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Abstract
Findings in infant speech perception suggest that
early phonologicalperceptions may be syllabic in na-
ture, and that there is a loss of sensitivity to nonnative
contrasts toward the end of the first year of life. We
present a neural network model that simulates these
two phenomena. In addition, the model and simula-
tions (1) demonstrate how information about stress
can be utilized in generating syllable-like percep-
tions; (2) provide a simple means of extracting static
representations from a dynamic and co-articulated
signal; and (3) indicate that the development of “at-
tractor” states may be necessary in network models
of these phenomena.

Aims and motivation
This work explores certain aspects of the nature and devel-
opment of phonological representations in human infants,
using neural network modeling techniques. A “phonolog-
ical representation” is taken to be a phonologically orga-
nized encoding of speech sounds1. This paper focusses on
the idea that early representations are likely to be syllabic
in nature.

There appears to be considerable agreement that the
syllable is a readily accessible perceptual unit of phono-
logical representation, both for children and for adults,
i.e., that there is perceptual segmentation at the level of
the syllable (Menyuk et al., 1986; Flores d’Arcais, 1988;
Jusczyk, 1992). Evidence further indicates that the syl-
lable is much more accessible than the segment and fea-
ture, for adults as well as developmentally (Menyuk et al.,
1986). Moreover, children appear to have little aware-
ness of the phonemic (i.e., segmental) structure of words
(Jusczyk, 1986; Adams, 1990).

Two specific phenomena observed during the first year
of life have been chosen for exploration here. One phe-
nomenon suggests that two-month-old infants are more
sensitive to syllable-sized units than to sub-syllabic units
(Jusczyk, 1992). The other phenomenon indicates a loss
of sensitivity to nonnative language contrasts somewhere
between the ages of 6 and 12 months (Werker, 1991).

1This could denote either an output representation of a word,
i.e., a representation involved in a motor program to articu-
late that word, or an input representation or percept yielded by
auditory analysis of the word. For the purposes of this pa-
per, however, “phonological representation” will mean an input
representation.

The aim of the present work is to try and account for
both these phenomena via simulation in a single model. A
further modeling goal was to tackle the temporal nature of
the speech signal, as well as its lack of linearity2. It seems
vital for models of phonological processing to deal with
these issues, especially if meaningful conclusions are to be
drawn about such things as phonological representations.

Description of the model
Input representation
The input representation was intended to incorporate as-
pects of the temporal and non-linear nature of the speech
signal available to a human learner.

The starting point was a phonemic feature representa-
tion proposed by (Shillcock et al., 1992), in which each
possible phoneme is encoded in terms of a set of 9 feature
values, which are intended to have physical correlates in
the speech signal.

Several previous psychologically motivated connec-
tionist learning models have utilized some such featu-
ral representation, simulating the temporal nature of the
speech signal by inputting a sequence of feature vectors
over time, representing a stream of phonemes (Elman,
1990; Norris, 1990; Gasser, 1992; Shillcock et al., 1992).
However, such a representation imposes linearity on the
input signal3. To represent some of the non-linearity of
the speech signal, we devised the scheme illustrated in
Figure 1.

A consonant is represented as three “time slices” long,
while a vowel is ten time slices long (for simplicity, vow-
els are depicted as only six time slices long, in the figure).
As shown for the nonsense word bagi, there is overlap
of the various phonemes4. As a result, each time slice
contains the feature vectors of up to three phonemes. For

2This refers to the fact that the acoustic information pertinent
to identifying a particular sound segment is usually not in one
piece of the signal, but is smeared over the continuouswaveform,
and overlapswith time slices that conveyinformation about other
segments.

3The TRACE model (McClelland and Elman, 1986) is ex-
plicitly concerned with dealing with such lack of linearity in
the input. However, TRACE is not a learning model. Koho-
nen’s “neural phonetic typewriter” (Kohonen, 1991) is a learning
model, and is similar in some respects to the present work; the
main focus of that model, however, was not on psychological or
representational issues.

