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Abstract

It is widely held that there is a distinction between attentive and
automatic cognitive processing. In research on attention using
visual search tasks, the detection performanceof human subjects
in consistent mapping paradigms is generally regarded as indi-
cating a shift, with practice, from serial, attentional, controlled
processing to parallel, automatic processing, while detection
performance in varied mapping paradigms is taken to indicate
that processing remains under attentional control. This paper
proposes a priority learning mechanism to model the effects of
practice and the development of automaticity, in visual search
tasks. A connectionist simulation model implements this learn-
ing algorithm. Five prominent features of visual search practice
effects are simulated. These are: 1) in consistent mapping tasks,
practice reduces processing time, particularly the slope of reac-
tion times as a function of the number of comparisons; 2) in
varied mapping tasks, there is no change in the slope of the
reaction time function; 3) both the consistent and varied effects
can occur concurrently; 4) reversing the target and distractor
sets produces strong interference effects; and 5) the benefits of
practice are a function of the degree of consistency.

Introduction
Human performance changes dramatically as practice devel-
ops, leading to improved performance and a decrease in de-
mands made on attentive resources. Many frameworks have
discussed this transition (see [Shiffrin & Schneider 1977]).
However, there is no generally accepted model of how per-
formance changes with practice. Moreover, although theo-
retical frameworks have been proposed, they have generally
not provided a detailed computational account of hypothesized
processing.

In this paper, we present a computational model of practice
effects in visual search tasks (see discussion below), which
have played an important role in research on attentional pro-
cesses. The term attention is generally used to indicate aspects
of human cognitive processing that the subject can control,
and that involve capacity or resource limitations. Attentional
processing is taken to be a slow, serial activity, with the focus
of attention limited to being one thing at a time. However,
with practice in consistent tasks, automatic processes develop
allowing parallel processing that is faster and not as limited by
attentional resources1.

The distinction between controlled and automatic processes
has been the focus of much research in the field, particularly
in visual search tasks. In such tasks, stimuli are presented
visually to the subject, who is required to detect the presence
of members of a set of target stimuli (the memory set). Non-
target stimuli are termed distractors. In consistent mapping
paradigms, a target stimulus will never appear as a distractor
on any trial – for example, the subject has to search the display
for the memory set digits (e.g., the digitsf8 4 5 2g) on all trials,
with the remaining digits appearing as distractors. In varied
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1See [Shiffrin 1988] for an excellent review of research on attention.

mapping paradigms, targets on one trial may be distractors on
another trial (e.g., the targets that the subject has to search for
on a particular trial have been selected in the experiment by
randomly sampling four of the ten digits, with the non-selected
items being potential distractors; since a new sample is taken
every trial, individual digits change roles as targets/distractors
over trials).

A reliable finding from varied mapping studies is
that reaction time increases roughly linearly with mem-
ory set size ([Kristofferson 1972a]). Consistent map-
ping studies have found that, with practice, search
becomes much faster and memory set size has less
impact on reaction times than in the varied map-
ping condition ([Neisser 1963, Neisser, Novick & Lazar 1963,
Kristofferson 1972b, Schneider & Shiffrin 1977]).

These findingshave led to the hypothesis that, in varied map-
ping, each item in the display is serially compared with items
in the memory set, with each comparison taking on the order
of 50 msec. In contrast, practice in the consistent mapping
condition leads to a switch from serial, attentional, to parallel,
automatic processing ([Shiffrin 1988]).

Our focus in this paper is on priority learning, which we
propose as a mechanism that models the effects of practice, and
the development of automaticity, in visual search tasks. We
review specific experimental results that have been obtained in
studies involving visual search tasks, and present simulations
indicating how priority learning can provide an account of the
observed practice and automaticity effects.

