researcher examines
whether the particular independent variable
of interest (within-sentence phonological
similarity) has the same effect on the de-
pendent measure (sentence comprehension
performance) in the model as it has been
demonstrated to have in humans. This is a
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second characteristic that is commonly an
important aspect of a computational model.
(I use the qualifier ‘‘commonly’’ because it is
possible for a computational investigation to
be aimed at demonstrating plausibility of the
model across a range of behaviors, without
special interest in a particular independent
variable. That is, the goal might be encom-
passed by Aspect 1.) In the present example,
however, there would also be a second aspect
of the model:

Aspect 2 (Often) Compares the effect of a
specific independent variable on a model’s
behavior with the effect of that independent
variable on human behavior.

The ability to make the comparisons of
model behavior with human behavior in
Aspects 1 and 2 depends on data from human
behavioral experiments. Thus computational
investigation cannot replace behavioral inves-
tigation as a methodology for studying human
behavior; rather, it supplements behavioral in-
vestigation. However, it is important to con-
sider carefully the nature of this ‘‘supplement.’’

The supplement is that the researcher
constructs a computational processing model
of the behavioral task from which the meas-
ure(s) of interest is/are obtained in humans.
That is, the researcher constructs a theory of
processing in the behavioral task. This theory
must be very highly specified: This is what
makes it ‘‘computational.’’ It is important to
clarify here what the term ‘‘computational’’
means. Because the use of computational mod-
els to investigate cognition is so strongly corre-
lated with the use of computers, the
involvement of a computer is often perceived
as the defining aspect of a ‘‘computational’’
model of cognitive behavior. That is, ‘‘compu-
tational model’’ is often thought to have an
intrinsic and essential connection to computers,
perhaps also incorporating the ‘‘computer
metaphor,’’ which likens the human mind to
a conventional, serial-processing computer
(often termed a ‘‘von Neumann computer’’).

However, the term ‘‘computational’’ actually
does not mean either ‘‘involving the use of a
computer’’ or ‘‘involving the computer meta-
phor.’’ It means simply that the account (i.e.,
theory) of performance in the task is specified
well enough that the theory’s prediction of
what the behavioral response (i.e., the depend-
ent measure) will be in a given situation can be
determined numerically. That is, it can be
precisely calculated. That is, it can be computed.1

A simulation is the process of actually making
these calculations for a particular set of inputs/
circumstances. However, whether or not an
abacus or calculator or computer is needed to
actually make the calculation/computation is a
separate matter, and it is not what makes the
theory or model or simulation ‘‘computational.’’
The behavior predicted by a computational
theory for a particular case might be deter-
mined or derived (i.e., simulated) by making
calculations on the back of an envelope, and the
account would still be a ‘‘computational’’ theory
or account or model, and the simulation would
still be a computational one.

In practice, the calculations required to
derive the behavioral prediction of a computa-
tional model (i.e., to conduct a simulation)
would usually take impossibly long to conduct
by hand. Therefore, a speedier calculating de-
vice is used, such as a computer. This is why the
use of ‘‘computational models’’ has become
prevalent only since the advent of computers.
This is also why the use of computational
models is so highly associated with the use of
computers and why a ‘‘computational model’’ is
frequently taken to be something whose es-
sence (and possibly theoretical basis) is that it is
run on a computer. But this is not the case, for
the reasons just noted. In fact, for these same
reasons, the frequently used term ‘‘computer
model’’ is a misnomer. There are ‘‘computa-
tional models/theories’’ and there are ‘‘compu-
tational simulations.’’ If the computational
simulation is conducted on a computer, it is
additionally a ‘‘computer simulation.’’ But, as
just discussed, the use of a computer is not what
makes a model or theory or simulation ‘‘com-

1It may be worth noting that a mathematical model is a particular type of computational model, in which the behavior of the model
can be fully described in terms of an equation or set of equations. This property is not typically true of other types of computational
models. There are also certain other typical differences between mathematical and other computational models, but discussion of these
is beyond the scope of the present article.
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putational.’’ Thus when a model is termed a
‘‘computer model,’’ it should more correctly be
called a ‘‘computational model.’’

Although ‘‘computational specification’’
has nothing to do with the use of a computer
or any other calculating device, it nevertheless
constitutes a crucial point of difference between
the computational and behavioral investiga-
tions. In the latter, there may be a prediction
that the independent variable will affect the
dependent variable in a particular way—for
instance, that greater within-sentence phono-
logical similarity will lead to a lower sentence
comprehension score. This prediction is based
on theoretical ideas, so that the behavioral in-
vestigation is based, more or less explicitly, on a
theory. However, this theory does not constitute
a computational account: It does not provide a
basis for determining numerically what the
behavioral performance will be under each con-
dition. Although it may provide quantification
on an ordinal scale (comprehension perform-
ance is predicted to be greater in the low than
the high phonological similarity condition), it
does not provide quantification on an interval or
ratio scale. Thus in the behavioral investigation,
there is no computationally specified account of
performance in the task from which the depend-
ent measure is obtained. In terms of the present
example, there would be no computational
model of sentence comprehension.

