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This article analyzes the relationship between skill learning and repetition priming, 2 implicit memory
phenomena. A number of reports have suggested that skill learning and repetition priming can be
dissociated from each other and are therefore based on different mechanisms. The authors present a
theoretical analysis showing that previous results cannot be regarded as evidence of a processing
dissociation between skill learning and repetition priming. The authors also present a single-mechanism
computational model that simulates a specific experimental task and exhibits both skill learning and
repetition priming, as well as a number of apparent dissociations between these measures. These
theoretical and computational analyses provide complementary evidence that skill learning and repetition
priming are aspects of a single underlying mechanism that has the characteristics of procedural memory.

One of the most significant developments in the study of human
memory over the last two decades has been the discovery of a
dissociation between two different kinds of memory systems. An
early indication of this dissociation came from studies of amnesia
in patients with excision or lesions of the hippocampus (Scoville &
Milner, 1957). These patients were dramatically impaired in their
ability to recollect new events and experiences. Cohen and Squire
(1980) introduced the term declarative memory to refer to this kind
of memory, and it is now well accepted that such memory relies on
the hippocampus and related medial temporal lobe structures, and
that it is profoundly impaired in patients with amnesia (see Cohen
& Eichenbaum, 1993, for review). Impairments in this memory
system can be revealed by direct tests of memory, which require
explicit retrieval of the contents of specific experiences; a typical
example would be memory for arbitrary pairings of words. Indi-
cation of a second memory system came in the form of a striking
pattern of preservation of certain abilities in patients with amnesia
(Cohen & Squire, 1980). The forms of memory and learning that
are spared by hippocampal damage include the acquisition of skills

that are acquired gradually over several sessions of practice; and
facilitation (priming) in processing of a stimulus, following prior
exposure to that stimulus. Patients with amnesia exhibit normal
patterns of skill acquisition and priming in such tasks, provided
there is no requirement for direct recollection of previous exposure
or practice (for review, see Schacter, Chiu, & Ochsner, 1993). This
second kind of learning and memory has been termed implicit
memory (Schacter, 1987), nondeclarative memory (Squire, 1992),
or procedural memory (Cohen & Eichenbaum, 1993), and it is
examined by indirect tests, which do not require explicit recollec-
tion of previous experiences.

Early findings from patients with amnesia were followed by the
discovery that dissociations between declarative and procedural
memory could be obtained in normal populations (e.g., Graf &
Schacter, 1985). These results generated much interest in and a
large body of research on “implicit” and “explicit” memory or (to
use the terms we prefer) on declarative and procedural memory
(for review, see Roediger & McDermott, 1993). Much of the
interest in procedural (implicit) memory arises from the fact that a
great deal of everyday human learning appears to have just the
character of procedural memory: It occurs gradually, as a result of
practice over many exposures; and the results or contents of such
memory, learning, or knowledge are typically unavailable to in-
trospection or recollection. For example, learning to ride a bicycle
appears to have these characteristics, as does acquisition of the
phonology or syntax of a first language. Thus the study of proce-
dural memory makes contact with rich traditions of psychological
inquiry, such as the investigation of skill acquisition, and investi-
gation of language learning. Further specification of the nature and
mechanisms of procedural memory therefore holds the promise of
providing fresh insight into fundamental and pervasive human
learning processes.

The aim of this article is to make a systematic examination of
the relationship between skill learning and repetition priming, with
a view to obtaining fresh insight into the nature of procedural
memory. Cohen (1984; Cohen & Eichenbaum, 1993) put forth the
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hypothesis that a number of apparently heterogeneous implicit
memory phenomena, such as skill learning, repetition priming, and
habit formation, are subserved by a single kind of learning mech-
anism termed procedural memory, which is based on the continual,
experience-driven tuning of processing elements. This hypothesis
does not claim that there is a single or specific set of processing
elements that constitute a procedural memory “system.” Rather, it
claims that there is a single kind of procedural learning mechanism
namely, incremental tuning of the processing elements that under-
lie a particular task, whatever or wherever those processing ele-
ments may be. This tuning can be thought of as the kind of
adjustment of connection weights that occurs in parallel distributed
processing (PDP) networks (McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986); a similar view of procedural
memory is inherent in the work of some of the architects of the
PDP framework (McClelland, McNaughton, & O’Reilly, 1995;
McClelland & Rumelhart, 1985). According to this hypothesis,
then, skill learning and repetition priming are both manifestations
of procedural memory. However, there have also been a number of
reports that suggest that skill learning and repetition priming can
be dissociated from each other and, consequently, that there are
different mechanisms that underlie these two implicit memory
phenomena (e.g., Heindel, Salmon, Shults, Wallicke, & Butters,
1989; Kirsner & Speelman, 1996; Schwartz & Hashtroudi, 1991).
The status of this debate is currently unresolved and is a matter of
some contention. If these phenomena are indeed based on different
underlying mechanisms, then they cannot both be regarded as
aspects of a single procedural memory mechanism. On the other
hand, if skill learning and repetition priming can be shown to arise
from a single underlying mechanism, then the hypothesis that they
are both forms of procedural memory is strengthened. The ques-
tion of whether skill learning and repetition priming arise from the
same or from different mechanisms thus has important conse-
quences for thinking about the nature of procedural memory as a
whole.

Repetition priming refers to facilitation (as seen in greater
accuracy or faster performance) in the processing of specific items
(stimuli) in a task as a result of previous exposure to those items.
In the implicit memory literature, skill learning refers to task
performance improvement that is not restricted to specific items to
which there has been previous exposure, but that extends to new
items; it is the development of generalized task ability as a result
of practice in the task. Although there is evidence from both
neuropsychologically impaired and nonimpaired populations to
suggest that skill learning and repetition priming have various
features in common (e.g., Cohen & Squire, 1980; Logan, 1990),
dissociations between these phenomena have also been observed,
and these dissociations have been interpreted as indicating that the
phenomena of skill learning and repetition priming may arise from
different underlying mechanisms. For example, Logan (1990) re-
ported that skill learning and repetition priming have three char-
acteristics in common. First, they both appear to increase as a
power function of the number of exposures. Second, they both
appear to be stimulus specific. Third, they both appear to depend
on associations between stimulus and responses. These results
suggested that skill learning and repetition priming might arise
from the same underlying mechanism. A contrary suggestion was
made by Schwartz and Hashtroudi (1991), who examined repeti-
tion priming and skill learning in each of three tasks: partial-word

identification, inverted reading, and word-fragment completion
(Schwartz & Hashtroudi, 1991, Experiment 1). They found that,
whereas the magnitude of repetition priming was similar across
these tasks, the pattern of skill learning varied, with skill learning
occurring in only two of the tasks. They suggested that these
divergent patterns indicate that skill learning and repetition prim-
ing may arise from different underlying mechanisms. They also
found that priming effects were not correlated with improvements
in skill across trials, in either the partial-word identification or
inverted reading tasks, and suggested that these results provide
further indication of a separation of the mechanisms underlying
skill learning and repetition priming. Further challenges to the
view that skill learning and repetition priming arise from a single
mechanism have come from a recent report (Kirsner & Speelman,
1996), which found that, unlike skill learning, repetition priming
did not follow the power law of practice in a lexical decision task.
Kirsner and Speelman also noted that these results appear to
directly contradict Logan, who found that repetition priming does
follow the power law of practice in a lexical decision task.

In this article, we present a new approach to thinking about skill
learning and repetition priming. We begin by making a functional
analysis of the phenomena of skill learning and repetition priming,
asking what kinds of relationships might be observed between
them and what these various relationships might imply about the
underlying processing. In light of this theoretical framework, we
reanalyze data that have been taken as evidence for separate
mechanisms and argue that none of these data are valid as evidence
of a processing dissociation. The second part of the article begins
by outlining our view of the mechanism that underlies procedural
memory and learning. We discuss how, according to this frame-
work, skill learning and repetition priming are manifestations of
the operation of a single underlying learning mechanism. We then
present a computational model and simulations of a digit-entering
task in which both skill learning and repetition priming have been
studied. To our knowledge, this work is the first computational
investigation of skill learning and repetition priming in a specific
empirical domain. We show that the model provides an accurate
account of behavioral data from the digit-entering task. In partic-
ular, the model exhibits both skill learning and repetition priming
and also exhibits a number of the dissociations between these
measures that have been taken as evidence for dual mechanisms.
All of these effects are exhibited even though the model consists of
only a single learning mechanism.

