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Abstract

Metrical phonology is a relatively successful theory that at-
tempts to explain stress systems in language. This paper dis-
cussesa perceptron model of stress, pointing out interesting par-
allels between certain aspects of the model and the constructs
and predictions of metrical theory. The distribution of learning
times obtained from perceptron experiments corresponds with
theoretical predictions of “markedness.” In addition, the weight
patterns developed by perceptron learning bear a suggestive
relationship to features of the linguistic analysis, particularly
with regard to iteration and metrical feet. Our results suggest
that simple statistical learning techniques have the potential to
complement, and provide computational validation for, abstract
theoretical investigations of linguistic domains.

Basics of metrical theory
This section outlines the structure of the syllable and the basics
of metrical theory1. A syllable is composed of anonset, which
contains the material before the vowel, and arime. The rime
is composed of anucleus, which contains the vocalic mate-
rial, and acoda, which contains any remaining non-vocalic
material.

A syllable may beopen (ends in a vowel) orclosed (ends
in a consonant). Viewing syllable structures as trees, an open
syllable has anon-branching rime (the rime has a nucleus, but
not a coda), while a closed syllable has abranching rime (the
rime has both a nucleus and a coda). A syllable may also have a
long vowel, in which case the nucleus is considered to branch.

In many languages, stress tends to be placed on certain kinds
of syllables rather than on others; the former are termedheavy
syllables, and the latterlightsyllables. What counts as heavy or
lightdiffers across languages but, most commonly, a heavy syl-
lable is one with a branching rime ([Goldsmith 1990, p. 113]).
However, it is possible for other properties to contribute to syl-
lable weight. For example, in some languages, only syllables
with a long vowel (i.e., branching nucleus) count as heavy.
Closed syllables with short vowels do not count as heavy, as
they would in the more commonly-occurring heavy/light dis-
tinction ([Goldsmith 1990, p. 179]).

Languages that distinguish between heavy and light sylla-
bles are termedquantity-sensitive, while languages that do not
make this distinction are termedquantity-insensitive. There
seems to be theoretical agreement that, in quantity-sensitive
systems, the placement of stress is sensitive to the structure
of the rime, but not the onset. We follow this assumption2.

�The second author was supported by a grant from Hughes Aircraft Corpo-
ration, and by the Office of Naval Research under contract number N00014-
86-K-0678.

1For an overview of metrical phonology, see [Goldsmith 1990, chap-
ter 4], [Kaye 1989, pp. 139-145], [van der Hulst & Smith 1982] or
[Dresher & Kaye 1990, pp. 140-147].

2See, for example, ([Dresher & Kaye 1990, p. 141] or [Goldsmith 1990,
p. 170]). However, both [Davis 1988] and [Everett & Everett 1984] present
evidence that onsets may in fact be relevant to the placement of stress.

Thus rime structure is taken to be the basic level at which
accounts of stress systems are formulated. Stress patterns are
controlled by metrical structures built on top of rime structures.
The version of metrical structure adopted here ismetrical feet.
We assume theparameters formulated by Dresher & Kaye
([Dresher & Kaye 1990, p. 142]):

(P1) The word-tree is strong on the [Left/Right]
(P2) Feet are [Binary/Unbounded]
(P3) Feet are built from the [Left/Right]
(P4) Feet are strong on the [Left/Right]
(P5) Feet are Quantity-Sensitive (QS) [Yes/No]
(P6) Feet are QS to the [Rime/Nucleus]
(P7) A strong branch of a foot must itself branch [No/Yes]
(P8) There is an extra-metrical syllable [Yes/No]
(P9) It is extra-metrical on the [Left/Right]
(P10) A weak foot is defooted in clash [No/Yes]
(P11) Feet are non-iterative [No/Yes]