4This input representation is similar to that of TRACE-II
(McClelland and Elman, 1986).
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Figure 1: Input representation for the nonsense word bagi.

each time slice, a composite vector was created by tak-
ing the element-wise maximum value of the component
feature vectors. Each time slice thus conveys “smeared”
information about the phonetic content of the word. This
scheme to some extent captures both the temporally ex-
tended nature of the speech signal, and its non-linearity.

Information about the stress level at each time step is
also assumed to be available as input. It seems plausible to
assume that such information is available to a developing
system, as human sensitivity to prosodic features appears
to be present at birth (Mehler et al., 1988). Each vowel has
a stress contour, with no stress on its first time slice or on
its last two time slices, and with peak stress on its middle
time slices. For example, in Figure 1, the middle three
time slices of /a/ and /i/ have a stress level of 0.9, while
their other time slices have a stress level of 0.1, denoting
no stress. The overall stress level for a time slice is the
maximum stress of its constituent phonemes.

Architecture

The model, shown in Figure 2, consists of two networks
and a gating unit. The autopredictive network is a simple
recurrent network (Elman, 1990) whose input at each time
step is the composite vector denoting the current time slice,
presented to the input layer. In addition, hidden layer
activations from the previous time step are copied to the
context layer, and form part of the input. The network’s
task is to predict input at the next time slice as a pattern of
activation over the output layer.

The stress level associated with each time slice is not
encoded as part of the input signal, but instead provides
input to the gating unit (see below), which is the second
component of the system. The treatment of this informa-
tion as qualitatively different from information about the
actual content of the signal is consistent with the linguis-
tic treatment of stress as a suprasegmental phenomenon
(Kaye, 1989).

The third component of the model is a classification
network. Its input comes from the same stream that feeds
into the autopredictive network. However, these input
connections are gated by the inhibitory gating unit, which
is ordinarily active, thus preventing input from reaching
the classification network. The gating unit receives in-
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Figure 2: Overall architecture of the model. Numbers
indicate number of units in a layer. Arrows indicate con-
nectivity.

hibitory inputs from units A and B. Unit A fires if the
stress level associated with the current time slice crosses
a threshold, and unit B fires if the error signal from the au-
topredictive network crosses threshold. If both these units
fire simultaneously, the gating unit is inhibited, allowing
the input signal to reach the classification network. Input
to the classification network is thus modulated by the re-
sults of processing in the autopredictive network, together
with the level of stress of the current input.

For the classification network itself, three alternative
architectures were investigated (Figure 3). These were
(1) a Deterministic Boltzmann Machine (DBM) (Peterson
and Anderson, 1987; Hinton, 1989), (2) a Competitive
Learning network (CL) (Rumelhart and Zipser, 1986), and
(3) a Multi-Layer Perceptron (MLP) (Rumelhart et al.,
1986a).

The autopredictive network is meant to correspond to a
level of processing that is more auditory in nature, while
the classification network is intended to correspond to a
more phonological level of processing. That is, at each
point in the system’s development, the responses of the
classification network constitute its phonological percep-
tions.

Processing
To clarify the nature of processing in the model, we now

step through part of the processing of the nonsense word
bagi.

The word is represented as a series of time slices, as
shown in Figure 1. At the first time step, the composite
vector for the first time slice is presented as input to the
autopredictive network; at the second time step, the vector
for the next time slice is presented, and so on. As noted
in the previous section, the gating unit is ordinarily active,
preventing input from reaching the classification network.
Input will reach the classification network, however, if the
gating unit is itself inhibited.

The input vector produces a pattern of activations at the
output layer of the autopredictive network, representing a
prediction of the input at the next time step. Comparison
of this output with the actual input at the next time step
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Figure 3: Classification network architectures. (1) Deter-
ministic Boltzmann Machine; (2) Competitive Learning
Network; (3) Multi-Layer Perceptron. Numbers indicate
number of units in a layer. Arrows indicate connectivity.

yields an error signal (sum of squared error). If the error
magnitude is greater than a threshold �B , unit B fires, re-
sulting in an inhibitoryinput to the gating unit. If the stress
level associated with the current time slice is greater than
a threshold �A, unit A fires, providing another inhibitory
input to the gating unit. If both A and B fire, the gating
unit is itself inhibited. In this case, the input signal for
that time slice will reach the classification network. Thus,
as noted previously, input to the classification network is
modulated by the error signal and the stress level. The
thresholds were set at �B = 0:1 and �A = 0:4.