An architecture for attentional effects in visual
search tasks

This section describes briefly the larger architecture for at-
tentional processing within which the priority learning model
is embedded. The modular architecture (Figure 1) combines
standard connectionist components such as connectionist units
in a multi-layer organization (see [Rumelhart et al. 1986], for
example) with control elements that modulate the flow of
information between modules. The control involves a gat-
ing unit (Unit 1 in the figure) that provides a scalar mul-
tiplication of a module’s output vector. The gating unit
receives input from priority units within the module, and
from an external attentional control that coordinates activ-
ity between modules. This architecture parallels certain
aspects of neurophysiology, and is detailed elsewhere (see
[Schneider & Detweiler 1987, Shedden & Schneider 1991,
Schneider & Oliver, forthcoming]).

Figure 1 illustrates the overall model of a visual search task.
“Visual” modules V1 and V2 represent areas of cortical visual
processing, each corresponding to the small area of the visual
field in which one stimulus appears. Each module consists
of an input layer (labeled I in the figure) and an output layer
(labeled O). The input layer projects via weighted connections
to the output layer, which projects to a module at the next
level of processing (Level 2). Each module also has a layer
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Figure 1: Architecture of the model. Stimuli from earlier stages
of visual processing enter the input layers I of visual modules V1 and
V2 and propagate forward to the output layers O (Level 1 of pro-
cessing). The output layer vectors are sequentially transmitted (under
external attentional control) to a comparator module (not shown),
where they are serially compared with memory set items. Stimuli
in the input layers of V1 and V2 also evoke a priority level activa-
tion over the layer of priority units P, which also receive feedback
from the comparator module. The priority levels provide the basis
for a transition from serial transmission and comparison of stimuli
(attentive processing) to parallel, automatic processing (see text).

of priority units (labeled P), which receives input from the
module’s input layer.

Unit 1 within each module “gates” the forward propagation
of activation from the output layer. When this gating is in ef-
fect, no vector transmission from the outputlayer of the module
takes place, although the activation of the output layer is un-
changed (e.g., as in the inhibition of the axon initial segment,
but not the soma, of a neuron – see [Douglas & Martin 1990]).
However, the external attentional control can (by exciting Unit
2, which inhibits Unit 1) inhibit Unit 1, which will release
Unit 1’s gating effect and lead to onward transmission of the
vector in the output layer of that module. The attentional con-
trol thus provides for the sequential transmission of vectors
from the visual modules, which models the shifting of atten-
tion from one area of the visual field to another, i.e., from one
displayed stimulus to another, in the visual search task (see
[Detweiler & Schneider, forthcoming]).

When the output layer vector of each module propagates
forward in turn, it is compared serially with memory set items
in a “comparator” module (not shown in Figure 1)2. If a visual
stimulus matches a memory set item, then the output vector
of that visual module also propagates forward to a “motor”
module at Level 2 , initiating the motor sequence necessary to
produce the detection response.

This paper describes the priority learning aspects of the
model, whereby learning alters the activity of the priority units

2This comparison can be performed by summing the transmitted vector
with each memory set item into a layer of connectionist units. The sum of the
squared activation of each unit in the receiving layer then provides a measure
of the correlation, or similarity between the two vectors. If activation is above
a criterion level, there is a match of the stimulus with a memory set item,
otherwise no match. See [Shedden & Schneider 1991] for details.

and allows automatic transmission of the output in the absence
of attentional control.

Priority learning
A sensory system that includes parallel input at early stages
with serial processing at later stages would benefit from
a filtering system that prioritizes inputs for limited se-
rial processing. Early visual input processing is parallel
([Ericksen & Spencer 1969]). With a priorityfiltering scheme,
a serial processing system can processes stimuli in their or-
der of importance following the rating of stimuli based on a
parallel low level interpretation of stimuli ([Norman 1969]).
This allows the most important stimulus to be processed
first. Humans appear to have such a priority filtering scheme
([Yantis & Johnson 1990]).