As an example of the application of these parameters, con-
sider the stress pattern of Maranungku, in which primary stress
falls on the first syllable of the word and secondary stress on
alternate succeeding syllables. Figure 1 shows an abstract
representation of a six-syllable word, with each syllable rep-
resented as�. The assignment of stress is characterized as
follows. Binary, quantity-insensitive, left-dominant feet are
constructed iteratively from the left edge of the word. Each
foot has a “strong” and a “weak” branch (labeled “S” and “W,”
respectively, in the figure). The strong, or dominant branch as-
signs stress to the syllable it dominates. Since the feet are left-
dominant, odd-numbered syllables are assigned stress. Over
the roots of thesemetrical feet, a left-dominantword-tree is
constructed, which assigns stress to the structure dominated by
its leftmost branch. The third and fifth syllables are each domi-
nated by the dominant branch of one metrical structure (a foot),
while the first syllable is dominated by the dominant branches
of two structures (a foot, and the word-tree). Even-numbered
syllables are dominated only by non-dominantbranches of feet.
The result is that even-numbered syllables receive no stress;
the third and fifth syllables receive one degree of stress (sec-
ondary stress); and the first syllable receives two degrees of
stress (primary stress.) The parameter settings characterizing
Maranungku are: [P1 Left], [P2 Binary], [P3 Left], [P4 Left],
[P5 No], [P7 No], [P8 No], [P10 No], [P11 No]. Parameters
P6 and P9 are irrelevant because of the settings of parameters
P5 and P8, respectively.

Sixteen stress systems
Six quantity-insensitive (QI) languages and ten quantity-
sensitive (QS) languages were examined in our experiments.
The data, summarized in Table 1, were taken primarily from
[Hayes 1980]. Note that the QI stress patterns of Latvian &
French, Maranungku & Weri, and Lakota & Polish are mirror
images of each other. The QS stress patterns of Malayalam &
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Figure 1: Metrical structures for a six-syllable word in Mara-
nungku.

Yapese, Ossetic & Rotuman, Eastern Permyak Komi & East-
ern Cheremis, and Khalka Mongolian & Aguacatec Mayan are
also mirror images3.

Learning stress with a perceptron
In separate experiments, we taught a perceptron to produce the
stress pattern of each of the sixteen languages. The domain
was limited to single words, as in the previous learning models
of metrical phonology developed by Dresher & Kaye, and
Nyberg ([Dresher & Kaye 1990, Nyberg 1989]). Again as in
the other models, the effects of morpho-syntactic information
(such as lexical category) were ignored, and the simplifying
assumption was made that the only relevant information about
syllables was their weight.

Words up to 7 syllables long were slid across a 13-element
input window as shown in Figure 2. At each time step, the
perceptron was trained to predict the stress of the center ele-
ment. In order to distinguish heavy from light syllables, each
input element consisted of two units. Thus the perceptron had
a total of 26 inputs, plus a bias connection. The input patterns
used were [1 0] for a heavy syllable, [0 1] for a light syllable,
and [0 0] for no syllable.4 The output targets used in training
were 1.0 for primary stress, 0.5 for secondary stress, and 0 for
no stress.

The input data set for all stress systems consisted of all
255 word-forms of up to seven syllables. Each word was
processed one syllable at a time. Connection weights were
adjusted at each time step using the back-propagation learn-
ing algorithm of [Rumelhart, Hinton & Williams 1986]. One
epoch consisted of one presentation of the entire training set.
The network was trained for as many epochs as necessary to
ensure that the stress value produced by the perceptron was
within 0.1 of the target value, for each syllable of the word,
for all words in the training set. A learning rate of 0.05 and
momentum of 0.90 was used in all simulations. Initial weights
were uniformly distributed random values in the range �0:5.

3We have somewhat simplified the descriptions of Polish and Malayalam
comparedwith those in [Halle & Vergnaud 1987, pp. 57-58]and [Hayes 1980,
p. 66, 109]. However, this does not detract from our discussion in any way,
as stress systems corresponding to our simplifications are reported to exist:
Swahili ([Halle & Clements 1983, p.17]) and Gurkhali ([Hayes 1980, p.66]),
corresponding to Polish and Malayalam, respectively.

4Note that the distinction between heavy and light syllables is irrelevant
in a quantity-insensitive language. However, this representation was used in
all simulations to maintain consistency across quantity-sensitive and quantity-
insensitive systems.
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Figure 2: Perceptron model used in simulations.

Each simulation was run at least three times, and the learning
times averaged. Results are shown in Table 2.