Suppose that the error signal on the first time-step for
bagi is 0.5. The stress level is 0.1, as shown. Unit B fires,
but not unit A. Inhibitory input to the gating unit therefore
remains below threshold, the gating unit therefore main-
tains its inhibitory influence, and the input signal therefore
does not reach the classification network.

On the next time-step, the input signal is the second time
slice, which has an associated stress level of 0.9. Suppose
the error in the autopredictive network is again 0.5. Both
units A and B will now fire, the gating unit is therefore
inhibited, and the input signal for the second time slice
does reach the classification network. Processing for the
remaining time slices of bagi proceeds in similar fashion.

As a result of this gating scheme, input reaches the
classification network only when both stress and error are
above threshold. Following training of the autopredic-
tive network, it turns out that this happens only on time
slices that are comprised of exactly one consonant and
one vowel. In effect, the gating mechanism filters system
input so that the classification network receives only in-
variant demisyllables as its input. This provides the basis
for an account of certain early perceptual phenomena in
human infants, discussed in the next section.

Input that does reach the classification network enters
its input layer. As noted above, three architectures were
examined for the classification network. For the DBM
and MLP, the task of the network is to reproduce the input
layer vector at the output layer (see Figure 3). For the
CL architecture, the task is to categorize the input layer
vector, by turning on exactly one of the output layer units.

For the DBM, the output activation is obtained by ap-

plying the input vector, and then performing synchronous
updates of unit activations in repeated cycles until the mag-
nitude of changes in unit activations falls below a specified
criterion, i.e., until the network settles. The output unit
activations at this time constitute the network’s output.
For the MLP, the output layer activation is produced by
propagating the input vector forward in one pass.

For the CL architecture, the “winner” is chosen to be
the unit with weights closest to those of the input vector,
as in the standard algorithm (Kohonen, 1984), but with
the additional requirement that the error for the winner be
below a specified criterion. If it is not, an “uncommitted”
unit is chosen to be the winner, in similar fashion to ART-
1 (Grossberg, 1987). During training, this error criterion
was progressively relaxed.

Weight adjustment for the autopredictive network and
MLP classification network was via the back-propagation
algorithm (Rumelhart et al., 1986a). Weights in the DBM
classification network were adjusted via contrastive Heb-
bian learning (Hinton, 1989). In the CL classification
network, the winner’s weights were adjusted via the com-
petitive learning equation given in Kohonen (1984).

Simulations and data
Like the human infant, the system is exposed to eviron-
mental speech sounds. To model this, a set of mono- and
di-syllabic words was constructed using consonants from
the set fp, b, t, d, k, g, m, fg, and vowels drawn from the
set fa, o, i, eg. No attempt was made to mirror the precise
environmental distribution; the aim, rather, was to con-
struct a limited sample incorporating some of the salient
characteristics of the speech signal in English, using the
representational scheme described earlier. This sample
consisted of a set of 48 words such as pot, dog, cat, big,
pocket, and will be referred to as the input corpus.

In the simulations described below, we assume a rough
correspondence of 10 training epochs to one month of
chronological age. Simulation experiments were per-
formed at 20, 80, and 100 epochs of training, modeling
empirical data from 2, 8, and 10 months, respectively.
During the first 80 epochs, only the autopredictive net-
work was trained. By this point, it had become stable in its
predictions, and then in the next 20 epochs, weights in the
classification network were also adjusted. This training
procedure has the same qualitative effect as training both
networks simultaneously from the beginning, because the
classification network cannot establish stable categories
until the autopredictive network stabilizes its responses.

The two-month-old infant
One particular focus of interest here is on experimental
work examining the differential sensitivity of two-month-
old infants to syllable-sized vs. non-syllable sized units.
Jusczyk and colleagues (Jusczyk, 1992) have studied two-
month-old infants who were exposed to a set of bisyllabic
stimuli that either did or did not contain a common syllable
(e.g., [bazi], [balo], [bamIt] vs. [pazi], [nalo], [kamIt]).
After a two-minute delay period following exposure to
one of these sets of stimuli, the infants were exposed to
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a modified version of the original stimulus set. The first
syllable of one nonsense word had been changed from ba
to da, so that the stimulus set was now either [bazi], [dalo],
[bamIt] or [pazi], [dalo], [kamIt]. Only infants who had
previously heard the set containing the common syllable
(i.e., the first set listed above) detected the subsequent
change to the set.