Our computational implementation of priority filtering is in
the form of a connectionist network that associatively maps
each input vector to a scalar priority. For example, in visual
search, each letter would evoke a unique input vector of length
50 in a module (see Figure 1). Each input vector would asso-
ciatively evoke a scalar value specifying the priority (on a scale
of 0 through 10, represented by activation of the priority units)
for that input vector. Input vectors evoking a high priority
are transmitted to higher levels whereas low priority vectors
are gated off, blocking the transmission. Many modules in
the visual system can receive input simultaneously, with the
respective input vectors each evoking a priority level, in par-
allel. If only one module contains a high priority target, it will
"pop out" of the display ([Triesman 1988]). This occurs by
having the priority units inhibit the gating units, thus allowing
the output vector to be transmitted automatically to the next
level of processing3.

The priority units must be trained to associate input vec-
tors to the appropriate priority levels. This is accom-
plished in the current model via feedback from the com-
parator stage. We assume that processing at the compari-
son stage results in higher output for more important stimuli
([Schneider & Detweiler 1987]). A scalar transform of this
output signal is fed back to all modules at the earlier stage.
This becomes the target level for the priority units of the trans-
mitting module. Shortly after a vector is transmitted out of a
module under External Attentional Control, the priority units
are re-trained to approximate the feedback signal via associa-
tive learning.

The net result of priority learning is that if the stimulus
in a visual module turns out to be a target, then the priority
learning network is re-trained to evoke a higher priority than
was currently evoked; if the stimulus turns out to be a distractor,
then the priority learning network is re-trained to evoke a lower
priority than was currently evoked.

The predicted effects of the learning of priorities are as fol-
lows. In a consistent mapping task over time, stimuli that
enter modules V1 and V2 and correspond to targets will evoke
increasingly high priorities in those modules, while stimuli

3Figure 1 shows the excitatory connectionsfrom the priority units to Unit 2,
which inhibits Unit 1. If the priority level evoked by a stimulus is above some
threshold, Unit 2 can inhibit Unit 1 sufficiently to release its gating effect on the
output layer, resulting in an “automatic” transmission from the visual module
to the motor module. In this case, the motor response is triggered without
any sequential scanning of modules under attentional control, or comparison
of the stimulus in a module with memory set items. For simplicity, we have
omitted discussion of control signals from the priority units to the external
attentional control. These are described in [Schneider & Detweiler 1987], and
provide a mechanism for external attentional control to entirely ignore a very
low priority stimulus, i.e., to fail to initiate transmission from that module to
the comparator.



Gupta & Schneider, Attention, Automaticity, and Priority Learning 3

corresponding to distractors will have increasingly low priori-
ties. Once the priorities evoked by a target stimulus in modules
V1 or V2 have crossed threshold level � , the presentation of
that stimulus in either of those modules will lead to automatic
transmission from the output layer of that module to the motor
module, without sequential scanning of the modules, or serial
comparison of their “contents” with memory set items. For
distractor stimuli, low evoked priorities result in their being
ignored by the attentional control. Thus, serial, attentional
comparison is supplanted by parallel, automatic processing,
resulting in reduced reaction times for the detection of targets,
and in the independence of reaction time from memory set size.

In a varied mapping task, however, since a particular stim-
ulus is sometimes a target and sometimes a distractor, there
is no gradual increase/decrease of priorities for different sets
of stimuli. Instead, the priority levels of stimuli will tend to
fluctuate around the default priority level. That is, the evoked
priority levels of presented stimuli do not cross threshold, and
so there is no automatic over-ride of attentional processing,
and no “ignoring” of stimuli. The production of the detection
response has to continue to be through serial attentional com-
parison. Accordingly, there will be no decrease in reaction
times, or in their linear relationship with memory set size4.

Implementation of priority learning
We ran simulations of the priority learning component of the
architecture outlined above, using a single two-layer connec-
tionist network incorporating the input layer and priority layer
of one visual module shown in Figure 1. Our aim was to
examine whether a priority learning scheme would provide a
basis for the practice effects observed in consistent mapping
and varied mapping paradigms.