This difference has some important conse-
quences. To construct a computational model of
performance in the task (in the present example,
sentence comprehension), it is necessary to con-
sider what factors may be expected to determine
performance in the task. For any except the
simplest human behaviors, multiple factors de-
termine performance. For the task in which
sentence comprehension is measured, a compu-
tational model necessarily has to provide some
account of how words are represented, how their
meanings are represented, and how the overall
meaning of the sentence is derived. This account
must be sufficiently well specified as to be
computational, as defined earlier. Creating
such an account entails consideration of (and
computational specification of) a great many
variables that enter into and determine perform-
ance (e.g., the state of existing syntactic and
semantic information in the model, processing

speed, and some account of working memory).
A crucial aspect is that the account has to specify
computationally how these factors work together to
determine task performance. That is, it must con-
sider and specify the joint and separate impact of
multiple variables on task performance. This is
true even for a much simpler behavioral task,
such as phoneme identification, for which a
computational account would provide a compu-
tational specification of how the input acoustic
signal is represented, what processes operate
on it, and how a categorization is made.

Thus, in general, virtually every computa-
tional investigation must take into account
many cognitive variables in constructing the
computational model of task performance, and
crucially, the taking into account must take the
form of computationally specifying how they
determine task performance, severally and
jointly. In contrast, in a behavioral investiga-
tion of the same cognitive phenomenon, it is
crucial to be sure that the situation under which
the sentence processing task is undertaken
varies only with respect to the independent
variable(s). The many other variables that de-
termine sentence processing performance, and
the relationship of these variables to each other,
are not the focus of interest in a particular
behavioral investigation, although several of
them may be examined systematically in a
successive set of investigations. But computa-
tional specification of the relationship of these
variables to each other in determining task
performance is not inherently necessitated by
the nature of the investigation. The important
consequence of this difference is that the com-
putational investigation is capable of examining
the manner in which behavioral performance
in the task of interest is influenced by the
simultaneous effect of multiple factors. That is,
the computational investigation encourages, if
not forces, us to recognize that the behavior
under consideration is multiply determined
(I have adopted this term from the work of
Gathercole1). This is much less highlighted in
or by experimental investigation.

This difference between behavioral and
computational investigations is particularly
relevant for the investigation of pathology.
There are multiple ways in which the model’s
performance can be impaired. Thus pathological
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performance in the task could be caused by
impairment of any one of, or a combination
of, many different underlying determinants.
This point is sufficiently important that it bears
some elaboration. A computational model typ-
ically embodies an account of multiple determi-
nants of the simulated behavior, in a manner
that behavioral investigation typically does not.
In addition, a computational model affords the
opportunity to impair the functioning of each of
these multiple determinants, in a manner that
behavioral investigation typically does not.
These two points combine to yield a difference
between computational and behavioral investi-
gation that has considerable significance for the
investigation of pathological behaviors: A com-
putational model provides a means of simulating
impairment of multiple determinants of a be-
havior (one or more determinant at a time) in a
manner that is usually impossible (practically
and ethically) in behavioral investigation. For
instance, in our sentence comprehension exam-
ple, because the model would necessarily have to
incorporate accounts of how words are repre-
sented, how their meanings are represented, and
how the overall meaning of the sentence is
derived, it also provides a means for examining
how impairments of sentence comprehension
can arise from various combinations of impair-
ment in any or all of these factors. In effect, it
would provide an ‘‘animal model.’’ Recent think-
ing in the field of speech language pathology has
emphasized the importance of using animal
models where applicable.2 It has been particu-
larly emphasized that knowledge of learning,
memory, and neuroplasticity in animals can and
should be taken into account in thinking about
remediation of impaired performance in humans
because such remediation necessarily requires
learning and memory to effect improvement in
the patient. For example, principles of animal
learning indicate that such things as the timing
of treatment delivery and the frequency and
intensity of training are relevant to regimens of
therapy.2 However, there are a great variety of
human behaviors (and aspects of behaviors) that
an animal model cannot address. For example,
an animal model cannot address the question of
whether the impaired learning in a particular
syndrome arises more from impairment of syn-
tax or of semantics. A computational model,

however, can enable investigation of such ques-
tions and can thus provide a pseudo-animal model
that is a powerful extension over what is possible
through behavioral investigation. Of course, the
plausibility of what is suggested by such a
computational investigation of impairment de-
pends on whether the model’s account of unim-
paired performance is plausible. As we have seen,
establishment of this depends on relevant hu-
man data to compare against, and such data can
only be obtained through behavioral investiga-
tion. Thus we return to the fact that computa-
tional investigation cannot and should not be
viewed as a replacement for behavioral inves-
tigation. However, it can provide an extremely
powerful supplement that is highly relevant for
investigation of pathology.