In a similar test, the infants were initially familiarized
with stimulus sets that either shared ([bi, ba, bu]) or did
not share ([si, ba, tu]) a common phoneme. After the two-
minute delay, they were presented with a modification of
the original set, in which [ba] had been replaced with [da].
There was no advantage for the set with shared material—
that is, there was no significant difference in responding
to the changed stimulus set whether or not the original set
had shared a common phonetic segment (Jusczyk, 1992).

These findings suggest that the presence of a shared
syllable ina set of stimuli leads to a perceptionof similarity
that does not arise when the set of stimuli shares a common
phonetic segment5. This in turn suggests that, as noted
earlier, the syllable is a more readily accessible perceptual
unit than the segment.

To simulate these experiments, we constructed the sets
of stimuli shown in Table 1. At the end of 20 epochs
of training on the input corpus (with weight adjustment of
the autopredictive network only), the various stimulus sets
above were presented as input to the overall system, and
the responses of the classification network were recorded
(with all three architectures). This was meant to simulate
the responses of the two-month-old infant.

Results from the CL architecture provide the clearest
picture ofhow the classification network responds. Table 1
shows the indices of the sequence of winning competitive
units for each stimulus. As an example, the first entry
in the left column indicates that, when the stimulus ba-
ke was being presented to the system, the classification
network’s response consisted of sequential activation of
the units whose indices are 101 and 116.

For the SYL stimuli, unit 101 is repeatedly active (at the
beginning of each stimulus), and this pattern of repeated
activity is changed by the SYL-C stimuli. For the NOSYL
stimuli, however, there is no repetitive activity of any par-
ticular unit, and so the NOSYL-C stimuli do not represent
disruption of a regular pattern. It seems entirely reason-
able that the repeated visiting of a particular network state
(activity of unit 101) would produce a highly salient per-
ceptual experience, deviation from which would be easily
detected. This provides a basis for understanding why
the SYL/SYL-C change might be more easily detected
than the NOSYL/NOSYL-C change. Network states for
the SEG/SEG-C and NOSEG/NOSEG-C stimulus sets, in
contrast, illustrate the fact that the various syllables ba,
bi etc. are categorized as distinct percepts. Accordingly,
the patterning of network responses to the SEG stimuli is

5Since there are two segments of overlap in the case of [bazi],
[balo], [bamIt], but only one segment of overlap in the case of
[bi, ba, bu], it could simply be the greater degree of overlap that
causes perception of similarity in the first case. The appropriate
control has been performed to rule out this possibility (Jusczyk,
1992), although we will not describe it here.

SYL NOSYL SEG NOSEG

ba-ke 101 116 pa-ke 182 116 bi 40 fi 57
ba-to 101 17 da-to 67 17 ba 101 ba 101
ba-mi 101 62 ka-mi 116 62 bo 204 to 17

SYL-C NOSYL-C SEG-C NOSEG-C

ba-ke 101 116 pa-ke 182 116 bi 40 fi 57
fa-to 180 17 fa-to 180 17 da 67 da 67
ba-mi 101 62 ka-mi 116 62 bo 204 to 17

Table 1: Responses of CL classification network to stim-
ulus sets, i.e., indices of the sequence of winning com-
petitive units in CL network in response to each stimulus.
Description of stimuli: (SYL) fba-ke ba-toba-mig (shared
syllable); (SYL-C) fba-ke fa-to ba-mig (shared syllable,
changed); (NOSYL) fpa-ke da-toka-mig (no shared sylla-
ble); (NOSYL-C) fpa-ke fa-to ka-mig (no shared syllable,
changed); (SEG) fbi ba bog (shared segment); (SEG-C)
fbi da bog (shared segment, changed); (NOSEG) ffi ba
tog (no shared segment); (NOSEG-C) ffi da tog (no shared
segment, changed).

no more salient than for the NOSEG stimuli, and there
would be no basis for differential sensitivity between the
SEG/SEG-C and NOSEG/NOSEG-C changes.