Markedness, learnability, and simulations
A universal grammar (UG) of stress should incorporate a theory
of markedness, so as to predict which features of stress systems
are at the core of the human language faculty and which are
at the periphery. The distributional approach to markedness
treats as “unmarked” those linguistic forms that occur more
frequently in the world’s languages. This seems to be the
approach taken by, for example, Hayes5.

Such an approach can be criticized, however, on the grounds
that the frequency of occurrence of some linguistic form does
not necessarily determine its status as “core” or “peripheral” ,
and the non-occurrence of some form does not show that it is
“ impossible.” The distribution of languages in the world is a
function of all kinds of historical, non-linguistic, factors, and
does not necessarily have linguistic-theoretic significance6.

Another approach to markedness is learnability theory,
which examines the logical process of language acquisition7.
Thus, for example, Dresher & Kaye take iteration to be
the default or unmarked setting for parameter P11, because
there is evidence that can cause revision of this default if it
turns out to be the incorrect setting: the absence of any sec-
ondary stresses serves as a diagnostic that feet are not iterative
([Dresher & Kaye 1990, p. 191]). If non-iterationwere the de-
fault, their learning system might not encounter evidence that
would enable it to correct this default setting, if it were in fact
incorrect. It should be noted that, while this is a representative
application of subset theory, the choice of default parameter
values depends on the particular learning algorithm employed.

5([Hayes 1980, p. 50]): “ In justifying a foot inventory as the unmarked
one, a minimal requirement is to show that all the members of the inventory
are attested in a fair number of languages ...”

6To quote Pullum ([Pullum 1982, p. 343; p. 340]): “ ... no one has any idea
to what extent the history of the human race has skewed the distribution of
[linguistic] types by skewing the distribution of people ... to postulate a default
assumption that, say, wh-movement cannot be rightward, merely because it is
commoner (in currently well-studied languages) for it to be leftward, is surely
perverse as well as unnecessary. Language acquisition takes place within
the infant, not within the context of a statistical survey of currently attested
languages ...”

7As an example, the Subset Principle ([Berwick 1985],
[Wexler & Manzini 1987]) has implications for markedness. Suppose that
two possible settings a and b for parameter P result in the learner respectively
accepting sets Sa and Sb of linguistic forms. If Sa is a subset of Sb , then, once
P has been set to value b, it will never get re-set to a, even if that was the
correct setting. Unmarked values for parameters should therefore be the ones
yielding the most constrained system.



Gupta & Touretzky, What a Perceptron Reveals About Metrical Phonology 3

LANGUAGE DESCRIPTION OF STRESS PATTERN EXAMPLES
Latvian Fixed word-initial stress. S1S0S0S0S0S0S0

French Fixed word-final stress. S0S0S0S0S0S0S1

Maranungku Primary stress on first syllable, secondary stress on alternate succeeding syllables. S1S0S2S0S2S0S2

Weri Primary stress on last syllable, secondary stress on alternate preceding syllables. S2S0S2S0S2S0S1

Lakota Primary stress on second syllable. S0S1S0S0S0S0S0

Polish Primary stress on penultimate syllable. S0S0S0S0S0S1S0

Koya Primary stress on first syllable, secondary stress on heavy syllables.
(Heavy = closed syllable or syllable with long vowel.)

L1L0L0H2L0L0L0

L1L0L0L0L0L0L0

Eskimo (Primary) stress on final and heavy syllables.
(Heavy = closed syllable.)

L0L0L0H1L0L0L1

L0L0L0L0L0L0L1

Malayalam Primary stress on first syllable except when first syllable light and second syllable heavy.
(Heavy = long vowel.)

L1L0L0H0L0L0L0

L0H1L0H0L0L0L0

Yapese Primary stress on last syllable except when last is light and penultimate heavy.
(Heavy = long vowel.)

L0L0L0H0L0L0L1

L0H0L0H0L0H1L0

Ossetic Primary stress on first syllable if heavy, else on second syllable.
(Heavy = long vowel.)

H1L0L0H0L0L0L0

L0L1L0L0L0L0L0

Rotuman Primary stress on last syllable if heavy, else on penultimate syllable.
(Heavy = long vowel.)

L0L0L0H0L0L0H1

L0L0L0L0L0L1L0

Komi Primary stress on first heavy syllable, or on last syllable if none heavy.
(Heavy = long vowel.)

