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This paper outlines a bottom-up researchapproachto studyinglexical representation, emphasizingthe development
of infant phonological perception as a source of data that can illuminate the nature of phonological representations.
It is proposed that neural network formalisms can provide a useful framework for thinking about these issues. We
identify a key set of empirical results, understanding of which would yield considerable insight; this defines a modeling
agenda for investigation of phonological representations. We report preliminary simulations that explore this agenda,
exemplifying how network modeling techniques can contribute to understanding of these phenomena.

MOTIVATION

What is the nature of words? How are they represented mentally? What are the properties of these representations?
How are these representations evoked in processing speech?

These issues clearly have importance for thinking about language. For example, conceptions of lexical access in
sentence processing will differ considerably depending on whether lexical representations are conceived of as being
“static” or “dynamic”, or whether they are viewed as being “distributed” or “localist”. Investigating the mental
representation of lexical form can therefore be viewed as part of a “bottom-up” strategy to studying language. Such
investigation is also bottom-up in the sense that the development of representations of words necessarily must precede
the development of more complex language abilities in the human child.

It seems uncontroversial to suppose that the formation of representations is a major part of what goes on in the early
stages of language acquisition, especially over the first two years of life. As Aslin [1] has noted, it seems unlikely that
infants actually hear speech as meaningful units until sometime in later infancy when they begin to associate sounds
with meanings. It is therefore reasonable to think of these earliest representations as denoting the infant’s perception
of speech sounds, relatively independent of their meaning.

Consequently, it seems valuable to enquire into the nature of such phonological representations, and into the
processes by which they might develop: these enquiries would reach into the very heart of early language development.
What, then, is the nature of phonological representations? How do they develop? And how are they involved in the
processing of spoken words? Important as these issues are, little is known about them, as Lahiri & Marslen-Wilson
[13] have pointed out.

The hypothesis advanced in this paper is that neural network formalisms can provide a framework for thinking
about phonologicalperception and its development, and thus can contribute to understanding the nature of phonological
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representation and processing1. The first section of the paper outlines a specific set of developmental phonological
perception phenomena, proposing these as a test-bed for the above hypothesis. The second section of the paper reports
on some preliminary neural net simulations that explore a subset of these phenomena; the results support the hypothesis
that network formalisms may be an illuminating framework for thinking about these issues.

TOUCHSTONE PHENOMENA FOR PHONOLOGICAL PERCEPTION

This section presents and discusses selected empirical results in infant phonological perception, obtained over
approximately the first one year of life. It will be argued that these results provide a testbed for the hypothesis that
network formalisms can provide a framework for thinking about phonological perception and its development, and
thus constitute an agenda for modeling.

Categorical perception. The discrimination functions of human adults listening to phonetic segments varying along
an acoustic continuum (such as voice-onset time, or place of articulation) show peaks of discriminability corre-
sponding to the locations of phonemic category boundaries as determined by absolute identification experiments
[11]. This phenomenon, viz., the occurrence of steep crossovers for both identification and discrimination, has
been termed categorical perception. It occurs only for consonants; vowels appear to be perceived continuously
[1]. In adults, categorical perception occurs only for sounds in the adult’s native language [11]. In human
infants, categorical discrimination has been demonstrated as early as 1 month of age: the infants reacted as if
they perceived a sudden shift in the series of phonetic (consonantal) segments along an acoustic continuum,
at the same point as the adult-defined boundary between two phonemic categories. These effects have been
obtained along various acoustic continuua, and it appears that infants can discriminate virtually every speech
contrast used in one of the world’s languages; it also seeems likely that prior to 6 months of age, infants are
performing their analysis of speech sounds solely on the basis of acoustic differences, which are sufficient to
permit categorical discrimination [1].

The perceptual magnet effect. Kuhl’s work [10] indicates that adult listeners’ ratings of the goodness of exemplars
of a vowel vary, even while all exemplars are categorized as being the same vowel. Different exemplars of /i/
were rated by adults, and received different ratings of “goodness” (which were very consistent across raters),
although always being categorized as /i/. This suggests that there are “prototypically good” vowels.

Adults also show an asymmetry in discrimination of “prototypical” vs. “nonprototypical” stimuli. When adults
are presented with the “best” exemplar of a vowel repeatedly and then a “peripheral” exemplar of that same
vowel, they often fail to discriminate the difference. However, when presented with peripheral exemplars and
then tested with the “best” exemplar, discrimination is better. This is what Kuhl [10] has called the perceptual
magnet effect. According to her, the central member of the category seems to “capture” the other instances,
rendering them less discriminable.