Stimuli entering the network’s input layer (Input, corre-
sponding to layer I in Figure 1) are vectors of length 50, with
each element being in the range �1:0; that is, the input layer
consists of 50 units. The priority layer (Priority, correspond-
ing to layer P in Figure 1) consists of 10 units 5. A stimulus in
Input is transmitted in feed-forward fashion to Priority. Net
input to each priority unit is computed as the weighted sum
of inputs from all the input units. The priority level evoked
by a stimulus is computed by a simple count of the number of
priority units in Priority that have positive net input. Thus if
all ten priority units have negative net input, the priority level
is computed as 0; if n priority units have positive net input, the
priority level is n, with the highest possible priority being 10.
Bias to the priority units is distributed linearly over the range
�0:40, so that five priority units have a positive bias, and five
a negative bias. In the absence of input to the priority units
from Input, therefore, the evoked priority level has the default
value of 5.

When a stimulus is presented to the network, a priorityvector
is evoked at the priority layer. The network is then re-trained
to evoke, for the current stimulus, either a higher priority level
than currently evoked (if the current stimulus is designated
a target), or a lower priority level than currently evoked (if
the current stimulus is designated a distractor)6. This will be
referred to as the incrementing and decrementing of priority,
respectively. The simulations described here have employed

4Atkinson & Juola ([Atkinson & Juola 1973]) have presented a similar
model of recency learning, in which stimuli of intermediate familiarity require
attentional scanning while novel stimuli do not.

5Although our simulations have used a layer of 10 priority units, it should
be possible to achieve the same effects with a single priority unit.

6The higher or lower priority levels correspond to modulation of priority
layer activations by feedback from the comparator module.

the Widrow-Hoff learning algorithm([Widrow & Hoff 1960]).
One epoch consisted of presentation of the entire set of stimuli,
with appropriate incrementing/decrementing of priority after
presentation of each stimulus.

Simulations of priority learning
Simulation 1: Consistent mapping. In consistent map-
ping studies with human subjects, the rate of search has been
shown to become much faster with practice ([Neisser 1963]).
Studies with well-practiced human subjects have exhib-
ited reaction times that varied relatively little with mem-
ory set size ([Schneider & Shiffrin 1977, Experiment 2],
[Neisser, Novick & Lazar 1963]).

In our simulations of consistent mapping, the training set
for a module consisted of 16 random vectors, which were
partitioned into two disjoint sets of 8 stimuli each, one set being
designated targets, and the other distractors. During priority
learning, the evoked priorities were consistently incremented
or decremented for the two sets of stimuli respectively.

The results of the consistent mapping simulations are shown
in Figure 2a. The slopes show the evoked mean priority level
of targets and distractors, as a function of training (epochs).
With increased epochs of training, target stimuli come to evoke
increasingly high priorities, while distractor stimuli have in-
creasingly low priorities. As discussed in the section on pri-
ority learning, a visual module in which a stimulus evokes a
priority level of greater than some threshold � will automati-
cally transmit the vector in its output layer.

Figure 2b shows reaction times for targets in consistent map-
ping experiments with human subjects, who were trained over
a period of 36 days ([Kristofferson 1972b]). Memory set sizes
of one, two and four were used. For each set size, there was a
decrease in reaction time over the training period, which is in-
terpreted as being largely due to speeding up of non-attentional
components such as the motor response component of the task,
which is also the case in varied mapping tasks ([Shiffrin 1988,
page 748]). Figure 2b also illustrates the non-linear set size
functions characteristic of consistent mapping.

The priority levels of targets in our simulations of consis-
tent mapping give rise to similar reaction times. On each
epoch, search time S for a target was simulated as follows.
If the priority level evoked by the stimulus was greater than
a threshold level � , then the stimulus would evoke automatic
detection, taking “automatic response time” A. If the priority
level was below threshold, then the target would have to be
compared serially with memory set items, with each such com-
parison taking a constant “comparison time” C. We assumed
non-terminating search, so that the number of comparisons re-
quired is equal to memory set size m. Total reaction time for
a target was therefore calculated as (i) a base time B, repre-
senting non-attentional factors, plus (ii) search time S, which
was either (a) automatic detection time A (if the priority level
was greater than � ), or (b) controlled response time equal to
comparison time C times memory set size m (if the priority
level was less than �).