We view these two parts of the article as providing complemen-
tary evidence that skill learning and repetition priming are aspects
of a single underlying mechanism. The first part suggests that the
interpretation of existing data as evidence of separate mechanisms
is unwarranted. The second part of the article articulates our theory
of procedural memory and describes a computational model that
incorporates this theory. The model provides a computational
demonstration of how skill learning, repetition priming, and pat-
terns of apparent dissociation between them can all arise from a
single mechanism. We believe that these demonstrations provide
strong evidence that skill learning and repetition priming reflect a
single underlying learning mechanism and thus support the hy-
pothesis that they are both forms of procedural memory. Addition-
ally, we believe that the arguments presented here help to clarify
the terms of the current debate about skill learning and repetition
priming and thus constitute one step toward its resolution.
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In the concluding section of the article we use our theoretical
framework to analyze the conditions under which and the levels of
processing at which skill learning and repetition priming can be
expected to arise. We also discuss the broader implications of our
processing framework, relating it to debates over the nature of
memory and to the domains of skill acquisition, automaticity, and
language processing and learning. In the remainder of this intro-
ductory section, we describe an example of the kind of task in
which skill learning and repetition priming can be studied.

A Hypothetical Task

To provide the reader with a feel for the kinds of experimental
setting in which both skill learning and repetition priming can be
studied, let us consider a hypothetical task. In this hypothetical
task, drawings of physically impossible objects are presented to
participants on a computer visual display. (The objects are impos-
sible because they contain mutually inconsistent surfaces of the
kind featured, for instance, in the art of M. C. Escher). Each of the
pictured objects is impossible in one, two, three, or four ways. At
each stimulus presentation, the participant’s task is to press one of
four response keys (representing the four levels of impossibility) to
indicate in how many ways the drawing is impossible. Partici-
pants’ response times are recorded.

Stimulus presentation is divided into blocks of 20 stimuli, al-
though there is no pause between blocks. There are two kinds of
stimuli in each block, which we will refer to as unique stimuli and
repeating stimuli. A unique stimulus is presented once in a par-
ticular block and does not appear at any other point in the exper-
iment. A repeating stimulus appears once in every block and thus
repeats from block to block throughout the experiment. Each block
comprises presentation of 10 unique stimuli and 10 repeating
stimuli (the latter remaining constant throughout the experiment).
The experiment consists of 12 blocks overall. It thus has the
structure of a multiple-repetition paradigm of the kind commonly
used in studies of skill learning and repetition priming (e.g., Cohen
& Squire, 1980; Kirsner & Speelman, 1996; Schwartz & Hash-
troudi, 1991).

Figure 1 depicts hypothetical results from this hypothetical task,
measured by (hypothetical) mean reaction times. The upper curve
in the figure plots performance on unique stimuli across blocks,
and the lower curve plots performance on repeating stimuli across
blocks. The upper curve depicts substantial improvement in per-
formance on unique stimuli across blocks of practice. Because the
unique stimuli are drawings that participants have never previously
viewed, the improvement in performance on these stimuli reflects
a generalized facilitation in performance of the task, a facilitation
that is not restricted to specific stimuli, and extends to novel
stimuli. This generalized facilitation is what is termed skill learn-
ing. The improvement in performance on unique stimuli is thus a
manifestation of the existence of skill learning in this hypothetical
task.

The lower curve in the figure shows performance on repeating
stimuli improving even more substantially across blocks than
performance on unique stimuli. This greater improvement in per-
formance on repeating stimuli indicates facilitation that is due to
the repetition of those specific stimuli; this is what is termed
repetition priming. Thus, the greater improvement in performance

on repeating stimuli than on unique stimuli is a manifestation of
the existence of repetition priming in this hypothetical task.1

Theoretical Analysis

In developing our theoretical analysis, we will focus on three
issues with respect to which the relationship between skill learning
and repetition priming has been studied (e.g., Logan, 1990; Kirsner
& Speelman, 1996; Schwartz & Hashtroudi, 1991). The first of
these issues relates to the form of functions that may be expected
for skill learning and repetition priming. The underlying intuition
here has been that, if skill learning and repetition priming are
related, then the two functions should exhibit the same shape. This
idea has been most explicit in the work of Logan (1990) and
Kirsner and Speelman (1993, 1996). These investigators reasoned
that repetition priming should exhibit a power-function speedup
with practice of the kind that is well established for skill learning
(Anderson, 1982; Newell & Rosenbloom, 1981). Logan reported
the existence of a power function for repetition priming in a lexical

1 Note that our hypothetical task is intended merely to illustrate the
nature of the skill learning and repetition priming phenomena under con-
sideration, the nature of relationships between them, and the structure of
the kinds of paradigms used in many studies. Our hypothetical results are
not intended as precise predictions of what might actually obtain if this
impossibility-judgment experiment were conducted.

Figure 1. Hypothetical results from a hypothetical object-impossibility
judgment task. RT � reaction time.
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decision task and viewed this as evidence that skill learning and
repetition priming are related. However, Kirsner and Speelman
reported that repetition priming in a lexical decision task did not
follow a power function and in fact did not even increase with
practice; they took this to indicate that skill learning and repetition
priming may arise from different mechanisms. Thus, each of these
investigators drew conclusions about the relationship between skill
learning and repetition priming that were based on whether they
obtained the predicted power function speedups. As we shall see,
some of the apparent conflict in these results turns out to be no
more than an artifact of differences in terminology.

A second issue relates to correlations between skill learning and
repetition priming. The underlying intuition here is that, if skill
learning and repetition priming are related, then they should also
be correlated. The correlations here refer to correlations across
participants at a particular point in the experiment. This idea is
most apparent in the work of Schwartz and Hashtroudi (1991).
These authors drew conclusions about the relationship between
skill learning and repetition priming that were based on their
pattern of correlation across participants at a particular trial in
three different experimental tasks. We will show that a lack of
correlation between the standard measures of skill learning and
repetition priming is simply an artifact of the nature of the mea-
sures and does not warrant inferences about the nature of the
underlying mechanisms.

A third issue concerns patterns of increase and decrease in skill
learning and repetition priming: whether the measures exhibit the
same pattern of increase or decrease over the course of experi-
mental practice. Note that this question amounts to asking whether
skill learning and repetition priming are correlated over the course
of an entire experiment (rather than across participants at a par-
ticular point in the experiment). The underlying idea is that, if skill
learning and repetition priming are related, then they should both
increase or decrease together over the course of experimental
trials. This intuition is also exemplified by the work of Schwartz
and Hashtroudi (1991), who found that repetition priming in-
creased with practice in some experimental tasks in which there
was no evidence for skill learning. The authors interpreted this
finding as suggesting that there may be different mechanisms that
underlie skill learning and repetition priming. We will show that
such patterns of dissociation are consistent with the existence of a
single underlying mechanism.

The theoretical framework we develop in the next few sections
will focus primarily on these three issues. We will then use our
theoretical framework to reanalyze several apparently contradic-
tory empirical results.

Framework and Terminology

We begin development of our analysis by presenting an orga-
nizing framework and some terminology. This framework formal-
izes and extends discussion of the measures that we have already
introduced in the context of our hypothetical object-impossibility
judgment task. We will continue to use those hypothetical results
as a basis for thinking about the relationship between skill learn-
ing, repetition priming, and other measures to emphasize that the
relationships illustrated are general and apply to any task in which
both skill learning and repetition priming can be observed. Fig-

ure 2a is a schematic of results from that hypothetical task and
illustrates several related measures.

Performance on unique stimuli is a measure of participants’
performance in response to presentation of unique stimuli, that is,
the stimuli that vary from block to block. Performance is measured
in terms of some index of reaction time. For example, in a lexical
decision task (e.g., Kirsner & Speelman, 1996), this might be a
measure of lexical decision latency for those stimuli that were
unique to each block.

Performance on repeating stimuli is a measure of participants’
performance in response to presentation of repeating stimuli, that
is, those stimuli that appear on every block. This is also measured
in terms of reaction time.

Skill learning refers to the development of a generalized ability
(i.e., skill), which is not specific to particular stimuli but extends to
new items (as long as these items are from the same sampling
population). It is measured by improvement in participants’ per-
formance on unique stimuli. Thus, skill learning at any given block
n is measured as Block 1 performance on unique stimuli less Block
n performance on unique stimuli. The skill learning measure is
depicted in two ways in Figure 2a: first, as the divergence of Block
n performance on unique stimuli from Block 1 performance on
unique stimuli; and second, with the same divergence information
graphed as a function in the lower part of the figure.