Kuhl has also shown that infants’ responses to protoypical vs. nonprototypical vowel stimuli correspond with
adults’ goodness ratings. Stimuli were synthesized to form four concentric rings around each of two central
stimuli: an adult-rated prototypical, and an adult-rated non-protoypical /i/. Infants heard one or other of the
central stimuli as the reference stimulus, and were tested on discrimination of the surrounding stimuli. Results
from infants responding to these stimuli were as follows:

(1) Stimulus generalization for both groups, i.e., generalization of the head-turn response from the center stimulus
to the surrounding stimuli. (2) A group effect, with generalization at a given distance from the central stimulus

1There are, of course, existing accounts of phonological perceptual development [8, 21], and the present approach
draws importantly on many of their ideas. However, these previous approaches have not focussed on computational
instantiation of the frameworks they propose. Other recent work does examine phonological development from a
computational standpoint [14], but is not primarily concerned with the nature of representations or with accounting for
specific perceptual phenomena.
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being higher for the prototype-based group than for the non-prototype-based group. This is consistent with
the “perceptual magnet” effect, since greater generalization from the prototype is the same thing as poorer
discrimination from the prototype (demonstrated with adults). (3) One vector of stimuli was actually shared
between the two concentric rings of stimuli. The two groups of infants were therefore both tested on this set of
stimuli, but in opposite “directions”. Infants exposed to the prototype as the reference stimulus discriminated
only the most distant stimulus along this vector, whereas infants exposed to the non-prototype as reference
discriminated stimuli from the second nearest on. This is a direct replication of the adult perceptual magnet
effect. (4) There was a .95 correlation of adults’ goodness ratings and infants’ generalization scores around the
prototype.

Language-specificity of the perceptual magnet effect. In further work by Kuhl [12], one set of vowels was synthe-
sized around a prototypic exemplar of English /i/ and another set was synthesized around a prototypic exemplar
of Swedish /y/. For English adults /y/ is not perceived as a prototype of any English vowel, and for Swedish
adults /i/ is not perceived as prototypical of any Swedish vowel.

6-month old English- and Swedish-learning infants were tested for discrimination from both the central stimuli.
English infants showed a stronger generalization from the English /i/ stimulus to its variant stimuli, than from
the /y/ stimulus to its surrounding stimuli. The converse was true for the Swedish infants. This suggests that the
prototype structure for vowels has begun to be tuned by the ambient linguistic environment at least by 6 months
of age.

Discriminability of nonnative contrasts and its development: consonants. Cross-language studies of consonant
discrimination have revealed that, up to about 6 months of age, infants can discriminate nearly every pho-
netic contrast on which they have been tested, including contrasts comprised of phonetic segments that are not
phonemically contrastive in their language-learning environment (but that are contrastive in some other human
language).

Werker [21] and others have shown, however, that between 8 and 12 months of age, infants seem to lose the
ability to discriminate between the same nonnative contrasts that they could earlier discriminate. This loss of
nonnative contrasts only appears to take place for phonetic segments that are assimilable to a native language
category. Infants retain the ability, however, to discriminate native language contrasts.

Adult speakers are unable to discriminate many nonnative contrasts that infants can discriminate at earlier ages,
but lose by 12 months. They are able to discriminate the contrasts that infants continue to be able to discriminate.
This is consistent with the notion that nonnative segments are being assimilated to a native language category
(if a sufficiently close one exists), in both the older infants, and the adults. Adult discrimination performance
can, however, improve with training or practice.

Discriminability of nonnative contrasts and its development: vowels. In further work by Werker and colleagues
[16], English-learning infants were tested on their ability to discriminate two pairs of high front-rounded vs.
high back-rounded German vowels. All vowels were presented in the context [dVt]. One contrast involved
tense high front vs. high back (/u/ vs. /y/) and the other involved lax high front vs. high back (/U/ vs. /Y/). Both
contrasts are phonemic in German, but not in English.

Adult English speakers were as good as German speakers at discriminating between members of both contrastive
German vowel pairs. However, each back German vowel was perceived to be more like an English vowel than
was the front German vowel; in this sense, each German back vowel was designated by the experimenters as the
more “prototypical” member (for English adults) of each contrasting German pair.