The time per comparison C was taken to be 50 msec, and
the time for an automatic response, 40 msec. We used priority
threshold � = 8:0. We used a base reaction time B of 290 msec,
which decayed to about 230 msec over 200 epochs of training,
simulating the speed-up of non-attentional components of re-
action times7. Figure 2c shows the simulated reaction times,

7These figures were derived from the human subject data by subtracting
the time for one attentional comparison (50 msec) from total reaction time for
memory set size one (a) at Days 1-6 (approximately 340 msec), and (b) at
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Figure 2: Priority learning simulation results. (a) Priority levels in consistent mapping simulation (Simulation 1). (b) Human subject
reaction times for target stimuli in a consistent mapping task, after M. Kristofferson, “When Item Recognition and Visual Search Functions are
Similar”, Perception and Psychophysics, 12, p.381. (c) Simulated reaction times for targets, averaged over five consistent mapping simulation
runs (Simulation 1). (d) Priority levels in varied mapping simulation (Simulation 2). (e) Human subject reaction times for all stimuli in a varied
mapping task, after M. Kristofferson, “Effects of Practice on Character Classification”, Canadian Journal of Psychology 26, p.57. (f) Simulated
reaction times for all stimuli, in varied mapping simulation (Simulation 2). (g) Priority levels with reversal of targets/distractors in consistent
mapping (Simulation 4). (h) Detection accuracy with reversal of targets/distractors in consistent mapping (Simulation 4). (i) Priority levels of
stimuli with varying degrees of consistency (Simulation 5).



Gupta & Schneider, Attention, Automaticity, and Priority Learning 5

for memory set sizes of one, two and four. Levels of practice
are shown in terms of average reaction time over blocks of
50 epochs, corresponding to the average reaction times over
blocks of days in Figure 2b.

As in the human data (Figure 2b), the simulation results
(Figure 2c) show a downward shift (with practice) of reaction
times for each memory set size; this is the combined result of
decreasing base response times as well as of developing auto-
matic responses. Moreover, the reaction times for different set
sizes at a particular level of practice exhibit the non-linearity
expected in a consistent mapping task. Overall, the simulation
results appear to model the human data quite well8.

Simulation 2: Varied mapping. Varied mapping studies
with human subjects have found that search time continues
to be a linear function of memory set size, even after practice
([Kristofferson 1972a]). In our simulations of varied mapping,
the training set for a module consisted of 16 random vectors.
The priority level for each stimulus was incremented or decre-
mented at random, modeling the effect of stimuli not being
treated consistently either as targets or distractors.

Results from the varied mapping simulations are shown in
Figure 2d, which plots the mean evoked priority of all stimuli.
The mean priority levels fluctuate around the “default” priority
level of 5, even with extended practice, as a result of the non-
consistent treatment of stimuli. Note that in the simulation
results shown, there is an initial random increase in mean
priority; in other simulations, there was an initial decrease in
priorities. But in all cases, the mean priority settled around the
value of 5.

Human reaction times from a varied mapping task
([Kristofferson 1972a]) are shown in Figure 2e (all stimuli),
which shows that detection times remain linear with memory
set size, even with extended practice. The priority levels of
stimuli in our varied mapping simulation give rise to similar
reaction times, calculated in the same way as for consistent
mapping (Figure 2f). As in the human subject data, practice
does not change the linearity of set size functions. The reason
for this is that, since few stimuli achieve threshold priority
levels, serial comparison remains the only basis for target de-
tection. Automatic detection does not develop, and therefore
search functions remain linear with set size. Thus our simula-
tion provides a good match with the observed varied mapping
results9.

Simulation 3: Consistent & Varied mapping combined.
Schneider and Fisk conducted an experiment in which subjects
were asked to carry out a consistent mapping task and a var-
ied mapping task simultaneously ([Schneider & Fisk 1982a]).
The findings were that both tasks could be accomplished si-
multaneously about as well as when each task was carried out
alone.