It is important to clearly distinguish between performance on
unique stimuli and skill learning. Performance on unique stimuli is
a direct measure of how participants perform on novel items
(drawn from the sampling population). Skill learning measures the
improvement in performance on novel (“unique”) stimuli; it is
derived from performance on unique stimuli.

Benefit of repetition is a measure of improvement in partici-
pants’ performance on repeating stimuli. It is depicted in two ways
in Figure 2a: first, as the divergence of Block n performance on
repeating stimuli from Block 1 performance on repeating stimuli;
and second, with the same divergence information graphed as a
function in the lower part of the figure.

We define the measure of repetition priming to be the difference
between performance on unique stimuli and performance on re-
peating stimuli. Figure 2a depicts the repetition priming measure in
two ways: first, as the separation between performance on unique
stimuli and performance on repeating stimuli, and second, with
this same information graphed in the lower part of the figure.

We have already emphasized the distinction between perfor-
mance on unique stimuli and skill learning. In additional, the
measure that we term repetition priming needs to be carefully
distinguished from performance on repeating stimuli; and from
what we term benefit of repetition, which, as described above,
measures the improvement in performance on repeating stimuli.

These terminological points are not trivial, because repetition
priming has been used differently by different researchers and in
different senses. Schwartz and Hashtroudi (1991) define repetition
priming as “facilitation in the processing of an item as a result of
previous exposure to the same item” (p. 1177). The measure of
priming that Schwartz and Hashtroudi used was “obtained by
subtracting the proportion of non-repeated (new) items identified
from the proportion of repeated (old) items identified on each trial”
(p. 1180). This corresponds to the measure of repetition priming
we defined above. Similarly, Logan (1990) defines repetition
priming as follows: “Responses are usually faster on the second

404 GUPTA AND COHEN



presentation [of an item] than on the first, and this difference is
called repetition priming” (p. 2). To measure repetition priming,
Logan uses “the reaction time data . . . presented as benefit
scores . . .” (p. 10), and notes that “benefit . . . was calculated by
subtracting the mean reaction time for each number of presenta-
tions from the mean reaction time for the first presentation” (p.
10). Note that this measure is equivalent to what we have termed
benefit of repetition. Kirsner and Speelman (1996, p. 570) measure
repetition priming by the difference between reaction time for new
items and reaction time for old items, in each block. This corre-
sponds to the measure of repetition priming that we defined above.
Although these comparisons might appear digressive, the impor-
tance of terminology will become clear very shortly.

Before moving on to our analysis of the relationship between the
various measures identified above, we need to discuss Figure 2b.
This figure is a schematic derived from the data of Schwartz and
Hashtroudi (1991, Experiment 1, partial-word identification). It
illustrates the case in which performance is measured by some
criterion of accuracy rather than by reaction time. In consequence,
improvement in performance is reflected in performance on unique
stimuli and performance on repeating stimuli functions that in-

crease with practice. This can be compared with Figure 2a, where
improvement in performance is reflected by decreasing perfor-
mance on unique stimuli and performance on repeating stimuli
reaction time functions. Note, however, that improvement in per-
formance for the other measures (skill learning, repetition priming,
and benefit of repetition) is reflected in increasing functions in
both figures, that is, irrespective of whether the performance on
unique stimuli and performance on repeating stimuli functions
denote reaction time (and hence are decreasing functions) or
accuracy (and hence are increasing functions). This follows from
the fact that skill learning, repetition priming, and benefit of
repetition are difference measures. Finally, it should be clear that
our observations regarding distinctions between the five measures
apply equally, whether performance is measured by reaction time
or by accuracy.

The Form of Functions

In this section, we examine the first of the issues we highlighted:
What form should the functions for skill learning and repetition
priming be expected to take? We will address this question by

Figure 2. Schematic of relevant measures. (a) Measured by reaction time, in a hypothetical task. (b) Measured
by accuracy. Schematic of data from Schwartz and Hashtroudi (1991, Experiment 1, partial-word identification).
RT � reaction time.
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analyzing the form of functions for all five of the measures we
described in the preceding discussion: performance on unique
stimuli, performance on repeating stimuli, benefit of repetition,
skill learning, and repetition priming.

First of all, we can say that performance on unique stimuli may
be expected to follow a power function. We would in the first place
expect this from studies of skill acquisition, which have shown that
generalized task performance is a power function of practice (e.g.,
Anderson, 1982; Newell & Rosenbloom, 1981). This expectation
is supported by results from the study by Kirsner and Speelman
(1996), who examined lexical decision over several blocks of
practice, where each block included both novel (i.e., unique) and
repeating word–nonword stimuli. They found that power functions
provided an excellent fit to performance on unique words and
nonwords (Kirsner & Speelman, 1996, Figure 5, and Table 3).
Based on these various results, we may conclude that performance
on unique stimuli can in general be expected to follow a power
function.

As a corollary to the first point, it is clear that, if performance on
unique stimuli follows a power function, then skill learning will
follow an inverse power function. This follows from the definition
of skill learning as being the improvement in performance on
unique stimuli over blocks.

What can we say about performance on repeating stimuli? Data
pertinent to this question come, once again, from Kirsner and
Speelman (1996), who showed that power functions also provided
an excellent fit to performance on the repeating words and non-
words in their lexical decision task (Kirsner & Speelman, 1996,
Figure 5, and Table 3). Further evidence that multiple repetitions
give rise to a reaction time function that follows the power law
comes from Logan (1990, Table 1, and Figures 5 and 6). Although
this result has sometimes been interpreted to mean that repetition
priming follows a power function, this is not strictly true. The
specific measure to which Logan’s (1990) finding of a power
function applies is what we call performance on repeating stimuli
(see the earlier discussion of measures used by various authors).
Based on the evidence from both Logan and Kirsner and Speel-
man, then, we may conclude that performance on repeating stimuli
can be expected to follow a power function.

As a corollary to the expected power function for performance
on repeating stimuli, benefit of repetition is likely to follow an
inverse power function.

This leaves the repetition priming measure. First of all, it is
worth reiterating that, contrary to some interpretations (e.g.,
Kirsner & Speelman, 1996), the data in Logan (1990) do not
provide evidence about whether the repetition priming measure
follows a power function; what they show, rather, is a power-
function speedup for performance on repeating stimuli. Let us
therefore consider what form the repetition priming function can
be expected to take. We begin by noting that repetition priming is
the difference between performance on unique stimuli and perfor-
mance on repeating stimuli, which means that it is the difference
between two power functions. The question of what form we can
expect for repetition priming thus translates into the question of
what form the difference between two power functions can be
expected to take. Is there any particular shape for such a function?

The general form of a power function is given by

RT � a � bPc, (1)

where a is the asymptote, b is the difference between initial
performance and the asymptote, P represents the amount of prac-
tice, and c represents the rate at which performance improves with
practice, �1 � c � 0.

Consider two power functions:

RTunique � au � buP
cu

and

RTrepeat � ar � brP
cr.

Now, the difference between these two functions is repetition
priming:

RTunique � RTrepeat � au � buP
cu � ar � brP

cr

� �au � ar) � Pcu(bu � br Pcr � cu).

This difference reduces to the general form (1) of a power
function iff cr � cu. Even in this case, for the resultant power
function not to be degenerate, we must require that bu � br, or else
the resultant power function reduces to a constant.2 There is no
reason to expect that these conditions will always be satisfied for
the power functions that specify performance on unique stimuli
and performance on repeating stimuli. Therefore, there is no rea-
son to expect that the difference between these two functions, that
is, repetition priming, should follow a power function.

These observations allow resolution of a number of apparently
problematic consequences of the recent article by Kirsner and
Speelman (1996), to which we have referred several times. The
reader will recall that that study examined skill learning and
repetition priming in a lexical decision task. Kirsner and Speel-
man’s findings for words are redrawn in Figure 3 and can be
summarized as follows. First, performance on unique stimuli
shows improvement with experimental practice and follows a
power function (Kirsner & Speelman, 1996, p. 568, and Figure 5).
Second, performance on repeating stimuli shows improvement
with experimental practice and follows a power function (Kirsner
& Speelman, 1996, p. 567, and Figure 3). Third, repetition priming
does not show an increase beyond the first session and thus does
not follow a power function (Kirsner & Speelman, 1996, p. 570,
and Figure 7).

The crucial finding was that, unlike skill learning, repetition
priming did not follow the power law of practice. Kirsner and
Speelman (1996) interpreted this finding as being problematic in
two ways. First, they noted that these results appear to directly
contradict Logan (1990), who found that repetition priming does
follow the power law. Second, Kirsner and Speelman interpreted
this finding as strongly challenging the view that skill learning and
repetition priming arise from a single mechanism.