The key points made in the preceding
discussion can be summarized as follows:

Aspect 3 The term ‘‘computational’’ does not
indicate any necessary involvement of a
computer. Rather, it indicates that the
model is specified in sufficient detail that
the behavior predicted in a given situation
can be numerically calculated, or computed.
It incorporates a computationally specified
account (or model, or theory) of the cogni-
tive processing that underlies performance
of a particular behavioral task.

Aspect 4 Investigation of cognitive behavior
using a computational model (i.e., computa-
tional investigation) can supplement behav-
ioral investigation but does not and cannot
replace it. This is because the model must be
assessed by comparing its behavior with the
human data, which can only be obtained
through behavioral investigation.

Aspect 5 However, the behavioral investiga-
tion that provides comparison data for a
computational model would not typically
include a computationally specified account
of task performance. Thus a computational
model of that task’s performance does pro-
vide something that behavioral investigation
typically does not.

Aspect 6 In a computational investigation,
the creation of a computational account or
model of task performance necessitates
consideration of the fact that, for almost
any task, behavior has multiple determinants.
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Thus its focus is on specifying the relation-
ship between these factors in determining
task performance. In behavioral investiga-
tion, it is critical to ensure that all such
factors other than the one(s) chosen for
manipulation do not vary in task perform-
ance. The nature of the investigation does
not necessitate specification of the relation-
ship between the various determining fac-
tors. As a result, the manner in which the
behavior is multiply determined is typically
less salient.

Aspect 7 A computational model necessarily
incorporates a computational account of how
the multiple determinants of performance
in the task of interest interact in determining
the observed behavior. Thus it emphasizes
that impaired behavioral performance can
arise from impaired functioning of one or
many of these determinants. If the function-
ing of these determinants can be ‘‘impaired’’
in the model, then it provides a means of
examining what behavioral impairments are
caused by impairment of different under-
lying determinants and, conversely, a means
of examining what underlying impairment
(or combination of impairments) best ex-
plains a particular behavioral impairment.
To the extent that the model’s unimpaired
behavior can be shown to be a plausible
account of human unimpaired behavior (as
in Aspect 1), the causes and consequences of
impairment observed in the model will con-
stitute plausible hypotheses regarding
impaired human behavior. As a result, a
plausible computational model of normal
human behavior in which the various de-
terminants of performance can be system-
atically impaired offers a powerful means of
investigating pathology of the behavior.

Finally, it is worth identifying some of the
typical goals of computational investigations.
The following rough classification is not an
exhaustive list, but it may be helpful as a brief
summary of some of the motivations that
commonly underlie computational investiga-
tions. The accompanying brief discussion of
examples also indicates that these motivations
are not mutually exclusive, and models often
have more than one of them.

1. Perhaps the most basic motivation for con-
structing a computational account of per-
formance in a particular task would be to
explain the human behavior observed in that
task (most commonly, the focus is on unim-
paired behavior). This would provide a mec-
hanistic account that had presumably not
been provided before. The account might
also bring coherence to what had previously
appeared to be a diverse set of behavioral
results. Even models that may be motivated
primarily by the other motivations noted later
must satisfy this requirement of providing a
reasonable account of several psychological
phenomena, to a greater or lesser extent.

2. A further motivation might be to test
whether a particular variable in the model
has a particular hypothesized effect on
(unimpaired) behavior, in a way that
matches up with human data.
The model by Dell,3 for example, could be
characterized as having primarily the first
motivation. This model presented a compu-
tational theory of aspects of sentence pro-
duction, with a view to explaining how
typical patterns of speech production errors
might arise. It thus aimed to provide a
mechanistic account of human speech error
production and bring coherence to diverse
results in the field. In a specially designed
experiment, the results from which were also
simulated, this work also examined the effect
of several specific variables on human as well
as the model’s performance, as a means of
testing the model, corresponding with the
second motivation just noted.

3. An additional motivation might be to exam-
ine a successful model’s working so as to
operationalize or clarify some poorly under-
stood psychological construct in terms of
the model’s functioning.

4. The goal might be to show that a particular
type or style of model can simulate a partic-
ular task. This would typically be meant to
advocate for that type or style of modeling,
as a means of advocating for some broader
theoretical or meta-theoretical framework/
approach.

5. The motivation might be to challenge an
existing theoretical account of a phenom-
enon/set of phenomena by showing that an
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account framed in terms of quite different
psychological constructs can offer an alter-
native view. This might additionally, more
or less directly, advocate for an alternative
(meta-) theoretical framework.