Days 31-36 (approximately 280 msec). This decrease in base time, from 290
msec to 230 msec, was fitted by an exponential function with constant 0.9985,
as a first approximation.

8Our model predicts that reaction time functions will become perfectly flat
at some point. This does occur in our simulations, by approx. 400 epochs of
training.

9Note that the behavior of the slopes of simulated reaction times fit the
human data quite well, which was the major focus of interest in this paper.
By contrast, the changes in intercept (i.e., base reaction time) in simulations
do not fit the human data well. This is because simulation of the base time
practice effect did not include an asymptote effect and hence overestimated
the decrease in base time. With humans, decreases in base time seem to
asymptote at approximately 200 msec. Adding an additional parameter to the
model would allow a goodfit of both the constant slope and declining intercept
effect in varied mapping.

We ran simulations in which 32 stimuli were partitioned into
two sets of 16 stimuli each. One set of 16 stimuli represented
a consistent mapping task: 8 of the stimuli were treated as
targets, and the other 8 as distractors. The other set of 16
stimuli represented a varied mapping task, and the stimuli
were treated randomly as targets and distractors. One epoch
involved presentation of all 32 stimuli, and represented the
simultaneous performance of both the consistent and varied
mapping tasks on different sets of stimuli.

The priority levels of consistently mapped stimuli (which
were consistently either targets or distractors) separated as in
the consistent mapping task alone. The average evoked prior-
ity of the varied mapping stimuli remained close to the default
priority level of 5, as in the varied mapping task alone. Thus
the priority levels of both the consistent and varied mapping
stimuli were similar to those in each of the tasks performed
independently, indicating that practice effects in the combined
consistent and varied mapping task can be modeled in terms
of priority learning under the same assumptions as for the
independent tasks, in conformity with the findings of the ex-
periment described above.

Simulation4: Target/distractor reversal in consistent map-
ping. Implicit in the priority learning scheme we have pre-
sented is the hypothesis that, in consistent mapping, with prac-
tice, target stimuli come to “attract attention” to themselves.
Shiffrin and Schneider empirically verified the prediction that
if the set relationshipsare reversed after the prioritieshave been
established, subjects’ performance deteriorates below that of
novice subjects. For example, in initial practice, targets might
be fA B Cg, with fX Y Zg as distractors. After reversal, fX
Y Zg would be the targets, and fA B Cg the distractors. This
reversal is expected to produce deterioration because the stim-
uli that were previously targets attract attention away from the
previous distractors that become the new target stimuli.

In the experiments, subjects practiced a consistent mapping
task ([Shiffrin & Schneider 1977, Experiment 1]). Once per-
formance had stabilized (2100 trials), targets and distractors
were interchanged. On reversal, detection accuracy dropped
to below the level it had been at the beginning of the original
consistent mapping task (approximately 50 percent), and 900
trials were needed for accuracy to return to the novice level
with targets and distractors reversed. Subsequently, gradual
re-learning occurred, and accuracy reached the previously es-
tablished level.

We simulated this reversal in a consistent mapping task. A
consistent mapping simulation was run with a set of target
stimuli and a set of distractor stimuli for 1000 epochs. At
the end of 1000 epochs, the targets and distractors were re-
versed, i.e., the priorities of the former distractors were now
consistently incremented, and those of the former targets were
now consistently decremented. The simulation was run in this
reversed condition for a further 1000 epochs.

Figure 2g shows that the mean priority levels of the original
targets/distractors increase/decrease over the first 1000 epochs
of consistent mapping training. When targets and distractors
are reversed at epoch 1001, the priority levels of former targets
start dropping sharply, and those of former distractors start
increasing sharply.