With regard to the first point, it should be clear from our earlier
discussion that Kirsner and Speelman’s (1996) results do not
contradict Logan (1990). As we have previously noted, Logan’s
results demonstrate a power function for performance on repeating
stimuli (and for benefit of repetition); they do not demonstrate a
power function for the measure that we (and Kirsner and Speel-
man) term repetition priming. The lack of a power function for this

2 We thank Gordon Logan for this observation.
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measure in Kirsner and Speelman’s results is therefore in agree-
ment with Logan’s findings. Kirsner and Speelman’s results also
agree with those of Logan in showing a power curve for both
performance on repeating stimuli and benefit of repetition. The
apparent contradiction between the two experiments arises because
Kirsner and Speelman appear to regard the measure for which
Logan demonstrated a power function as being the same as the
repetition priming measure for which they fall to obtain a power
function. However, as we have shown, these measures are not in
fact the same. In summary, although one of the main theoretical
points made by Kirsner and Speelman was that their data contra-
dicted the results obtained by Logan, we can now see that this
claim arises from an unfortunate terminological ambiguity in the
literature, whereby different investigators have referred to different
measures as “repetition priming.” We believe this point under-
scores the importance of maintaining terminological clarity in
discussion of results in this domain.

This brings us to Kirsner and Speelman’s (1996) second theo-
retical argument: that the lack of a power law for repetition
priming indicates different underlying mechanisms for skill learn-
ing and repetition priming. The reasoning underlying this conclu-
sion is as follows: If repetition priming really were related to skill
learning, then, like skill learning, it necessarily would follow a
power function. Given their finding that repetition priming does

not necessarily follow a power function, Kirsner and Speelman
concluded that repetition priming is based on a different principle
(and process) than skill learning is.

However, as we have shown above, the fact that the repetition
priming measure does not follow the power law follows from its
definition and from the fact that performance on repeating stimuli
and performance on unique stimuli each follow a power function.
This lack of a power law for the repetition priming measure is a
definitional artifact and does not bear on the question of whether
the mechanisms underlying skill learning and repetition priming
are the same.

There appear to have been three reasons for the origin of the
erroneous expectation that, if the mechanisms underlying skill
learning and repetition priming are indeed the same, then, like skill
learning, repetition priming should obey the power law of practice.
First, the term repetition priming has not always been used to refer
to the same measure. Second, and partly as a result of the first
effect, the intuition that the mechanisms that underlie skill learning
and repetition priming should be related has been erroneously
translated into the expectation that the skill learning and repetition
priming measures should be related. Third, the fact that the repe-
tition priming measure is a difference score appears sometimes to
have been overlooked.

We turn now to an analysis of similar issues with respect to
correlations between skill learning and repetition priming.

Implications of Correlations

As we noted earlier, correlation is a second issue with respect to
which the relationship between skill learning and repetition prim-
ing has been examined. We will begin by examining data from a
digit-entering task. This paradigm was originated by Fendrich,
Healy, and Bourne (1991). Here, we will focus on a version of the
digit-entering task that was used in our empirical work (Poldrack,
Selco, Field, & Cohen, 1999), in which five-digit number strings
(e.g., “49385”) were presented individually on a computer display
to participants, who entered these number strings using a numeric
keypad.

Stimulus presentation was divided into blocks. Some digit
strings in each block were repeating items. These appeared once in
each block and therefore appeared multiple times during the ex-
periment. Some digit strings in each block appeared only once
during the experiment (unique items). The structure was therefore
identical to that of the hypothetical task that was described at the
beginning of this article. Figure 4a shows performance on unique
stimuli, performance on repeating stimuli, skill learning, and rep-
etition priming, redrawn from data in the digit-entering task of
Poldrack, Selco, Field, and Cohen (1999, Experiment 1). Perfor-
mance is measured in terms of reaction time.

What Figure 4a shows clearly is that the skill learning and
repetition priming measures appear to move in opposite directions
across blocks. This pattern is so clear that the two functions could
almost be mirror images of each other. Clearly, across a window of
several blocks, these two functions would be negatively correlated.
Furthermore, this is not an isolated effect that is observed only in
the digit-entering task. To illustrate this, we have redrawn data
from the three tasks reported as Experiment 1 by Schwartz and
Hashtroudi (1991). Figure 4b–d plot these data. Note that in these
experiments, performance on unique stimuli and performance on

Figure 3. Skill learning and repetition priming results reported for words
by Kirsner and Speelman (1996). Data are redrawn from Kirsner and
Speelman (1996, Table 2) by collapsing across frequency levels. RT �
reaction time.
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Figure 4. Patterning of changes in skill learning and repetition priming, across blocks. (a) Results from the digit-entering task of Poldrack et al. (1999,
Experiment 1). (b) Partial-word identification task. (c) Inverted reading task. (d) Word-fragment completion task. (b)–(d) Results from Schwartz and
Hashtroudi (1991, Experiment 1), redrawn. IKI � interkeystroke interval.



repeating stimuli are measured in terms of accuracy rather than in
terms of reaction time (see discussion of Figure 2a vs. Figure 2b in
Framework and Terminology). Accordingly, the performance on
unique stimuli and performance on repeating stimuli functions
increase with practice rather than decrease with practice, as is the
case with reaction time measures. However, the relationships
between performance on unique stimuli, performance on repeating
stimuli, skill learning, repetition priming, and benefit of repetition
are the same in the two situations (see the earler discussion).
Figure 4b–d show that the data from all three of Schwartz and
Hashtroudi’s (1991, Experiment 1) tasks exhibit the same trend as
that observed in Poldrack et al.’s (1999) data: skill learning and
repetition priming tend to move in opposite directions. The same
trend is also visible in the data of Kirsner and Speelman (1996),
shown here in Figure 3. Clearly, the anticorrelation over time
of skill learning and repetition priming is quite a general
phenomenon.

What is the significance of these observations? In analyzing
these patterns of correlation, we need to keep in mind the nature of
the various measures involved. Recall that the definitions of skill
learning and repetition priming at Block N are skill learningN �
performance on unique stimuli1 � performance on unique stimuliN
and repetition primingN � performance on unique stimuliN �
performance on repeating stimuliN. Examining the skill learning
measure, we see that skill learning is inversely proportional to
performance on unique stimuli. If performance on unique stimuli
increases from Block N to Block N � 1, skill learning will
necessarily decrease. Examining the repetition priming measure,
however, we see that repetition priming is directly proportional to
performance on unique stimuli. If performance on unique stimuli
increases from Block N to Block N � 1, repetition priming will
necessarily increase also, unless performance on repeating stimuli
happens to increase by an even greater amount. As there is no
general reason for variation in performance on repeating stimuli to
be an amplification of the variation in performance on unique
stimuli, repetition priming will usually vary positively with per-
formance on unique stimuli. Thus skill learning varies negatively
with performance on unique stimuli, while repetition priming
varies positively with performance on unique stimuli. The fact that
repetition priming and skill learning tend to move in opposite
directions over any window of several blocks is therefore purely a
definitional artifact. It has no bearing on whether the mechanisms
that underlie skill learning and repetition priming are the same or
different. That is, it has no theoretical significance. But this raises
questions about the significance of correlations between the skill
learning and repetition priming measures at any particular block;
after all, a particular block is equivalent to a window size of one.
Is there any reason why skill learning and repetition priming
should be correlated across participants, on any given block? This
question is worth examining in greater detail.

To examine more closely participants’ performance in a partic-
ular block, we arbitrarily selected Block 6 of the digit-entering task
data from Experiment 1 of Poldrack et al. (1999). Block 6 perfor-
mance on unique stimuli and performance on repeating stimuli is
shown for each of the participants in the experiment in the upper
panel of Figure 5a. As can be seen, the two measures are highly
correlated across participants, for this arbitrarily chosen block (r �
.927, p � .001). The lower panel of Figure 5a repeats the perfor-
mance on unique stimuli and performance on repeating stimuli

curves from the upper panel, additionally showing each partici-
pants’ performance on unique stimuli in Block 1 of the experiment,
this being the baseline measure with respect to which skill learning
is computed; recall that skill learning on a particular block is
measured as the difference between performance on unique stimuli
on that block and performance on unique stimuli in Block 1. This
difference, that is, skill learning, is also plotted in the lower panel
of Figure 5a. Finally, the lower panel also shows each participant’s
repetition priming in Block 6, computed as the difference between
performance on unique stimuli and performance on repeating
stimuli for each participant. Examination of the skill learning and
repetition priming functions reveals that the correlation between
these measures is likely to be weak or nonexistent, and this is in
fact the case (r � .222, p � .4). This pattern of results also holds
for other arbitrarily chosen blocks, such as Block 18, shown in
Figure 5b. We can see that in Block 18, as in Block 6, the
performance on unique stimuli and performance on repeating
stimuli measures are strongly positively correlated across partici-
pants (upper panel; r � .892, p � .001), but that the skill learning
and repetition priming measures have a weak or negative correla-
tion (lower panel; r � �.269, p � .3).