The model by Gupta and Cohen4 could be
characterized as having primarily the third mo-
tivation—namely, to clarify and operationalize
the psychological constructs of skill learning
and repetition priming, which the authors con-
sidered to be poorly understood in the literature.
Relatedly, this work aimed to advocate for an
alternative view of behavioral phenomena that
are construed in terms of these constructs,
corresponding to the fifth motivation just
outlined. The model of Rumelhart and
McClelland,5 which presented a computational
account of English verb past-tense formation,
was intended to challenge the then-standard
account, which was framed in terms of mor-
phological rules such as ‘‘add-ed.’’ This motiva-
tion corresponds to the fifth one here. An
important additional goal of this work, how-
ever, was to advocate for the meta-theoretical
framework that is known as parallel distributed
processing (e.g., Rumelhart and McClelland6) or
connectionism, by showing that a computational
model embodying the principles of this frame-
work could simulate past-tense formation. This
corresponds to the fourth motivation here.

6. The motivation might be to offer an account
of impaired behavior in some psychological
domain. In most cases, establishing the plau-
sibility of the model’s account of impaired
performance requires providing a plausible
account of the unimpaired behavior as well,
although this latter account might not be as
extensive as for a model with primarily the
first of the motivations listed here. Such
models have been considerably fewer in
number.

The models of Hinton and Shallice7 and
Dell et al8 are two influential models of impaired
functioning that had primarily the sixth moti-
vation noted here. The first was a model that
aimed to examine how the constellation of word
reading errors observed in what has been termed
deep dyslexia could arise; this work also had the

fifth motivation, in that it sought to reconceptu-
alize thinking about this and other impair-
ments.7 The second was a model that sought
to account for patterns of impaired picture-
naming in aphasic patients as well as controls.8

The remainder of this article is divided
into two parts. In the first part, I introduce the
specific model that I use as the example for
discussion. This model offers a computational
account of how the sound patterns of words are
learned and of how novel words are repeated.
I discuss what I take the value of this model to
be with respect to psychological investigation.
In the second part, I discuss how aspects of
processing in the model can be impaired, to
create impairment of the model’s behavior and
simulate impaired processing in humans. I
discuss how the fact that the model’s behavior
is multiply determined is an important aspect
of the insight it can bring to the study of
pathology. I outline a general strategy for the
use of this model in investigating human path-
ology in word sound pattern learning and novel
word repetition. I point out how this strategy is
likely to be powerful for computational inves-
tigation of pathological behaviors in general.

AN EXAMPLE MODEL

Connectionist Models

The model I use here as an example is drawn
from my own work (Gupta and Tisdale, un-
published data, 2008). It embodies a type of
computational approach that has been termed
parallel distributed processing or connectionism. It
may therefore be useful to say something about
this type of computational approach in general.
Parallel distributed processing or connectionist
or neural network models of psychological
phenomena are comprised of simple processing
elements usually termed ‘‘units,’’ which are to
be thought of as highly abstract neuron-like
elements (‘‘artificial neurons’’). Such a unit has
connections to and from other units. The out-
going connections from a unit are thought of
loosely as axonal projections from a neuron.
These projections make contact with other
units, with such contacts being thought of
loosely as synapses. The strength of any given
‘‘synapse’’ from unit a to unit b in such a model
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is instantiated as a weight on the connection
from a to b. Thus a unit in such a model
receives input from other units via the weighted
incoming connections, summates its input,
and, if the summed input crosses some thresh-
old, transmits an output on its outgoing con-
nections, thus providing input to other units to
which it is connected. The input received by
unit b from unit a is the product of the output
emitted by a and the weight on the connection
from a to b. The connection weights in such a
model at any given point are thought of as
encoding the model’s long-term knowledge at
that point. They start at some initial random
value and are adjusted following each stimulus
processing event. The gradual adjustment of
connection weights in this way modifies the
long-term knowledge, and is therefore thought
of as learning. A variety of weight-adjustment
or learning procedures exist for such models.

Typically, such models have one set of
units that is termed an input layer. These units
are thought of as being activated by external
input stimuli. Thus the pattern of activation
present at these units is thought of as repre-
senting an externally presented stimulus. There
is also a set of units termed an output layer. The
pattern of activation present at these units
constitutes the model’s output, or behavioral
response. Thus the model responds to each
input stimulus it is presented with. The goal
of the learning procedure is to adjust the
initially random-valued connection weights so
that the model’s behavioral responses to a set of
input stimuli comes to approximate those that
would be produced by humans when perform-
ing the task that is sought to be modeled.

The Example Model

Throughout the rest of this article, I use the
term ‘‘phonological word form’’ to denote a
phonotactically legal phonological form (i.e.,
sound pattern) of English, applying the term
both to the phonological forms of real words of
English and to the phonological forms of
possible nonwords of English. The present
model takes as its input a sequence of one or
more syllables constituting a monosyllabic or
polysyllabic phonological word form, with each
phoneme in each syllable being represented

individually. After the input has been pre-
sented, the model attempts to produce as its
output the entire word form, as the correct
sequence of syllables (including correct pho-
neme representations). That is, it receives as
input and attempts to repeat phonological word
forms that are each presented as a sequence of
syllables.