We computed an accuracy measure as follows: a given stim-
ulus presentation was considered to have evoked an accurate
response either if (i) the stimulus was a target, and evoked
a priority of above threshold, or (ii) it was a distractor, and
evoked a priority of below threshold. The threshold priority
level used was 9.50. Figure 2h shows the variation of this
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accuracy measure. At the start of initial consistent mapping
training, accuracy was approximately 50 percent, and this im-
proved steadily, asymptoting by about 500 epochs of training.
When targets and distractors were reversed at epoch 1001,
accuracy dropped sharply, to below the level at the start of
the simulation, and it required approximately 100 epochs of
training to reach that level (50 percent). Beyond this point,
re-learning occurred gradually, and by epoch 1500, accuracy
had returned to the previous maximum. Thus the simulation
models the human data fairly well.

Simulation 5: Degree of consistency. Schneider and Fisk
found that consistency has a graded rather than an all-or-
none effect. In one experiment, subjects searched for one
letter (i.e., memory set size 1) in frames containing four letters
([Schneider & Fisk 1982b, Experiment 1]). Subjects were re-
quired to indicate the frame position in which the target had
appeared, at the end of each trial. The degree of consistency of
appearance of letters as targets or distractors varied. Thus one
letter had the consistency ratio 10:0, meaning that it appeared
as a target in 10 trials per block of trials, and never as a distrac-
tor. Three other letters had the consistency ratios 10:5, 10:10
and 10:20, respectively. Five other letters each had degree of
consistency 9:61.

Throughout the experiment, detection accuracy was highest
for the 10:0 letter, followed closely by the 10:5 condition. De-
tection accuracy was lowest for the 10:20 and 9:61 conditions,
which did not differ substantially from each other. The 10:10
letter showed intermediate detection accuracy.

In our simulation, our training set consisted of five stimuli,
which we designated A, B, C, D and E. One epoch consisted of
the appearance of each of the letters A, B, C and D 10 times as
a target, and 0, 5, 10 and 20 times, respectively, as a distractor;
thus these letters corresponded to the consistency ratios 10:0,
10:5, 10:10 and 10:20, respectively. The E stimulus appeared
9 times as a target and 61 times as a distractor, corresponding
to the consistency condition 9:61. The simulation involved
presentation of this training set to a network representing the
priority learning component of a single module. By approxi-
mately 70 epochs of training, the priority levels of the A, B, C,
D and E stimuli had settled to 10, 8, 5, 2 and 0, respectively
(Figure 2i).

Although we have not constructed simulations correspond-
ing to the overall architecture that would be required for a sim-
ulationof the experiment described above, the priority learning
results from the simulation with a single module suggest accu-
racy would be a graded function of the degree of consistency.
The overall model would incorporate four modules V1, V2,
V3 and V4, corresponding to the visual fields in which each
of the four letters in a frame appear. The process of training
would lead to each of the modules having the priority levels
described above, which developed for a single module. A
winner-take-all network between modules would lead to pro-
cessing of stimuli in their order of priority, so that attention
would be preferentially attracted to a higher-priority item even
when it is not the target. Consequently, accuracy would be
greater for higher-priority items.

Conclusions
This paper has examined the viability of proposed “priority
learning” mechanisms as the basis of a computational model
of a number of the phenomena observed in visual search tasks
performed by human subjects. The simulation results that have
been presented are consistent with a fairly broad set of exper-
imental findings. We therefore conclude that priority learning

provides a fairly good account of practice and automaticity
effects in visual search tasks.

References
[Atkinson & Juola 1973] Atkinson, R. & Juola, J. 1973. Factors influencing

speed and accuracy of word recognition. In S. Kornblum (ed.), Attention
and performance IV. New York: Academic Press.

[Detweiler & Schneider, forthcoming] Detweiler, M. & Schneider, W. Mod-
eling the acquisition of dual task skill in a connectionist/control archi-
tecture. In D. Damos (ed.), Multiple-task performance: Selected Topics.
London:Taylor & Francis. Forthcoming.

[Douglas & Martin 1990] Douglas, R. & Martin, K. 1990. Control of neural
output by inhibition at the axon initial segment. Neural Computation 2:
283-292.