These analyses provide an understanding of the significance of
the various correlations by making it clear that both skill learning
and repetition priming are derived measures. In any given block,
each participant’s skill learning is derived by subtracting the
participant’s performance on unique stimuli in that block from the
participant’s performance on unique stimuli in Block 1. In conse-
quence, the form of the skill learning function across participants
diverges from the form of performance on unique stimuli, even
though skill learning is a measure of improvement in performance
on unique stimuli. Repetition priming for each participant is de-
rived as the difference between performance on unique stimuli and
performance on repeating stimuli for that participant. As a result,
the form of the function across participants diverges from that of
the performance on repeating stimuli function, even though repe-
tition priming is a measure of improvement in performance on
repeating stimuli. Because of these divergences, there is no logical
reason why the derived measures should be correlated. It is worth
noting that these results are quite general. They are not restricted
to data from the particular blocks shown in Figure 5a and 5b. Nor
are they even restricted to the digit-entering task. These are func-
tional arguments that apply to skill learning and repetition priming
in any task in which they are jointly observed. There is no logical
reason why skill learning and repetition priming should be corre-
lated in any given block or in any given task.

This can be confirmed by examining the patterns of correlation
systematically at every block. Figure 6 shows correlations across
participants at each block in the digit-entering task. Note that the
correlations for Blocks 6 and 18 are the same as those obtained
from Figure 5a and 5b. The upper line shows that correlation
between performance on unique stimuli and performance on re-
peating stimuli is highly positive at all blocks in the experiment;
we will return to this point later. More important for the present
discussion, the lower line shows that the skill learning and repe-
tition priming measures are negatively correlated for the most part,
as our earlier analysis would suggest. We therefore would find no
positive correlation in most of the blocks of the digit-entering task
or in the partial-word identification task or the inverted reading
task of Schwartz and Hashtroudi (1991, Experiment 1). Neverthe-
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less, these two measures can on occasion be positively correlated
in a particular block, as is true in Blocks 34 and 36 of the digit
entering task (Figure 6), and in the word-fragment completion task
of Schwartz and Hashtroudi (1991, Experiment 1), where a posi-
tive correlation between skill learning and repetition priming was
obtained in the last block of the experiment. However, a positive
or negative correlation or lack of correlation between these two
measures on any given block has no theoretical significance.

We believe that interpretation of the lack of correlation between
the skill learning and repetition priming measures as being indic-
ative of a processing dissociation does not take into consideration
the nature of the measures. The analysis in this section should
make it clear that the presence, absence, or strength of correlations
between the skill learning and repetition priming measures is
artifactual and follows from their definitions. It has no theoretical
significance. Therefore, the discovery of a lack of correlation
between the skill learning and repetition priming measures in some
tasks but not in others (Schwartz & Hashtroudi, 1991) does not
constitute evidence that the mechanisms underlying skill learning
and repetition priming are necessarily different.

Relevant Measures

Our discussion so far has shown that patterns of dissociation
between the skill learning and repetition priming measures do not
warrant conclusions about the underlying mechanism or mecha-
nisms. This leaves the question of how the relation (or lack

thereof) between the unknown mechanisms may be examined. We
suggest that, in thinking about such processing relationships, one
needs to take into account not just the standard measures of skill
learning and repetition priming, but also the measures we have
termed performance on unique stimuli and performance on repeat-
ing stimuli.

There are at least two important reasons why performance on
unique stimuli and performance on repeating stimuli should be
taken into consideration. First, it is clearly a good idea to take into
account a larger rather than a smaller number of measures. Our
analyses in the preceding sections clearly demonstrate the impor-
tance of this approach: As we showed, it is only by taking into
account the performance on unique stimuli and performance on
repeating stimuli measures that it becomes clear why patterns of
dissociation between the standard measures of skill learning and
repetition priming are uninformative about the underlying
processing.

A second reason is that the performance on unique stimuli and
performance on repeating stimuli measures together encode more
information than do the standard skill learning and repetition
priming measures. If we are given only the performance on unique
stimuli and performance on repeating stimuli functions that are
obtained in a task, we can automatically derive the skill learning
and repetition priming functions. The converse is not true, how-
ever: The performance on unique stimuli and performance on
repeating stimuli functions cannot be derived given only the skill

Figure 5. Analysis of correlations from the digit-entering task. (a) Participant-wise results at Block 6. (b)
Participant-wise results at Block 18. IKI � interkeystroke interval.
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learning and repetition priming functions for a task. The signifi-
cance of this becomes clearer when we consider the following: A
processing theory that accounted for the performance on unique
stimuli and performance on repeating stimuli functions in a task
would necessarily account for the skill learning and repetition
priming functions in that task. However, it is not clear whether a
processing theory that accounted for the skill learning and repeti-
tion priming functions in a task would necessarily account for the
actual performance data (i.e., performance on unique stimuli and
performance on repeating stimuli). The performance on unique
stimuli and performance on repeating stimuli curves thus consti-
tute the primary data that must be explained when constructing a
processing account. It therefore seems highly desirable to take
these measures into account when making processing infer-
ences from patterns of data that are obtained in a behavioral
manipulation.

These considerations make a strong argument for taking the
performance on unique stimuli and performance on repeating
stimuli measures into account in investigations of skill learning
and repetition priming. It is important to note also that these
arguments are theory independent. They retain their force irrespec-
tive of the validity of any particular theory of skill learning and
repetition priming. In addition to these theory-neutral arguments,
there are also some theory-dependent reasons to believe in the
importance of taking the performance on unique stimuli and per-
formance on repeating stimuli measures into consideration. These
reasons follow from the theory of procedural memory that we
outline in the second part of this article which, however, requires
some discussion here.

In our theory, procedural learning in a particular task is viewed
as occurring in whatever processors are required for performance
of that task. These processors can be thought of loosely as the

Figure 6. Analysis of correlations at each block in the digit-entering task.
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“neural assemblies” that need to be deployed in performance of
that particular task. Clearly, the specific processors that are de-
ployed will differ widely across different tasks. The particular set
of processors that are required for performance of a particular task
collectively constitute the “system” that performs that task. Im-
portant in our view is that there is no difference in how the system
that is necessary for a particular task operates for different types of
stimuli that are processed in that same task (such as repeating vs.
unique stimuli). All of these stimuli are processed by exactly the
same system (i.e., the specific set of processors that are needed for
that task). Furthermore, each time any of these stimuli is processed
by the system, there is incremental “tuning” of the processors,
which adjusts the system in such a way as to facilitate subsequent
processing of that stimulus by the system. Note that this incremen-
tal tuning occurs each time a stimulus is processed and occurs in
the same way irrespective of the type of stimulus. A good analogy
for this tuning is the kind of connection weight adjustment that
occurs in a connectionist network (e.g., of the kind described in
Rumelhart, Hinton, & Williams, 1986). In such networks, adjust-
ment of connection weights following presentation of a particular
stimulus facilitates the network’s performance on a subsequent
presentation of that stimulus.

This tuning process leads not only to facilitated processing on
the specific stimuli to which the system is exposed, but also to
facilitated processing on stimuli from the given membership class
in general (provided there is some basis for the representation of
similarity between stimuli, such as that provided by distributed
representations, which is discussed in the Description of the model
subsection). Thus, the continual tuning process adjusts the system
to do better, in general, on the task. But it adjusts the system even
more for those stimuli that repeat, precisely because they repeat:
The system undergoes greater attunement favoring these stimuli
than it does for stimuli in general. The underlying system, the
learning mechanism, and the state of tuning of the system are
nevertheless the same for the two kinds of stimuli. In terms of the
analogy with the connectionist network, all stimuli (be they
“unique” or “repeating”) are processed by exactly the same units,
connections, and connection weights. If we observe the system’s
performance on unique versus repeating stimuli, we will usually
see that there is generalized facilitation on the unique stimuli and
even greater facilitation on the repeating stimuli. The output of the
system will, in other words, generate performance on unique
stimuli and performance on repeating stimuli functions. This the-
oretical view is made rigorously operational in the form of a
computational model and simulations in the second part of this
article. For now, what we wish to emphasize is that, in our theory,
unique and repeating stimuli are not processed differently. There is
neither a separate learning mechanism nor separate sets of proces-
sors for these (or any other) different types of stimuli. What then
is the difference between repeating and unique stimuli? In our
view, the only difference is the degree of facilitation the system
undergoes in processing these types of stimuli. And this degree of
facilitation is determined by how many times the system has been
exposed to each type of stimulus.