The structure (architecture) of the model is
shown in (Fig. 1A) and is an adaptation of an
architecture introduced by Botvinick and
Plaut.9 The model has an input layer, at which
a representation of an entire syllable is pre-
sented, and an output layer that uses the same
representation scheme, at which the model’s
output is produced. The representation of a
syllable, at both the input and the output layers,
is in terms of a CCVCC (i.e., Consonant-
Consonant-Vowel-Consonant-Consonant)
template. That is, a syllable is represented at the
input layer across a set of units that are divided
into five slots. Activation of units in the first slot
denotes the first C (if any) of the syllable,
activation of units in the second slot denotes
the second C (if any), and so on. Within each of
these slots, the various phonemes that are legal
for that slot for English are represented as
different patterns of activations across a set of
units. For example, for the encoding scheme
used, 17 different phonemes of English are legal
for the first C slot. These phonemes were
represented as different patterns of activation
across five units constituting the first C slot.
Similarly, the 21 phonemes that are possible in
the V slot were represented as different patterns
of activation across a set of five units constitut-
ing the V slot; and so on, for the various slots
shown at the input and output layers in Fig. 1A.

The model also has an intermediate layer of
200 units. Such an intermediate layer, which
does not directly receive the model’s input or
directly produce the model’s output, is usually
termed a ‘‘hidden layer,’’ with the units it
contains typically termed ‘‘hidden units’’ (see
Fig. 1A). All units in the input layer project to
all units in the hidden layer, and all units in the
hidden layer project to all units in the output
layer, as is common in such connectionist mod-
els of cognitive phenomena. An additional as-
pect of the architecture is the self-connections
on the hidden layer (indicated by the circular
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arrow from the hidden layer back to itself),
which denote a connection from every unit in
the hidden layer to itself and to every other unit
in the hidden layer. These connections are
termed ‘‘recurrent’’ connections. The model’s
task is to accept as input a sequence of syllables
and to produce as output a sequence (for this
model, the same sequence) of syllables. It is well
established that for connectionist models that
perform sequential processing of this kind, the
presence of recurrent connections is critical.
Thus the recurrent connections in the present
model are crucial for it to be able to perform the
task of inputting and repeating phonological
word forms presented as sequences of syllables.

Figure 1B illustrates the regimen of pre-
sentation and desired output in the model, for
the example word form flugwish. The proce-
dure is the same, irrespective of whether or not
the word form has been presented to the model
previously. Following presentation of the first
syllable flug at the input, the model’s task is to
produce that same syllable at the output. The
model’s actual output may be either correct or
incorrect. Either way, after the model has
produced an output, the activation pattern
at the hidden layer is transmitted across the

recurrent connections, thus transmitting infor-
mation to itself that will arrive at the next time
step, so that when the second syllable wish is
presented, the model’s hidden layer actually
receives input from two sources: the input
representing wish, and input from its own
previous state. When presented with this sec-
ond syllable at the input, the model’s task, as for
the first syllable, is to produce the input syllable
at the output. Again, the output may be correct
or incorrect, and the hidden layer activation
pattern is transmitted across the recurrent con-
nections to be available at the next time step.
The input at this next step is actually an
indication of the end of input, denoted by
activation of the ‘‘Recall’’ unit in the input
layer. At this point the model’s task is to
produce at the output layer the entire sequence
of syllable representations previously presented
at the input layer (i.e., flug followed by wish),
and then activate the ‘‘Stop’’ unit at the output
layer, to signify the end of production of the
word form. Because this repetition must be
performed in the absence of any external input
representing the word form, the network must
necessarily have encoded some internal mem-
ory representation of the word form to allow it

Figure 1 (A) Architecture of the model. (B) Processing regimen in the model, illustrated for the word

form flugwish.
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to now produce it in correct sequence (i.e., to
perform immediate serial recall of the word
form). At each point during recall, the model’s
hidden layer receives input from activation of
the Recall unit, and from its own state at the
previous time step. (Note that the activation of
the Recall unit is only a cue and carries no
information about the specific word form that
was presented because this same unit is acti-
vated as a cue for all word forms). Overall, the
model attempts to match its own production
(i.e., repetition) of a syllable sequence consti-
tuting a word form with the observed linguistic
sequence provided by the environment. At the
end of presentation and repetition of one word
form, the model’s connections weights are
adjusted using a learning procedure for neural
networks with recurrent connections known as
back propagation through time, whose details are
beyond the scope of this article (for further
discussion, see references 9 and 10).