[Ericksen & Spencer 1969] Ericksen, C. & Spencer, T. 1969. Rate of infor-
mation processing in visual perception: Some results and methodological
considerations. Journal of Experimental Psychology Monograph 79 (2,
Part 2).

[Kristofferson 1972a] Kristofferson, M. 1972a. Effects on practice on char-
acter classification performance. Canadian Journal of Psychology 26:
54-60.

[Kristofferson 1972b] Kristofferson, M. 1972b. When item recognition and
visual search functions are similar. Perception & Psychophysics 12: 379-
384.

[Neisser 1963] Neisser, U. 1963. Decision time without reaction time: Exper-
iments in visual scanning. American Journal of Psychology. New York:
Appleton-Century-Crofts.

[Neisser, Novick & Lazar 1963] Neisser, U., Novick, R., & Lazar, R. 1963.
Searching for ten targets simultaneously. Perceptual and Motor Skills 17:
955-961.

[Norman 1969] Norman, D. 1969. Memory and attention: An introduction to
human information processing. New York: John Wiley.

[Rumelhart et al. 1986] Rumelhart, D., McClelland, J. & the PDP Research
Group 1986. Parallel Distributed Processing, Volume 1: Foundations.
Cambridge, Mass.: MIT Press.

[Schneider & Shiffrin 1977] Schneider, W. & Shiffrin, R. 1977. Controlled
and automatic human information processing: I. Detection, search, and
attention. Psychological Review 84: 1-66.

[Schneider & Fisk 1982a] Schneider, W. & Fisk, A. 1982a. Concurrent auto-
matic andcontrolled visual search: Can processingoccurwithout resource
cost? Journal of Experimental Psychology: Learning, Memory and Cog-
nition 8: 261-278.

[Schneider & Fisk 1982b] Schneider, W. & Fisk, A. 1982. Degree of consis-
tent training: Improvements in search performanceand automatic process
development. Perception & Psychophysics 31: 160-168.

[Schneider & Detweiler 1987] Schneider, W. & Detweiler, M. 1987. A con-
nectionist/control architecture for working memory. In G. Bower (ed.),
The Psychology of learning and motivation, Vol. 21. Orlando, FL: Aca-
demic Press.

[Schneider & Oliver, forthcoming] Schneider, W. & Oliver, W. An in-
structable connectionist/control architecture: Using rule-based instruc-
tions to accomplish connectionist learning in a human time scale. In K.
Van Lehn (ed.), Architecture for intelligence. Hillsdale, NJ: Lawrence
Erlbaum. Forthcoming.

[Shedden & Schneider 1990] Shedden, J. & Schneider, W. 1990. A connec-
tionist model of attentional enhancementand signal buffering. In Proceed-
ings of the Twelfth Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum.

[Shedden & Schneider 1991] Shedden, J. & Schneider, W. 1991. A connec-
tionist simulation of attention and vector comparison: The need for serial
processing in parallel hardware. In Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence
Erlbaum.

[Shiffrin & Schneider 1977] Shiffrin, R. & Schneider, W. 1977. Controlled
and automatic human information processing: II. Perceptual learning,
automatic attending, and a general theory. Psychological Review 84: 127-
190.

[Shiffrin 1988] Shiffrin, R. 1988. Attention. In R. Atkinson, R. Herrnstein, G.
Lindzey & R. Luce (eds.), Steven’s handbookof experimental psychology.
New York: John Wiley.

[Triesman 1988] Triesman, A. 1988. Features and Objects: The 14th Bartlett
Memorial Lecture. Quarterly Journal of Experimental Psychology 40A:
201-237.

[Widrow & Hoff 1960] Widrow, G. & Hoff, M. 1960. Adaptive switching
circuits. In Institute of Radio Engineers, Western Electric Show and Con-
vention, Convention Record, Part 4, 96-104.

[Yantis & Johnson 1990] Yantis, S. & Johnson, D. 1990. Mechanisms of at-
tentional priority. Journal of Experimental Psychology: Human Percep-
tion and Performance 16: 812-825.