Skill learning is in our view merely the degree of facilitation on
the unique items, and repetition priming is merely the additional
degree of facilitation that arises from the additional exposure of the
system to the repeating items. Both kinds of facilitation are en-
coded by a single state of “tuning” in the system (in the neural

network analogy, by a single set of connection weights) that
determines processing of stimuli in the system. Underlying both
kinds of facilitation is the incremental adjustment mechanism that
is always operative throughout the system and that is blind to
whether a particular stimulus is unique or repeating. We term this
mechanism procedural learning; the changes arising from proce-
dural learning are observed as procedural memory effects.

It should be clear why, in this view, the performance on unique
stimuli and performance on repeating stimuli functions are con-
sidered important. They directly reflect the the current state of
tuning of the system (which directly determines the operation and
performance of the system). The standard measure of repetition
priming does not directly reflect the current tuning of the system;
rather, it reflects the difference between how well the system is
tuned for (and therefore performs on) stimuli from the membership
class in general versus those stimuli that have repeated. The
standard measure of skill learning does not directly reflect the
current state of tuning (and therefore processing) in the system;
rather, it reflects the extent to which the current tuning of the
system has changed with respect to some earlier point in time.

On this view, we would expect the performance on unique
stimuli and performance on repeating stimuli measures to exhibit
similar patterns in a given task, and in fact this appears to be the
case, as we have already seen. The two measures exhibit the same
general trend in the data of Schwartz and Hashtroudi (1991; see
Figure 2b, this article); in Kirsner and Speelman’s (1996) data (see
Figure 3, this article); and in the data of Poldrack et al. (1999,
Experiment 1; see Figure 4a, this article). They also exhibit a
strikingly close relationship across participants at two arbitrarily
chosen blocks in the data of Poldrack et al. (1999, Experiment 1),
as shown graphically in Figure 5a and 5b. This indication was
confirmed in Figure 6, which shows that the two measures have a
correlation of close to 1.0 at each block. Furthermore, these two
measures both follow power functions, as discussed earlier.

This does not mean that the standard measures of skill learning
and repetition priming are irrelevant or less important than are the
meaures of performance on unique stimuli and performance on
repeating stimuli simply because they are derived or baseline
adjusted. Indeed, to measure skill learning (defined as the extent of
facilitation in generalized task performance), the baseline must be
subtracted out, so the standard measure of skill learning is the
appropriate one. To measure repetition priming (defined as the
extent of facilitation resulting from repetition of specific stimuli,
over and above facilitation due to generalized improvement), skill
learning must be subtracted out, so that the standard measure of
repetition priming is the appropriate one. However, although these
measures are perfectly valid, patterns of dissociation between them
are less informative about the underlying processing than is rather
widely supposed, as our theory-neutral analysis in the preceding
two sections clearly shows.

In summary, performance on unique stimuli and performance on
repeating stimuli are important to keep in mind even on completely
theory-independent grounds. In addition, according to our partic-
ular theoretical framework, there are further reasons to regard
performance on unique stimuli and performance on repeating
stimuli as particularly relevant measures. With these points in
mind, we now turn to examining other patterns of dissociation that
have been reported in the implicit memory literature.
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Patterns of Increase and Decrease

A third kind of relationship between skill learning and repetition
priming that has been examined is the relationship between their
patterns of change. As we noted earlier, this question amounts to
asking whether skill learning and repetition priming are correlated
over the course of an entire experiment (rather than across partic-
ipants at a particular point in the experiment). The underlying
intuition here has been that, if skill learning and repetition priming
are related, then they should both increase or decrease together,
over the course of experimental practice (e.g., Schwartz & Hash-
troudi, 1991). What is the theoretical significance, then, of a
pattern of relationship in which one measure increases with prac-
tice, but the other does not?

We can begin by considering possible relationships between
performance on unique stimuli and performance on repeating
stimuli. For each of these measures, there are two possibilities with
respect to the pattern of change with practice: performance either
(a) improves or (b) stays constant. We will ignore the possibility
that performance deteriorates with practice. Such deterioration
might in fact occur as a result of fatigue; however, we regard
fatigue effects as extrinsic. That is, the facilitation of processing is
an intrinsic effect of practice, whereas fatigue is an extrinsic effect
of task duration. Fatigue might temporarily mask facilitation, but
the facilitation would be revealed if the task were resumed after a
rest period. This can be thought of as a competence-performance
distinction, and for our theoretical analysis we consider only the
underlying competence and its relatively long-lasting facilitation
by practice or repetition. We also ignore deterioration in perfor-
mance that arises from a qualitative change in the way a task is
performed (such as a strategy shift) or from a change in the
representational status of stimuli. An example of the latter is the
decrease in lexical decision accuracy for repeating nonwords re-
ported by Kirsner and Speelman (1996), which in our view arose
because the repeating nonwords attained the representational status
of “words,” which interfered with their correct rejection. Thus,
confining our analysis to the possibility that performance either
improves or stays constant, there are four possible relationships
between performance on unique stimuli and performance on re-
peating stimuli: (a) Both performance on unique stimuli and
performance on repeating stimuli improve with practice; (b) Per-
formance on unique stimuli is constant, while performance on
repeating stimuli improves; (c) Performance on unique stimuli and
performance on repeating stimuli are both constant; and (d) Per-
formance on unique stimuli improves, while performance on re-
peating stimuli is constant. We will assume that performance on
unique stimuli and performance on repeating stimuli are measured
in terms of reaction time, so that an improvement in performance
translates into a decrease in reaction time, with practice. The four
possible relationships between performance on unique stimuli and
performance on repeating stimuli (measured by reaction time) are
represented by the four cells in Figure 7. Within these cells, there
are some further possibilities. Each possibility is shown in terms of
its implications for the performance on unique stimuli and perfor-
mance on repeating stimuli curves as well as for the derived skill
learning and repetition priming curves.

Within Case I (performance on unique stimuli improving, per-
formance on repeating stimuli improving), there are four logical
possibilities, as shown in the figure: (Ia) The performance on

unique stimuli and performance on repeating stimuli functions are
parallel. This implies increasing skill learning, with constant rep-
etition priming. (Ib) The performance on unique stimuli and per-
formance on repeating stimuli functions diverge. This implies that
both skill learning and repetition priming increase. (Ic) The per-
formance on unique stimuli and performance on repeating stimuli
functions converge. This implies that skill learning increases,
while repetition priming decreases. (Id) The performance on
unique stimuli and performance on repeating stimuli functions are
identical. This implies that skill learning increases but repetition
priming is zero. Case II has one logical possibility: Performance on
unique stimuli is constant, and performance on repeating stimuli
improves, so that skill learning is zero, while repetition priming
increases. Within Cell III (performance on unique stimuli constant,
performance on repeating stimuli constant), there are two possi-
bilities: (IIIa) The performance on unique stimuli and performance
on repeating stimuli functions are parallel. This implies that skill
learning is zero, and repetition priming is constant. (IIIb) The
performance on unique stimuli and performance on repeating
stimuli functions are identical. This implies that skill learning and
repetition priming are both zero. Finally, in Case IV, performance
on unique stimuli improves while performance on repeating stim-
uli is constant, so that skill learning increases while repetition
priming decreases.

The eight patterns identified above constitute all logically pos-
sible patterns of relationship between performance on unique
stimuli and performance on repeating stimuli. What, if anything,
does each of these possible patterns signify about the mechanisms
underlying skill learning and repetition priming? Cases Ia–Id ex-
hibit a variety of patterns of dissociation between the skill learning
and repetition priming measures. In Case Ia, for instance, skill
learning increases whereas repetition priming does not—the pat-
tern reported by Kirsner and Speelman (1996). In Case Ic, skill
learning increases whereas repetition priming actually decreases.
In Case Id, skill learning increases while repetition priming is zero.
Such patterns of dissociation might be thought to indicate separate
underlying mechanisms.