L0L0H1L0L0H0L0

L0L0L0L0L0L0L1

Cheremis Primary stress on last heavy syllable, or on first syllable if none heavy.
(Heavy = long vowel.)

L0L0H0L0L0H1L0

L1L0L0L0L0L0L0

Mongolian Primary stress on first heavy syllable, or on first syllable if none heavy.
(Heavy = long vowel.)

L0L0H1L0L0H0L0

L1L0L0L0L0L0L0

Mayan Primary stress on last heavy syllable, or on last syllable if none heavy.
(Heavy = long vowel.)

L0L0H0L0L0H1L0

L0L0L0L0L0L0L1

Table 1: Stress patterns: description and example stress assignment. Examples are of stress assignment in seven-syllable words.
Primary stress is denoted by the superscript 1 (e.g., S 1), secondary stress by the superscript 2, and no stress by the superscript 0. “S” indicates
an arbitrary syllable, and is used for the QI stress patterns. For QS stress patterns, “H” and “L” are used to denote Heavy and Light syllables,
respectively.

If learnability arguments should propose the setting x for
parameter P, then some explanation would be needed if 95
per cent of the world’s languages could be analyzed as having
the setting y for the same parameter. Although distributional
observationsmay not be an appropriate starting point for theory
construction, they do provide a set of additional data points.
However, given the previously noted criticisms, it appears they
can only provide a weak constraint on metrical theories. Some
other source of evidence would be valuable.

It is therefore interesting to note that the simulations de-
scribed in this paper do provide “ learnability” results for a
variety of stress patterns. By extension, they make predictions
about the learnability of various linguistic forms in metrical
phonology. We claim that these results provide a source of
data that can complement theoretical investigations.

Table 2 shows the stress systems grouped by their theoretical
analyses in terms of the parameter scheme discussed in the
first section. The last column of the table shows the average
learning time inepochs for each groupof stress patterns. As can
be seen, there appears to be a fairly systematic differentiation
of learning times for groups of stress patterns with different
clusters of parameter settings.

First of all, learning times appear to be significantly higher
for stress systems in groups 5 through 9, which have non-
iterative feet, than for those in groups 1 through 4, which
either do not have metrical feet at all, or else have iterative
feet. This makes the interesting prediction that non-iterative
feet are more difficult to learn, and hence marked. This predic-
tion corresponds with both Halle & Vergnaud’s Exhaustivity

Condition8, and with the choice of marked and unmarked set-
tings in Dresher & Kaye’s parameter scheme (Parameter P11)9.

Comparison of learning times for group 1 vis-a-vis groups
2, 3 and 4 suggests that a stress system with only a word-tree
(i.e., with no metrical feet) is easier to learn than one with
(iterative) metrical feet.

The dramatic difference in learning times between groups 8
and 9 suggests that it is marked for the dominant node to be
obligatorily branching10. Group 8 differs from group 9 only in
not having obligatory branching, and average learning times
were 218 epochs vs. 2308 epochs.

This prediction agrees with the distributional view that
obligatory branching is relatively marked11. However, it runs
counter to Dresher & Kaye’s choice of default values (param-
eter P7)12.

However, comparison of group 6 with group 7 suggests that
systems with obligatorybranching may be more easily learned:
group 6, with obligatory branching, has a learning time of 19

8“The rules of constituent boundary construction apply exhaustively ...”
([Halle & Vergnaud 1987, p. 15]).

9In Dresher & Kaye’s model, iteration is the default or unmarkedparameter
setting, because there is evidence that can cause revision of this default. The
absence of any secondary stresses serves as a diagnostic that feet are not
iterative ([Dresher & Kaye 1990, p. 191]).

10This means that the strongbranchof a foot must dominatea heavysyllable,
and cannot dominate a light one.

11[Hayes 1980, p. 113]: “ ... the maximally unmarked labeling convention
is that which makes all dominant nodes strong ... the convention that wins
second place is: label dominant nodes as strong if and only if they branch ...”