It is important to note that equivalent results were ob-
tained with both the other classification network archi-
tectures. Output unit responses for both the DBM and
MLP architectures were projected onto the first two prin-
cipal components. Trajectories in this two-dimensional
space during presentation of the SYL stimuli all began
at the same point, which can be thought of as repre-
senting the syllable ba. None of the other stimulus sets
SYL-C, NOSYL or NOSYL-C had trajectories with this
property. This behavior provides a rationale for why it
would be easier to detect the SYL/SYL-C change than
the NOSYL/NOSYL-C change, completely analogous to
that for the CL architecture, except that the network states
are distributed representations rather than discrete unit ac-
tivations. The results for stimulus sets SEG/SEG-C and
NOSEG/NOSEG-C were also analogous to those obtained
with the CL architecture.

The classification network responses thus provide an
account of the phenomena observed in two-month-old in-
fants. This behavior is based on the fact that the classifica-
tion network uses demisyllable-sized perceptual chunks.
That is, demisyllables such as ba, bi and bo are all classi-
fied as distinct percepts. In consequence, ba-mi and ba-to
are similar, whereas ba and bi are not.

Two features of the model are critical in establishing
this perceptual unit. First, consonants in the input are
never pure, but are always flavored by adjacent vowels,
which is a realistic property of the input representation.
As a result, there is no time slice from which the clas-
sification network could derive the percept of b. This
excludes the possibility of consonantal perceptual units.
Second, the establishment of demisyllables as the units
results from joint modulation, by the autopredictive error
and stress level, of input gating. As shown in Figure 1 for
gi, the first time slice is flavored by both adjacent vowels
(again representing coarticulation effects), which means
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that there is no completely invariant input representation
for any given demisyllable. The second and third time
slices of the demisyllable are invariant, however, and the
combined effect of the stress and error signals is to filter
the input so that only these invariant time slices reach the
classification net. Thus, realistic properties of the input
representation, together with the filtering effects of stress
and error, lead the classification network to see only demi-
syllables as its input.

Loss of sensitivity to nonnative contrasts
A number of developmental speech perception results
have been described for the period between 6 and 12
months of age, relating to a loss of sensitivity to non-
native language contrasts. For example, it has been found
that English-learning infants aged 6-8 months are able to
discriminate Hindi and certain other nonnative contrasts,
while infants aged 10-12 months are mostly unable to
do so, as are adult native speakers of English. How-
ever, English-learning infants at all ages, as well as adults,
retain the ability to discriminate certain other nonnative
contrasts, such as that between two Zulu clicks (Werker,
1991). Part of Werker’s account of these phenomena is
that both sounds in the Hindi contrast (involving a dental
vs. a retroflex [ta]) may by the later age have become
assimilated to the native English alveloar [ta], and thus
ceased to be discriminable. The Zulu clicks, on the other
hand, may not be easily assimilable to any known cate-
gory, and hence remain discriminable.

To examine the model’s responses to unknown sounds,
a “dental” and “retroflex” t were simulated by modify-
ing the value of the “coronality” feature, from 1.0 for the
alveolar t, to 0.7 and 0.3 for the dental and retroflex ver-
sions respectively. These were used to create “nonnative”
stimuli: a dental ta, which will be denoted by t(d)a, and
a retroflex ta, denoted by t(r)a. The syllables na and nga
were treated as a second nonnative contrast, since neither
of them was included in the input corpus.

As mentioned above, adjustment of weights in the clas-
sification network began after the overall system had been
exposed to the input corpus for 80 epochs, and continued
for 20 epochs. Just prior to the start of this training (i.e.,
at 80 epochs), the overall system was tested on the non-
native stimulus set6. This is meant to simulate testing of
the infant’s abilities at age 8 months. Results from the CL
classification network are shown in the left-hand part of
Table 2. As shown, the nonnative stimuli are responded
to by different units, indicating their discriminability.