PHENOMENA SIMULATED
BY THE MODEL
The aim of the present discussion is simply to
provide a sense of the behaviors simulated by
the model; Gupta and Tisdale, unpublished
data, 2008). The most basic behavior exhibited
by the model was phonological vocabulary learn-
ing. Via connection weight adjustments follow-
ing repeated presentations of a set of word
forms representing those occurring in the en-
vironment, the model developed more and
more detailed internal phonological represen-
tations of them, learning to produce them with
increasing accuracy. At each point in this learn-
ing trajectory, the word forms that could be
correctly produced constituted the model’s
phonological vocabulary. Importantly, this was
a phonological vocabulary of over 100,000
word forms of English, not a small set as is
common in such models. Thus the model
learned to correctly produce (i.e., repeat) over
100,000 word forms of English, outputting
their syllables in correct order and correctly
producing all phonemes within each syllable.

The model was also able to repeat novel
word forms that had not been part of its training
vocabulary. That is, it was able to repeat what to
it were nonwords. In a series of simulations, the

model’s nonword repetition exhibited several
key phenomena that have been documented in
human nonword repetition, as follows:

1. The model’s nonword repetition accuracy
was poorer for longer than for shorter non-
words, matching human data.11

2. The model’s nonword repetition accuracy,
when assessed by syllable serial position
within nonwords, exhibited better recall
for syllables in beginning and ending serial
positions, and poorer recall for syllables in
middle positions (so-called primacy and re-
cency, or serial position effects), matching
human data.12,13

3. The model’s nonword repetition accuracy
was greater for high phonotactic probability
nonwords than for low phonotactic proba-
bility nonwords, exemplifying an effect of
phonological knowledge on nonword repe-
tition performance, matching human
data.14,15

4. The model’s patterns of errors in its non-
word repetition matched those of human
subjects repeating the same stimuli.
For instance, when a syllable of a nonword
was incorrectly produced, the syllable
structure of the target syllable was never-
theless overwhelmingly preserved, in the
model as in the human data. As another
example, the proportion of incorrectly
produced syllables that incorporated single
versus multiple phoneme errors in the
model was closely similar to that in the
human data.

VALUE OF THE MODEL
For present purposes, two aspects of the model
are valuable for furthering our understanding of
vocabulary learning and nonword repetition. In
recent years, much attention has focused on
reported links between human nonword repe-
tition accuracy and phonological vocabulary
learning (for a recent summary, see Gather-
cole1). As noted earlier, the model simulated
both these behaviors, matching human per-
formance in several ways that suggested the
model provided a plausible account of human
nonword repetition. This meant that examin-
ing the internal details of how the model
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achieved its behaviors would provide plausible
hypotheses about what might underlie human
nonword repetition performance.

This is a matter that has been the subject of
considerable debate. In brief, there have been
two opposing views (for further discussion, see
Gathercole1). One view, which Gupta and
Tisdale termed the ‘‘PSTM account’’ (unpub-
lished data, 2008), posits that PSTM causally
determines nonword repetition performance
as well as phonological vocabulary learning
ability, and it thereby explains the well-
documented link between the two. Another
view, which we termed the ‘‘linguistic account,’’
maintains it is phonological vocabulary size
that determines nonword repetition perform-
ance. The intuition motivating this account is
that an individual with a larger vocabulary has
greater phonological knowledge, and that
greater phonological knowledge supports bet-
ter performance in processing and repeating
novel phonological forms such as nonwords.
Phonological vocabulary size is, of course, de-
termined by phonological vocabulary learning.
Thus the observed correlations between pho-
nological vocabulary learning and nonword
repetition would in this view be mediated
by phonological vocabulary size, rather than
by any necessary common involvement of
phonological short-term memory (PSTM). (For
a review of the evidence for each view, see
Gathercole1).

The first aspect of the model’s value high-
lighted here is that it provides a very clear
operationalization of the construct of PSTM.
As noted earlier, the recurrent connections are
crucial for sequential processing of word forms.
We were able to show that the information
maintained by these recurrent connections
from one step of processing to the next is, in
fact, PSTM: it is information about the net-
work’s states during the past, and therefore
memory; it is information that is available only
temporarily, and therefore short-term memory;
and it is information that encodes phonological
information, and is therefore phonological short-
term memory. The value of the model in this
case is its clarification of an important psycho-
logical construct that has remained poorly
understood (corresponding to the third motiva-
tion of computational modeling noted earlier).

Gupta and Tisdale (unpublished data,
2008) were further able to show that elimi-
nation of this information in the model
completely disrupted its ability to produce
nonwords and to learn a phonological vocabu-
lary. This indicated that PSTM was crucial for
nonword repetition and for vocabulary learn-
ing, supporting the PSTM account. However,
it was also shown that nonword repetition
ability increased as a function of phonological
vocabulary size, without change in the model
parameters governing maintenance of PSTM
information. That is, the model indicated that
the postulates of both the PSTM and the
linguistic accounts are correct. This was
further supported by the model’s simulation
of the various phenomena described earlier
because some of these have been viewed as
evidence for the PSTM account and others as
evidence for the linguistic account. Because of
the model’s overall plausibility, its suggested
reconciliation of the linguistic and PSTM
accounts can credibly be viewed as applicable
to human performance.