12Obligatory branching is the default because evidence (the presence of any
stressed light syllables that do not receive stress from the word-tree) can force
its revision ([Dresher & Kaye 1990, p. 193]).
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LANGUAGE CHARACTERIZATION EPOCHS
1 Latvian,

French
Word-tree, no feet 1

2 Maranungku,
Weri

Word-tree, iterative binary
QI feet

2

3 Koya Word-tree, iterative un-
bounded QS feet

2

4 Eskimo No word-tree, iterative un-
bounded QS feet

3

5 Lakota, Polish Word-tree, non-iterative
binary QI feet

9

6 Malayalam,
Yapese

Word-tree, non-iterative
binary QS feet, dominant
node branches

19
(�1)

7 Ossetic,
Rotuman

Word-tree, non-iterative
binary QS feet

29
(�1)

8 Komi,
Cheremis

Word-tree, non-iterative
unbounded QS feet

218
(�1)

9 Mongolian,
Mayan

Word-tree, non-iterative
unbounded QS feet, dom-
inant node branches

2308
(�4)

Table 2: Learning times for QI and QS stress patterns grouped
by theoretical analysis. Each figure is the average learning
time for languages in the group.

epochs, compared with group 7, without obligatory branching,
but with a learning time of 29 epochs. This runs counter to the
distributional argument, but agrees with the learnability view.

Two pointsare worthnoting. First, it is interesting that where
there is a conflict between the distributional and learnability
theory predictions of markedness, there is also conflicting evi-
dence from the perceptron simulation. Second, these conflict-
ingperceptron results highlightthe fact that it may be infeasible
to analyze the effects of different settings for individualparam-
eters; it may only be possible to make broader analyses of the
effects of clusters of parameter settings. Strong interactions
between parameters have also been observed in other compu-
tational learning models of metrical phonology (Eric Nyberg,
personal communication).

However, in view of the greater differential in learning times
between Groups 8 and 9 than between Groups 6 and 7, we con-
clude that the effect of obligatorybranching is to increase learn-
ing time. That is, we view our learning results as supportingthe
markedness of obligatorybranching. This raises the interesting
possibility that learning results such as those from the present
perceptron simulations can provide a new source of insight into
questions of markedness. As previously noted, there is contro-
versy over the relevance of distributional facts to theories of
markedness. Moreover, the distributional view of the marked-
ness of obligatory branching ([Hayes 1980, p. 113]) seems to
conflict with the learnability view ([Dresher & Kaye 1990, p.
193]). The present simulations seem to agree with the distri-
butional view, and, we suggest, provide a potential means of
validation for theoretical analyses.

This contribution to theoretical analysis can be further illus-
trated for the stress systems of Lakota and Polish, which are
mirror images. The analysis so far adopted for Lakota is that
it has non-iterative binary right-dominant QI feet constructed
from left to right, with a left-dominant word-tree 13. Let us call
this Analysis A. As illustrated in Figure 3, this leads to the con-
struction of one binary right-dominant QI foot at the left edge

13This is based on Hayes’ analysis of penultimate stress ([Hayes 1980, p.
55]).

W      S      W      W

S

Foot

Word-tree

S        W     W

Word-tree

Syllables

Extra-metrical syllable

ANALYSIS   A ANALYSIS   B

Figure 3: Two metrical analyses for a four-syllable word in
Lakota. Strong branches are labeled “S” , and weak branches
“W”.

of the word. This, together with the left-dominant word-tree,
results in the assignment of primary stress to the second syl-
lable. As has been shown, under this analysis, the perceptron
learning results support the markedness of non-iteration (recall
the differing learning times of Groups 1 through 4, vs. Groups
5 through 9).

However, an alternative analysis is that Lakota has a left-
dominant word-tree with no metrical feet, and the first syllable
is extra-metrical ([Dresher & Kaye 1990, p. 143]). Let us call
this Analysis B. As illustrated in Figure 3, the leftmost syllable
is treated as “ invisible” to the stress rules, and the word-tree
assigns primary stress to the leftmost of the “visible” syllables.
The result is that the second syllable receives primary stress.
Under this analysis, Lakota and Polish (Group 5, in Table 2)
differ from Latvian and French (Group 1 in Table 2) only in
having an extra-metrical syllable. The differing learning times
for the two groups (1 epoch vs. 9 epochs) then suggest that
extra-metricality is marked. However, this runs counter to
both the distributional view ([Hayes 1980, p. 82]) and the
learnability-theoretic view ([Dresher & Kaye 1990, p. 191]).