The overall system was tested again on the nonnative
stimuli, at the the end of the 20 epochs of training. Results
from the CL classification network are shown in the right-
hand part of Table 2. The same unit now responds to
ta, t(d)a, and t(r)a, indicating that the nonnative stimuli
have been assimilated to the known ta category. The na
and nga stimuli are still responded to by different units,
however, indicating that they are not assimilable to known

6The syllables ta and ma were included in the testing, for
purposes of comparison, being the closest trained stimuli to the
t(d)a-t(r)a and na-nga contrasts, respectively.

Before training After training
ta 153 ma 92 ta 153 ma 92
t(d)a 153 na 149 t(d)a 153 na 100
t(r)a 50 nga 204 t(r)a 153 nga 39

Table 2: Responses of CL classification network to non-
native stimuli.

categories.
Equivalent results were obtained with the DBM, but not

the MLP architecture. Output responses of the DBM clas-
sification network were projected onto the first two princi-
pal components. Before training, the network’s responses
were quite widely separated in state space, indicating dis-
criminability of all the stimuli. After training, however
responses to the stimuli were much less dispersed in state
space. However, na and nga were considerably further
dispersed than t(d)a and t(r)a. These results are analo-
gous to those obtained with the CL architecture. With the
MLP architecture, however, the opposite trend appeared:
responses to the stimuli were more widely dispersed after
training than before training.

These results can also be examined in terms of the aver-
age pairwise distance between members of the ta–t(d)a–
t(r)a and ma–na–nga triples. With the DBM, the ratio of
this average distance after training to the average distance
before training was 0.42 for the stops, and 0.57 for the
nasals, illustrating that discriminability had decreased for
both groups, but more so for the stops. With the MLP
architecture, however, the after-before ratio was 2.77 for
the stops and 15.01 for the nasals, indicating that the mem-
bers of each group had become more discriminable after
training.

The results obtainedwith the CL and DBM architectures
demonstrate lost sensitivity to certain nonnative contrasts
as well as retained sensitivity to certain other nonnative
contrasts. This not only simulates the observed devel-
opmental phenomena, it also provides a computational
account of such a process, and thereby a basis for un-
derstanding why the observed selective loss of nonnative
contrasts in infants might arise. As the perceptual (“clas-
sification”) system develops, it becomes attuned to, and
begins to categorize, sounds occurring in the environment.
Other (nonnative) sounds now tend to be interpreted in
terms of the categories developed for known, occurring
sounds.

The DBM is an “attractor” network, in which the
learned states represent basins of attraction. This means
that inputs similar to those that have been learned will tend
to result in one of these attractor states. The CL classi-
fication network discretely approximates this property of
the DBM, in that an input is mapped to the output unit
with most closely similar weights. The fact that the loss
of nonnative contrasts is simulated with the CL and DBM
architectures, but not the MLP architecture is therefore in-
teresting, suggesting that the formation of attractor states
is necessary to simulate this developmental trend. The
MLP does not form attractors, and is therefore unable to
capture this phenomenon.
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Discussion
The present work provides a number of interesting demon-
strations, in the context of two selected phenomena from
infant speech perception. First, the simulations provide a
good account of the selected developmental phenomena,
and thus suggest computational mechanisms that could
implement these processes. The simulations further sug-
gest that the development of attractor states may be nec-
essary in modeling these phenomena. Second, the sim-
ulations provide specific suggestions about the nature of
early phonological representations; in particular, they sug-
gest that these representations may be organized around
demisyllable-sized units. Third, the work suggests that a
simple mechanism utilizing information about predictive
error and stress level can implement temporal integration
over a demisyllable-sized window. This is interesting in
two ways: (i) it provides a means of extracting static
representations from a dynamic and nonlinear signal; (ii)
although the significance of both the syllable and of stress
in speech perception has long been noted (Gleitman et al.,
1988), the present work provides a specific demonstration
of how stress information might be utilized in generating
syllable-like perceptions.

Of course, much of the interest of such results lies in
what they might reveal about the nature of phonological
processing of more complex word forms, involving, for
example, consonant clusters. It is unclear whether or
how the present model would scale up to dealing with
these. Also, the classification network essentially reponds
to words by spelling them out as demisyllables, and it is not
clear whether this provides a realistic account of syllabic
sensitivities outside of the experiments considered here.
These are obvious questions for further research.
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