This resolution of a theoretical debate
is the second valuable aspect of the model
highlighted here What enabled the model to
achieve this resolution? It was the fact that the
model incorporates a detailed (computational)
specification of the mechanisms underlying
each of the behaviors of interest. It was this
computational specification that enabled oper-
ationalization of PSTM, demonstration that
PSTM is crucial for nonword repetition and
phonological vocabulary growth, and demon-
stration that accuracy in nonword repetition
increases as a function of vocabulary size even
without any change in PSTM parameters.
Because the model was computationally speci-
fied, it was possible to see and demonstrate
unambiguously unambiguously that both PSTM
and vocabulary size are determinants of non-
word repetition.

As noted earlier, the computational spec-
ification of how the behaviors of interest arise
forces awareness of the fact that these behaviors
are jointly determined by very many aspects
of the model’s functioning. The consequences
of this focus on multiple determination for
examination of pathology are what I turn to
next.
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INVESTIGATION
OF PATHOLOGICAL BEHAVIOR
One aspect of the examination of pathological
behavior in the model has been mentioned
earlier: the investigation that showed elimina-
tion of PSTM information abolished nonword
repetition and vocabulary learning ability. But
this fails to speak to individual differences,
which would require showing that graded ma-
nipulation of aspects of the model yield graded
effects on performance, some in the ‘‘normal’’
range and some in an ‘‘impaired’’ range. What
would such evidence look like? This is where
the model’s multiply-determined nature is rel-
evant. Gupta and Tisdale (unpublished data,
2008) noted that impairment of numerous
parameters in the model would lead to im-
paired nonword repetition performance. In
particular, nonword repetition performance in
the model was affected by manipulation of a
parameter corresponding to PSTM but also by
manipulation of a parameter corresponding to
learning efficiency. Each of these constructs
(PSTM and learning impairment) has been
proposed as a primary cause of deficits in specific
language impairment (SLI).16,17 The findings
from the model indicate that manipulation of
each of these variables affects nonword repeti-
tion performance. This is also true of many
other processing variables the model clearly
defines that correspond with psychological or
cognitive constructs. Thus, although it is true
that nonword repetition performance depends
on PSTM, it is not the case that an observed
nonword repetition deficit necessarily implies
an underlying PSTM deficit. Likewise, for
the many other processing elements of the
model whose impairment can cause nonword
repetition problems, the impaired repetition
performance of the model does not in itself
specify which processing element/s is/are
impaired. To the extent that the model is
plausible, this is likely to be true in the
human case as well. Nonword repetition in
the model is multiply determined; the fact
that the model is computationally specified
enables unequivocal determination of this
important point.

But where does this leave the investigation
of what does underlie a particular observed
behavioral impairment syndrome or patholog-

ical condition? A model such as this still
offers an extremely powerful means—perhaps
the only means—of addressing this question
seriously.

Let us consider behavioral impairment
syndrome X. For concreteness, let us suppose
that X is conduction aphasia. This pathological
syndrome is, like most other syndromes, char-
acterized by more than one behavioral deficit
(e.g., impaired word and nonword repetition,
phonological paraphasias in production, re-
duced phonological short-term memory).
The recommended approach to investigation
of this syndrome would be to examine multiple
behavioral variables. This approach has several
components:

A. Identify multiple behavioral measures that
together characterize performance of those
with conduction aphasia (CA) and of con-
trol subjects (CS). For conduction aphasia,
some of these measures would be word and
nonword repetition scores; rates of phono-
logical errors in repetition; immediate serial
list recall scores; scores on tests of phono-
logical perception; scores on tests of seman-
tic ability; measures of novel word form
learning.

B. Identify the correspondence of processing
elements in the model with cognitive con-
structs of interest. For instance, in the
Gupta and Tisdale model (unpublished
data, 2008), there are clear correspondences
of model processing parameters to a PSTM
parameter, a phonological learning rate pa-
rameter, and a phonological discrimination
ability parameter. There are also clear cor-
respondences of structural processing ele-
ments of the model to other psychological
constructs such as input phonological proc-
essing and output phonological processing.

C. Use a computational model (or a small
number of computational models that in-
corporate the same processing elements) to
simulate behavior in each of the tasks (the
ones from which the behavioral measures
are obtained), matching the model’s per-
formance to CS performance (schematized,
for example, in Fig. 2A). This requires
determining which combination of values
of the model’s processing elements of
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interest (determined in the previous step)
produces a set of behaviors that best fit the
CS performance profile in Fig. 2A.