However, when we examine the performance on unique stimuli
and performance on repeating stimuli functions in Cases Ia–Id,
there appears to be a close relationship between these measures. In
each case, performance on unique stimuli and performance on
repeating stimuli both have the form of power functions. (Note,
however, that the analyses below would hold even if the perfor-
mance on unique stimuli and performance on repeating stimuli
functions were not power functions, for instance, if they were
linear.) Furthermore, the performance on unique stimuli and per-
formance on repeating stimuli measures are highly correlated in
each case. The same can be said of Cases IIIa and IIIb: In each
case, the performance on unique stimuli and performance on
repeating stimuli functions have the same form—they are constant
and can be thought of as degenerate power functions. They are also
highly correlated. Thus, in contrast to the dissociations exhibited
by the skill learning and repetition priming measures, the perfor-
mance on unique stimuli and performance on repeating stimuli
measures exhibit similar patterns to each other in the various
scenarios in Cases I and III.

What implications do these various patterns of relationship have
for the underlying processing? Are we to draw inferences from the
patterns of dissociation between the skill learning and repetition
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priming measures or from the patterns of similarity between the
performance on unique stimuli and performance on repeating
stimuli measures? In the previous section, we pointed out the
importance of the performance on unique stimuli and performance
on repeating stimuli measures, even on purely theory-independent
grounds: We noted that any processing account would have to
account for the performance on unique stimuli and performance on
repeating stimuli data and in doing so would necessarily account
for the skill learning and repetition priming functions. Addition-
ally, much of our discussion to this point has been concerned with
showing that other commonly reported dissociations between the
standard measures of skill learning and repetition priming are
artifactual and do not justify inferences regarding the underlying
processing. At the very least, therefore, the patterns of similarity
between the performance on unique stimuli and performance on
repeating stimuli measures in Cases Ia–Id and Cases IIIa and IIIb
should give us pause for thought; they need to be explained before
we draw the conclusion that the various measures in each scenario
arise from different underlying mechanisms.

A stronger interpretation of the patterns of similarity between
the performance on unique stimuli and performance on repeating
stimuli measures would be that they reflect the operation of a
single underlying mechanism. This is, of course, the position that
we adopted in our theory of procedural memory, discussed in the
preceding section. Even though there is no theory-independent
way of establishing this interpretation, it is worth pointing out that
our theoretical framework does offer a very specific account of
how a single underlying mechanism can give rise to such perfor-
mance on unique stimuli and performance on repeating stimuli
functions. In fact, as we will demonstrate in the second part of the
article, our theory also offers an account of why the patterns of
dissociation between the skill learning and repetition priming
measures would arise even with a single underlying mechanism.

We suggest, therefore, that none of the scenarios in Cases I and
III constitutes conclusive evidence that there are separate mecha-
nisms underlying skill learning and repetition priming. What about
Cases II and IV? In Case II, performance on unique stimuli is
constant while performance on repeating stimuli improves; in Case

Figure 7. Possible relationships between measures of performance on unique stimuli (POU), performance on
repeating stimuli (POR), skill learning (SL), and repetition priming (RP).
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IV, performance on repeating stimuli is constant while perfor-
mance on unique stimuli improves. In these cases, it is not clear
whether the performance on unique stimuli and performance on
repeating stimuli measures would be correlated or would have
functions of the same form. It might be argued that empirical
observation of these scenarios would constitute evidence that skill
learning and repetition priming arise from different mechanisms,
because even the performance on unique stimuli and performance
on repeating stimuli measures appear to be dissociated.

In a later section, we demonstrate that the patterns of relation-
ship in Cases II and IV can in fact arise from a single mechanism.
We describe a simulation in which repetition priming increases in
the absence of skill learning in the same computational model,
which corresponds to the pattern of results in Case II. This will
demonstrate that the seemingly disparate skill learning and repe-
tition priming functions in Case II do not necessarily imply dif-
ferent mechanisms. We also describe a simulation in which per-
formance on unique stimuli improves with practice, whereas
performance on repeating stimuli exhibits virtually no improve-
ment, corresponding to the pattern of results in Case IV, but which
arises in a single model. This will show that the seemingly very
different performance on unique stimuli and performance on re-
peating stimuli functions shown in Case IV do not necessarily
imply different mechanisms either. Further elaboration of these
simulations requires detailed description of the computational
model. We felt that incorporating this description at the present
point in the discussion would be too digressive. The reader is
therefore asked to accept on faith our assertion that the relation-
ships between performance on unique stimuli and performance on
repeating stimuli that are depicted in Cases II and IV do not
necessarily imply the existence of different underlying mecha-
nisms. This promissory note will be made good in the Simulated
Patterns of Increase and Decrease subsection.

What we can say, then (if our promissory note is accepted)
is that none of the possible patterns of relationship between per-
formance on unique stimuli and performance on repeating stimuli
or between skill learning and repetition priming as depicted in
Cases I–IV is necessarily inconsistent with the possibility that a
single mechanism underlies skill learning and repetition priming.
Notice further that Cases I–IV include every possible pattern of
relationship between the skill learning and repetition priming
measures, as shown in Table 1. In Case Ib, skill learning and
repetition priming both increase. In Cases Ia and Id, skill learning
increases while repetition priming is constant. In Cases Ic and IV,

skill learning increases while repetition priming decreases. In Case
II, skill learning is constant while repetition priming increases. In
Cases IIIa and IIIb, skill learning and repetition priming are both
constant. The remaining cells shown in Table 1 are ruled out by
our assumption that performance on unique stimuli and perfor-
mance on repeating stimuli cannot deteriorate with practice.3 Thus,
all possible patterns of relationship between the skill learning and
repetition priming measures are covered by the scenarios in Cases
I–IV. We have argued that none of the scenarios in Cases I and III
constitutes conclusive evidence that there are different mecha-
nisms that underlie skill learning and repetition priming. We have
promised to show also that neither of the scenarios in Cases II and
IV is inconsistent with the possibility that the phenomena of skill
learning and repetition priming arise from a single mechanism.

The import of these observations is that none of the possible
patterns of relationship between the standard measures of skill
learning and repetition priming is necessarily inconsistent with the
possibility of a single underlying mechanism. Stated differently,
no matter which of the relationships between the skill learning and
repetition priming measures is obtained in an experiment, it does
not unequivocally establish that the phenomena of skill learning
and repetition priming are based on different mechanisms.

Discussion

In the preceding sections, we developed a theoretical analysis of
various kinds of relationship between the standard measures of
skill learning and repetition priming. We provided an analysis of
their relationship in terms of the shape of their functions, their
correlation, and the patterning of their rates of change. These
analyses highlight the importance of taking into consideration the
measures we term performance on unique stimuli and performance
on repeating stimuli and keeping in mind how the standard skill
learning and repetition priming measures are defined. When the
nature of the performance on unique stimuli, performance on
repeating stimuli, skill learning, and repetition priming measures is
taken into account, it becomes clear that patterns of relationship
between the skill learning and repetition priming measures do not
have any theoretical significance. In particular, a lack of the
expected relationships does not constitute evidence for separate
mechanisms. In our analyses, we demonstrated this in several
ways. First, we showed that the fact that the repetition priming
measure does not follow the power law follows from its definition
and from the fact that performance on repeating stimuli and
performance on unique stimuli each follow a power function. The
lack of a power law for the repetition priming measure is a
definitional artifact; there is no reason to expect this measure to
exhibit any specific form. Second, we showed that the presence or
absence of correlations between the skill learning and repetition
priming measures is artifactual and follows from their very defi-
nitions. Third, we argued, with respect to patterns of increase-

3 To see this, note that all the cells in the rightmost column of Table 1
involve decreasing skill learning, which implies that performance on
unique stimuli deteriorates with practice. The cell corresponding to con-
stant skill learning and decreasing repetition priming implies a flat perfor-
mance on unique stimuli function together with an upward sloping perfor-
mance on repeating stimuli function; that is, it implies deteriorating
performance on repeating stimuli.

Table 1
Possible Patterns of Increase–Decrease in the Skill-Learning
(SL) and Repetition-Priming (RP) Measures, Exemplified by the
Scenarios Depicted in Figure 7

RP

SL

Increasing Constant Decreasing

Increasing Ib II Impossible
Constant Ia, Id IIIa, IIIb Impossible
Decreasing Ic, IV Impossible Impossible

Note. Certain cells denote patterns of relationship that are impossible on
our assumptions.
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decrease, that none of the possible patterns of relationship between
the skill learning and repetition priming measures conclusively
establishes that there are different underlying mechanisms, and
that none of the patterns is necessarily inconsistent with the exis-
tence of a single underlying mechanism.