4-month-old English-learning infants were able to discriminate between members of both contrastive German
vowel pairs, irrespective of whether the more or less prototypical member served as the background category.
6- to 8-month-old English-learning infants were able to discriminate the German contrasts when the background
stimulus was the non-prototypical member, but not when it was the prototypical member. By 10-12 months,
English infants no longer discriminated the German contrasts, irrespective of the “direction” of testing.
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The above results can be summarized as follows. (1) First, the perceptual magnet effect seems to exist for vowels,
but not for consonants. (2) There is also another basic difference in adult perception of vowels vs. consonants. For
phonemically contrastive consonant sounds in the listener’s native language, there are steep crossovers for both labeling
and discrimination. For nonnative listeners, category labeling boundaries are absent, less sharp, or do not coincide with
those of native listeners. Adults have considerable difficulty discriminating certain nonnative constrasts. The situation
is slightly different for vowels: as with consonants, there are steep crossovers for labeling of phonemically contrastive
vowels in the listener’s native language. Discrimination, however, is more continuous, for both native and nonnative
listeners, and in fact the discrimination abilities of nonnative listeners are typically quite good compared with those of
native listeners. However, these discrimination abilities appear subject to the “perceptual magnet” effect. (3) Infants
are initially sensitive to virtually any native or nonnative phonemic contrast, whether between vowels or consonants,
up to about 4 months of age. (4) Beyond this age, their sensitivities seem to get attuned to environmental (native)
language sounds, leading to loss of sensitivity to nonnative contrasts by 6-8 months for vowels, and by 10-12 months
for consonants. (5) For vowels, there seems to be an intermediate point (around 6-8 months) in this loss of sensitivity.
At this intermediate point, discriminatory ability is preserved only if the nonnative sound serving as reference stimulus
is not prototypical, i.e., similar to a native language sound.

These data represent some of the central findings in infant speech perception over the last four decades, and
constitute a key and inter-related set of phenomena. An important aspect of the phenomena is their developmental
nature, as well as the developmental progression in which they occur. Providing a computational account of these
data would yield considerable insight into fundamental questions regarding the nature of phonological representation.
This set of phenomena is therefore proposed here as a testbed for investigation of the nature and development of
phonological representations via network modeling techniques, in much the same way that a miniature language
acquisition problem has been proposed by Feldman and colleagues [2] as a touchstone for cognitive science.

The next section describes simulations that begin to explore this modeling agenda; the results demonstrate the role
that neural network techniques can play in thinking about phonological representation and processing.

SIMULATIONS: LOSS OF NONNATIVE CONTRASTS

As discussed above, infants lose sensitivity to nonnative contrasts towards the end of the first year of life. In
particular, it has been found by Werker and colleagues [21] that English-learning infants aged 6-8 months are able to
discriminate Hindi and certain other nonnative contrasts, while infants aged 10-12 months are mostly unable to do
so, as are adult native speakers of English. However, English-learning infants at all ages, as well as adults, retain the
ability to discriminate certain other nonnative contrasts, such as that between two Zulu clicks.

Part of Werker’s account of these phenomena is that both sounds in the Hindi contrast (involving a dental vs. a
retroflex [ta]) may by the later age have become assimilated to the native English alveolar /ta/, and thus ceased to be
discriminable. The Zulu clicks, on the other hand, may not be easily assimilable to any known category, and hence
remain discriminable. The intuition is that the infant’s mental perceptual landscape initially has a topology that allows
for discrimination between virtually any speech stimuli; however, this topology is altered by exposure to the native
language environment in such a way that nonnative distinctions become blurred and no longer discriminable.

In neural network terms, such properties might be expected to follow naturally from the development of attractor
states. The idea here is that the energy landscape in the network initially has low-energy basins (i.e., attractors)
corresponding to essentially each possible phonetic segment. However, learning through exposure to the native
language re-sculpts this energy surface, and the attractor states that continue to exist are those that correspond to the
phonemes of the native language.

To examine the ability of neural networks to flesh out these intuitions, we constructed simulations in which
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Figure 1: Input representation for phones and demisyllables.

networks’ responses to “nonnative” stimuli were examined both before and after training on a set of “native” stimuli.