To summarize, Analysis A views Lakota and Polish as hav-
ing non-iterative feet, which both the distributional/theoretical
and learnability approaches treat as marked. Analysis B views
these stress patterns as having an extra-metrical syllable, which
both approaches treat as unmarked. So far, there is noth-
ing theory-external to help choose between the analyses. We
claim that the present simulation results provide such a means:
since the learning results are consistent with the theoretical
markedness of non-iteration, but not with the unmarkedness
of extra-metricality, they provide at least weak support for
preferring Analysis A over Analysis B.

In summary, the present learning results are from a model
whose initial state is devoid of any information about the con-
structs of metrical theory that characterize different stress sys-
tems. Nevertheless, the learning results exhibit interesting
correspondences with theoretical predictions. These results
suggest that computational modeling may have something to
contribute to the development of a markedness theory and,
more generally, to aspects of linguistic analysis.

Analysis of weight patterns
In learning a stress pattern, the perceptron has acquired and en-
coded in its connection weights its “knowledge” of that pattern.
Connection weights for all the languages studied are shown in
Figure 4. Each display is a representation of the network as
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Figure 4: Learned connection weights for the sixteen stress patterns.

a whole. The large grey shaded rectangle represents the input
layer of the network, with its two rows of input units. The sin-
gle square protruding from the left of the input layer is the bias
connection. The output unit is represented by the protruding
square at the top of the input layer.

A blob in a particular position denotes a weight from the
unit in that position to the output unit. White blobs denote
positive weights, and black blobs negative weights. The size
(area) of the blobs is proportional to the absolute magnitude
of the weight. Weights are scaled so that the largest absolute
magnitude is depicted in each display as a perfect square; other
weights in that display appear as blobs of proportionate size.
The scale (i.e., absolute magnitude of the largest weight) is
shown in the title bar of each display. Thus, for Maranungku,
the absolute magnitude of the largest weights is 2.18; these are
the large (black) negative weights left of center in the input
layer.

Just as with learning times, the fact that two stress patterns
are mirror images of each other is reflected in the connection
weights. Moreover, there seem to be correspondences between
the form of the encoded knowledge and the characterization of
the stress pattern in terms of parameters. Maranungku and Weri
are the only stress systems with iterative binary feet (Group
2, Table 2). For these systems, but for no others, there is a
very clear binary alternating pattern of positive and negative
weights (see the alternation of black and white blobs in the
weight displays for Maranungku and Weri). If, as is natural, we
take a positive weight to correspond to the strong branch, and
a negative weight to correspond to the weak branch of a foot,
then for Maranungku we see left-dominant binary feet, and
for Weri right-dominant binary feet – just as in the theoretical
analysis14. It does not seem too far-fetched to say that the
perceptron has discovered a version of iterative binary feet.

14As discussed previously, Maranungku has binary, left-dominant QI feet

The single set of negative weights for Latvian and French
(immediately to the left and right of center, respectively) can
perhaps be interpreted as a left-dominant and right-dominant
word-tree.

Recall that Lakota has non-iterative binary right dominant
QI feet constructed from left to right, and that Polish has non-
iterative binary left dominant QI feet constructed from right
to left. That is, there will be a single binary tree, constructed
at the left edge of the word for Lakota, and at the right edge,
for Polish. Under this analysis, the weights to left and right of
center for Lakota and Polish can be interpreted respectively as
(single) right-dominant and left-dominant binary QI feet.

The weight patterns for Koya and Eskimo are close to mirror
images, but not completely symmetric. Koya assigns primary
stress to the first syllable and secondary stress to non-initial
heavy syllables, while Eskimo assigns only one level of stress
to final and heavy syllables. The chief theoretical difference
between the two languages is that the former, but not the latter,
has a word-tree. This difference is reflected in the fact that there
are two magnitudes, or levels, of center connection weights for
Koya (the large negative, and the smaller positive weights),
whereas for Eskimo, there is only one level of weights (the
positive and negative weights at the center are approximately
equal.) This can be viewed as analogous to the two levels of
metrical structure in Koya (metrical feet and word-tree) vs. the
single level of structure in Eskimo (metrical feet only.)