D. Match the model’s profile of performance
to the CA behavioral profile (Fig. 2B). This
requires configuring the processing ele-
ments of interest in the model so that the
behaviors of the model exhibit the CA
performance profile depicted in Fig. 2B.
This process is essentially identical to that
involved in configuring the model to simu-
late the CS performance profile in step C.
Note that in addition to varying parameters
of the model, simulated damage to various
structural components of the model could
also be investigated—for instance, by
varying the amount of damage to the input
phonology versus output phonology con-
nections in the model or to the hidden layer
units in the model.

E. At this point, the models simulates a variety
of behaviors in both CS and CA, all based
on variability in a small number of process-

ing variables of interest, which correspond
to psychological constructs, and/or based
on simulated damage (‘‘lesions’’) to struc-
tural components of the model that also
correspond to psychological constructs. The
difference between the CS and CA values
of these variables/ structural components
constitute the model’s hypothesis about
what is different in CA as compared with
CS. To the extent that the model is plau-
sible with respect to unimpaired (i.e., CS)
performance, this hypothesis can be con-
sidered a strong one.

CONCLUSION
In this article, I have aimed to concretize how
computational models can make a genuine
contribution to our thinking about cognitive
behavior, both unimpaired and impaired.

With respect to computational models of
unimpaired cognitive behavior, a common sus-
picion is that they are merely exercises in

Figure 2 Schematic graph of performance on multiple behavioral measures for (A) control subjects (CS)

and (B) individuals with conduction aphasia (CA).
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parameter fitting (like, for example, a regres-
sion model). As a result, it is argued, a
model’s ability to simulate a given behavioral
phenomenon does not establish its processing
mechanisms as a good account of human psy-
chological/cognitive processing, any more than
the calculations underlying the fitting of a
regression model would be. Two points here
are worth noting. First, a computational model
is, by definition, a highly specific hypothesis
about processing underlying the behavior
in question. It is this very specificity that
opens it to the charge of having no necessary
correspondence to actual human processing. In
contrast, a noncomputational theory does not
posit any mechanisms, at least, not in a rigor-
ously testable way, and therefore escapes
the criticism simply by virtue of its lack of
specificity. Second, however, it is true that the
mere fact a computational model can simulate a
certain behavior does not mean it is a good
account of that behavior.

Three principles of modeling can offset the
potential limitations of computational models
noted earlier and realize their considerable
power as tools for studying human cognitive
processing.

The first principle is that the model must
establish its plausibility by demonstrating that
the same model can simulate a range of phenom-
ena in the domain of interest. If a single model
can give an account of multiple behavioral
phenomena, without any changes in parameter
values or other structural properties, this greatly
enhances the credibility of the model and off-
sets the charge of parameter fitting.

The second principle is that the model
must account for behavior that it was not
designed to account for. The Gupta and Tisdale
model (unpublished data, 2008), for example,
was certainly designed to perform nonword
repetition, and its performance was calibrated
so it would match with human adult perform-
ance (in overall nonword repetition accuracy) at
the end of its training. However, no aspect of
the model’s design was included with a view to
simulating other phenomena it exhibits, such as
the effect of nonword length on nonword
repetition accuracy, the effect of phonotactic
probability on nonword repetition accuracy, or
the error patterns it produces.

A computational model that incorporates
these two principles can go a long way to
addressing the legitimate criticisms noted
earlier and becomes a strong candidate to be
a credible account of human cognitive proc-
essing. The most influential computational
models, many of which have fundamentally
altered our thinking about the psychological
phenomena involved, all incorporate these two
principles.

A third principle is relevant to the under-
standing of individual differences and impaired
cognitive behavior and related to the previous
two principles. If processing elements in a
model can be identified (e.g., processing com-
ponents, such as the hidden layer, or processing
parameters, such as the learning rate parame-
ter) that correspond plausibly with cognitive
constructs, and if manipulation of these varia-
bles (e.g.., through simulated damage to proc-
essing components or systematic variation of
processing parameters) can be shown to yield
individual differences analogous to those in
human behavior, in both normal and impaired
ranges, then the model has simultaneously
achieved two things: (1) it has established its
candidacy as a plausible account of the impaired
behavior and individual differences, and (2) it has
enhanced its credibility overall as an account of
the relevant human cognitive behavior(s). This
latter aspect is because the human individual
differences in performance and human impaired
performance constitute additional data that the
model was not designed to account for; and
accounting for them strengthens its adherence
to the second principle just described (in this
case, with variation of the model, but with such
variation being principled).

With the adoption of this third principle,
computational models begin to realize their
potential as tools for understanding individual
differences and impaired human cognition
(that is, understanding of pathology), as well
as to further enhance their power as models of
human behavior in general. Although few
computational models have as yet taken this
third step, especially with regard to individual
differences, it has been my aim in this article to
show that this approach is certainly possible
and should more often be taken in computa-
tional modeling.
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