Input Representation and Data

The actual input set comprised a set of demisyllables, representing the “native language” sounds to which an infant
might be exposed. Of course, a human infant is in reality not exposed to streams of syllables, but rather, to actual
linguistic utterances. Gupta & Mozer [3] have shown how demisyllables can be extracted from words, using a simple
mechanism based on autopredictive error and stress level, while Gupta & Touretzky [6, 4, 5] have examined the ability
of a perceptron to assign stress to syllables. The details of this processing are not important for present purposes;
we simply assume some such prior processing that extracts demisyllables from actual words, as a result of which the
infant’s phonological perceptions are structured in terms of demisyllables. There appears to be considerable agreement
that this is the case with human infants [8]. Thus the input corpus we used comprised the syllables ba be bi d@ di do
g@ ga ge go k@ ka ki ko la ma mi mo pa pe pi po t@ ta ti to.

To represent these syllables, we used a phonetic feature representation scheme proposed by Shillcock et al. [20],
in which each possible phone is encoded in terms of a set of 9 feature values, which are intended to have physical
correlates in the speech signal. These features are: (1) oral cavity openness, (2) palatality, (3) labiality, (4) occlusion,
(5) aperiodic energy, (6) nasality, (7) apicality/coronality, (8) velarity/centrality, and (9) voicelessness [20]. Figure 1
shows the encoding of the phones [b], [a], and [i] in terms of these 9 features. Each bit of the 9-element vector shown
in the figure represents the value for that phone on one feature dimension. To encode a syllable such as ba, we simply
superimposed the 9-element vectors representing the two segments b and a, as also shown in Figure 1.

To examine the model’s responses to unknown sounds, a “dental” and “retroflex” t were simulated by modifying
the value of the “coronality” feature, from 1.0 for the alveolar t, to 0.7 and 0.3 for the dental and retroflex versions
respectively. These were used to create “nonnative” stimuli: a dental ta, which will be denoted by t(d)a, and a retroflex
ta, denoted by t(r)a. The syllables na and nga were treated as a second nonnative contrast, since neither of them was
included in the input corpus.

Network Architecture and Processing

Three alternative architectures were investigated (Figure 2). These were (1) a Deterministic Boltzmann Machine
(DBM) [15, 7], (2) a Competitive Learning network (CL) [19], and (3) a Multi-Layer Perceptron (MLP) [17]. In each
case, the input to the network was the nine-element vector representing a demisyllable. For the DBM and MLP, the
task of the network was to reproduce the input layer vector at the output layer (see Figure 2). For the CL architecture,
the task was to categorize the input layer vector, by turning on exactly one of the output layer units.

For the DBM, the output activation is obtained by applying the input vector, and then performing synchronous
updates of unit activations in repeated cycles until the magnitude of changes in unit activations falls below a specified
criterion, i.e., until the network settles. The output unit activations at this time constitute the network’s response. For
the MLP, the output layer activation is produced by propagating the input vector forward in one pass. For the CL
architecture, the “winner” is chosen to be the unit with weights closest to those of the input vector, as in the standard



Prahlad Gupta, Phonological Representations: A Modeling Agenda 6

INPUT
LAYER

HIDDEN   LAYER

OUTPUT
LAYER  9

20

9

OUTPUT   LAYER

INPUT
LAYER

200

9
INPUT
LAYER

HIDDEN   LAYER

OUTPUT
LAYER  9

20

9

DBM CL MLP

Figure 2: Classification network architectures. Deterministic Boltzmann Machine (DBM); Competitive Learning
Network (CL); Multi-Layer Perceptron (MLP). Numbers indicate number of units in a layer. Arrows indicate
connectivity.

Table 1: Responses of CL classification network to nonnative stimuli.
Before training After training

ta 153 ma 92 ta 153 ma 92
t(d)a 153 na 149 t(d)a 153 na 100
t(r)a 50 nga 204 t(r)a 153 nga 39

Note: The numbers identify the unit responding to a particular stimulus.

algorithm [9], but with the additional requirement that the error for the winner be below a specified criterion; if it is
not, an “uncommitted” unit is chosen to be the winner. During training, this error criterion was progressively relaxed.

Weight adjustment for the autopredictive network and MLP classification network was via the back-propagation
algorithm [17]. Weights in the DBM classification network were adjusted via contrastive Hebbian learning [7]. In the
CL classification network, the winner’s weights were adjusted via the standard competitive learning equation [9].

Simulation of Loss of Sensitivity to Nonnative Contrasts

The networks were tested on the nonnative stimuli prior to any training on the input corpus. They were then trained
on the input corpus for 20 to 100 epochs, and then tested again on the nonnative stimuli.