Table 2 shows that Malayalam, Yapese, Ossetic and Rotu-
man (Groups 6 and 7) are the only languages with non-iterative
binary QS feet. These are also the only patterns that have more
than two large negative weights grouped together to the left (for
Malayalam and Ossetic) or right (for Yapese and Rotuman) of
center. We can take these three-or-four negative weight struc-

constructed iteratively from the left edge of the word. Weri has binary, right-
dominant QI feet constructed iteratively from the right edge of the word.
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tures to correspond to a non-iterative binary QS foot. There is
a clear structural difference as compared with the (analogues
of) non-iterative binary QI feet in the weights for Lakota and
Polish.

Komi, Cheremis, Mongolian and Mayan are the only lan-
guages with non-iterative unbounded QS feet (Groups 8 and
9, Table 2). The connection weights for these systems show a
pattern of nearly-identical negative weights spanning a set of
several input units, and such a pattern does not occur for any
other of the stress systems. Such a set of “spanning” weights
seems analogous to an unbounded foot. The pattern of weights
for Komi seems to correspond to an unbounded right-dominant
QS foot, while weights for Cheremis seem to correspond to
an unbounded left-dominant QS foot (note the single positive
weight at the right and left, respectively, of the sets of weights,
similar to the dominant branch of the foot). The difference in
analysis between Komi & Cheremis and Mongolian & Mayan
is that feet in the latter pair have obligatory branching, mean-
ing the strong node of the foot must dominate a heavy syllable.
As for Komi and Cheremis, the weights for Mongolian and
Mayan show a pattern that can be interpreted as an unbounded
QS foot. However, they additionally have a set of weights
adjacent to the positive weight (i.e., to the “dominant branch”
of the unbounded foot), which are not present for Komi and
Cheremis; these additional weights can loosely be interpreted
as corresponding to a branching dominant node.

It should not be too surprising that correspondences can be
foundbetween learned weight patterns and metrical constructs:
both representations are derived from the same data in an at-
tempt to explain or model the same phenomena. Nonetheless,
we find it somewhat encouraging that these correspondences
exist.

Conclusions
One of the supposed attractions of connectionist learning is
that networks can start out with no theoretical preconceptions,
developing their representations de novo. In truth, though, any
computational model is founded on preconceptions, and ours
is no exception. We have preprocessed the data to remove
all detail from the words except for the heavy/light syllable
distinction. In addition, we assume that all the syllables of
the word are simultaneously accessible, i.e., that the word
fits in a buffer, and that the stress assignment process can
access the entire buffer in parallel. These are not unreasonable
assumptions, but neither are they indisputable.

We have tried to show that, within the range of observed
human stress systems, our model exhibits interesting behav-
iors, providing a fresh source of insight about linguistic stress.
However, the model does not accurately reflect human capabil-
ities for processing stress systems. For example, it is incapable
of learning some existing human stress patterns (e.g., Warao,
Southern Paiute), and is capable of learning stress patterns that
are unlikely ever to exist amongst human languages. (How-
ever, as has been argued here, distributional evidence is in
itself only weakly suggestive of what is “ impossible” ). Thus,
our model is not suitable for defining the boundaries of human
abilities, but this is scarcely surprising given that we are merely
optimizing a linear threshold function.

Nevertheless, this simple model has produced interesting re-
sults. Although the simulations did not incorporate the foot and
word tree constructs of metrical phonology as computational
primitives, there appear to be correspondences between the
performance of the model and the analyses of metrical theory.
First, the learning results correspond with theoretical predic-
tions of markedness. The theoretical predictions, as they stand,

may be based either on distributional facts or on learnability
theory. Our simulation results provide predictions of marked-
ness that are based on actual “ learning.” Second, there seem
to be parallels between theoretical characterizations of various
stress systems and the knowledge of those stress systems en-
coded in the perceptron’s weights. These parallels are at least
suggestive of a mapping between the level of representation at
which the perceptron performs its computations and the level
of investigation at which metrical phonology is formulated.

In conclusion, these experiments suggest that simple statis-
tical learning techniques such as the perceptron model have
the potential to provide computational validation for, and to
complement, theoretical investigationsof domains of language
such as stress systems.
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