For nonnative stimuli before training, results from the CL classification network are shown in the left-hand part
of Table 1. The numbers are merely identifying labels for the unit responding to a particular stimulus. As shown,
the nonnative stimuli are responded to by different units, indicating their discriminability 2. Results from the CL
classification network after training are shown in the right-hand part of Table 1. The same unit now responds to ta,
t(d)a, and t(r)a, indicating that the nonnative stimuli have been assimilated to the known ta category. The na and nga
stimuli are still responded to by different units, however, indicating that they are not assimilable to known categories.

Equivalent results were obtained with the DBM, but not the MLP architecture. Output responses of the DBM
classification network are shown projected onto the first two principal components, before training (Figure 3a). The

2Both ta and t(d)a are responded to by the same unit, suggesting that these stimuli are already “perceived” as
similar. More importantly, however, the two nonnative stimuli t(d)a and t(r)a are perceived as distinct.
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Figure 3: Responses of DBM and MLP classification networks to nonnative stimuli before and after training, projected
onto the first two principal components. (a) DBM before training. (b) DBM after training. (c) MLP before training.
(d) MLP after training.

network’s responses are quite widely separated in state space, indicating discriminability of all the stimuli. After
training, however (Figure 3b), responses to the stimuli are much less dispersed in state space. Note, however, that na
and nga are considerably further dispersed than are t(d)a and t(r)a. These results are analogous to those obtained with
the CL architecture. With the MLP architecture, however, the opposite trend appears: responses to the stimuli are
more widely dispersed after training (Figure 3d) than before training (Figure 3c).

These results can also be examined in terms of the average pairwise distance between members of the ta–t(d)a–t(r)a
and ma–na–nga triples. With the DBM, the ratio of this average distance after training to the average distance before
training was 0.42 for the stops, and 0.57 for the nasals, illustrating that discriminability had decreased for both groups,
but more so for the stops. With the MLP architecture, however, the after-before ratio was 2.77 for the stops and 15.01
for the nasals, indicating that the members of each group had become more discriminable after training.

The results obtained with the CL and DBM architectures demonstrate lost sensitivity to certain nonnative contrasts
as well as retained sensitivity to certain other nonnative contrasts. This models the observed developmental phenomena,
and also provides a computational account of such a process, and thereby a basis for understanding why the observed
selective loss of nonnative contrasts in infants might arise. As the perceptual (“classification”) system develops, it
becomes attuned to, and begins to categorize, sounds occurring in the environment. Other (nonnative) sounds now
tend to be interpreted in terms of the categories developed for known, occurring sounds.
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We began by hypothesizing that the computational notion of attractor states might aid in understanding the
phenomena of interest. Pursuing this idea, we now consider the properties of the various classification network
architectures examined. First of all, attractor states necessarily develop in the DBM, by virtue of its network dynamics.
Its learned states thus represent basins of attraction; and this means that inputs similar to those that have been learned
will tend to result in one of these attractor states. Second, the CL classification network approximates this property of
the DBM, in that an input is mapped to the output unit with most closely similar weights, that is, in virtue of the output
rule by which a winner is selected. Third, in a purely feedforward MLP, something like attractor states can develop
under certain training regimes. For example, if an MLP is trained to categorize its inputs by turning on particular output
units, then the weights developed in this task, together with an output interpretation procedure, will yield input-output
mappings that have some of the properties of a system with attractor dynamics, in that many inputs will map onto
a particular output state, and in that a given input will be classified by the most activated output unit. However, the
MLP in the present case was trained to reproduce its input; such a training regime would not be expected to induce
attractor-like properties.

The fact that the loss of nonnative contrasts is simulated with the CL and DBM architectures, but not the MLP
architecture is therefore interesting, suggesting that the formation of attractor states is necessary to simulate this
developmental trend. In the present simulations, the MLP does not form attractors, and is therefore unable to capture
this phenomenon. Althoughthese results need further investigation, they provide preliminary support for the hypothesis
that attractor states may be a valuable notion in understanding phonological perception.

This simulation thus yields an interesting new way of thinking about phonological representations: as attractor
states that are sculpted in perceptual space by exposure to language-specific input. This not only providescomputational
specification to the intuition we began with, it also provides a demonstration of how application of network modeling
techniques to the set of “touchstone” phenomena proposed in this paper may begin to provide greater understanding
of the nature and development of phonological representations.
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