In light of these various analyses, it is possible to reexamine
certain findings that have been presented as evidence that skill
learning and repetition priming are unrelated. For example, in the
results reported by Kirsner and Speelman (1996), the skill learning
measure increased with practice, whereas the repetition priming
measure was constant (beyond the second session of practice; see
Figure 3). The authors interpreted this pattern of relationship as
indicating different underlying mechanisms. However, when we
view this pattern of results in terms of our framework of possible
relationships between performance on unique stimuli and perfor-
mance on repeating stimuli (Figure 7), we can see that it corre-
sponds to Case Ia. As we have just seen, neither Case Ia nor any
of the other possible patterns of relationship between the skill
learning and repetition priming measures is necessarily inconsis-
tent with a relatedness of underlying mechanisms.

As already noted, Schwartz and Hashtroudi (1991, Experiment
1) examined repetition priming and skill learning in each of three
tasks: partial-word identification, inverted reading, and word-
fragment completion. They found that priming effects were not
correlated with improvements in skill across trials, in either the
partial-word identification or inverted reading tasks, and took these
results as indication of separate mechanisms underlying skill learn-
ing and repetition priming. In light of the analyses we have
presented here, it should be clear that these correlational data have
no bearing on the question of whether or not a single mechanism
underlies the phenomena of skill learning and repetition priming.

Schwartz and Hashtroudi (1991) also observed as a separate
point that, whereas the magnitude of repetition priming was similar
across the three tasks, skill learning occurred in only two of the
tasks (see Figure 4b–4d). Schwartz and Hashtroudi took this
finding also to indicate that skill learning and repetition priming
are unrelated. The patterns that were obtained in these three tasks
can be classified as Cases Ib, Ib, and II, respectively, in terms of
our analyses from Figure 7.4 As we have argued, these patterns of
relationship between the skill learning and repetition priming
measures are consistent with the existence of a single underlying
mechanism (as indeed are all the possible patterns of relationship).
This aspect of Schwartz and Hashtroudi’s results therefore does
not offer conclusive evidence regarding the issue of single versus
dual mechanisms, either.

Schwartz and Hashtroudi (1991, Experiment 2) further exam-
ined whether the amount of skill learning in the partial-word
identification task would influence the magnitude of priming in
that task. They found that the magnitude of priming did not differ
significantly for two groups of participants with different levels of
previous practice in the task and concluded that priming in partial-
word identification is unrelated to the amount of skill in identify-
ing degraded words. Schwartz and Hashtroudi also examined
whether word frequency would modulate priming and skill learn-
ing. They found that skill learning was significantly greater for the
high-frequency words than for the low-frequency words, while the
magnitude of repetition priming was unaffected by frequency
(Experiment 3). They suggested that these differential effects of
word frequency indicate that skill learning and repetition priming

are unrelated (p. 1183). Based on the analytical framework that we
have established in preceding sections, it can be shown that neither
of these interpretations is valid. A detailed demonstration of this is
presented in the Appendix. Briefly, the former interpretation is
based on an inaccurate task analysis. The latter result is a disso-
ciation that arises from a focus on the skill learning and repetition
priming measures; when the performance on unique stimuli and
performance on repeating stimuli measures are taken into consid-
eration, it becomes clear that word frequency has almost identical
effects on the processing of unique and repeating stimuli.

The utility of our theoretical framework is not confined to the
studies that we have discussed so far; rather, it has applicability to
interpretation of a wide variety of results regarding skill learning
and repetition priming. One example is that it offers a quite general
analysis of the relationship between study–test paradigms and
multiple-repetition priming paradigms (see discussion in the Ap-
pendix) as well as insight into how priming effects may differ
across the two kinds of paradigms (see the Multiple Levels of Skill
Learning and Repetition Priming subsection). Another example
that we have already touched on is worth mentioning once again
and comes from the work of Logan (1990), who provided evidence
that multiple repetitions of stimuli in a lexical decision task give
rise to a reaction time function that follows the power law (Logan,
1990, Table 1, and Figures 5 and 6). Logan fitted power functions
to the mean reaction time data (Logan, 1990, Table 1, and Fig-
ures 5 and 6), noting that “the power function fits reveal an
important empirical parallel between automaticity and repetition
priming: The learning function that characterizes automaticity also
provides a good description of repetition priming” (p. 25). Al-
though these results appear to indicate that repetition priming
follows the power law (and this is how Kirsner and Speelman,
1996 interpreted them), our analytic framework makes it easy to
see that the measure that is characterized by a power function in
Logan’s data is what we have termed performance on repeating
stimuli. Once this is seen, it becomes clear that the lack of a power
function for the standard measure of repetition priming in other
studies does not contradict Logan’s results; indeed, other studies
confirm the existence of a power function for performance on
repeating stimuli (e.g., Kirsner & Speelman). This insight is a
direct result of applying our analytic framework.

As another example of the applicability of our framework, we
can consider results reported by McAndrews and Moscovitch
(1990, Experiment 4), who examined participants’ anagram-
solving ability. The authors found that both the application of a

4 Note that the performance on unique stimuli and performance on
repeating stimuli curves for Schwartz and Hashtroudi’s (1991) data in
Figures 4b–4d are measured in terms of accuracy, rather than in terms of
reaction time. Consequently, the shape of the performance on unique
stimuli and performance on repeating stimuli curves is inverted with
respect to the depictions of possible scenarios in Figure 7. It should be
possible to see, nevertheless, that Figures 4b and 4c correspond to Case Ib
in Figure 7: There is a pattern of improving and diverging performance on
unique stimuli and performance on repeating stimuli. As a result, the skill
learning and repetition priming measures both increase. Similarly, Figure
4d corresponds to Case II in Figure 7: There is a pattern of constant
performance on unique stimuli, with improving performance on repeating
stimuli. As a result, the skill learning measure is effectively constant at
zero, while repetition priming increases.
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previously learned implicit rule (i.e., the learning of a skill) and
previous experience with a specific anagram (i.e., the effect of
repetition) facilitated performance, and the effects of these two
sources of facilitation were additive and independent. They con-
cluded that these findings did not support the view that skill
learning and repetition priming are supported by the same proce-
dural memory system (p. 784). We believe that our analytical
framework makes it possible to see that this statistical indepen-
dence is not very informative as to the underlying processing.
Briefly, our framework makes it clear that the four data points that
McAndrews and Moscovitch studied are single points on a family
of four performance functions, and that inferences about the mech-
anisms underlying these performance functions cannot be made
from comparisons between single points on these functions. Our
analysis is presented in detail in the Appendix.

Additionally, our framework helps shed light on a number of
apparent dissociations between skill learning and repetition prim-
ing that have been reported in the neuropsychological literature. In
the Relevant Measures subsection, we outlined our view that the
particular set of processors that is required for performance of a
particular task collectively constitute the “system” that performs
that task, and that the specific processors deployed will in general
differ across different tasks. Practice in a particular task can lead
to facilitation (which we called “tuning”) in any subset of the set
of processors subserving that task, and it is this facilitation that is
manifested as skill learning or repetition priming. If we compare
performance across two tasks, we are comparing facilitation in
what are very likely different sets of processors. It therefore may
not be appropriate to make inferences about the mechanisms that
underlie skill learning and repetition priming that are based on
comparisons across different tasks. The importance of making a
distinction between tasks and processes and of considering in what
way different tasks rely on different combinations of processes has
in recent years been emphasized by a number of other investigators
as well (e.g., Jacoby & Kelley, 1992; Kirsner, 1998; Roediger,
Buckner, & McDermott, 1999; Witherspoon & Moscovitch, 1989).
Other investigators have also pointed out that it is critical to
examine skill learning and repetition priming within the same task
(Schwartz & Hashtroudi, 1991), and, indeed, such considerations
formed a primary motivation for the examination of skill learning
and repetition priming within a single task in our empirical work
on the digit-entering task (Poldrack et al., 1999).

The relevance of this to interpreting neuropsychological disso-
ciations between skill learning and repetition priming is that these
have typically involved comparisons across different tasks. For
example, Heindel et al. (1989) found that patients with Alzhei-
mer’s disease exhibited normal motor skill learning in a pursuit-
rotor task, but impaired priming in word- and picture-completion
tasks. In contrast, patients with Huntington’s disease showed im-
paired skill learning in the pursuit-rotor task, but normal priming
in word- and picture-completion tasks. The authors interpreted
these results as showing a dissociation between skill learning and
repetition priming (Heindel et al., 1989). An important point that
emerges from our framework, however, is that the processors
underlying these various tasks are quite different. Therefore (as
Schwartz & Hashtroudi, 1991, have also pointed out), a dissocia-
tion between word completion and pursuit-rotor tasks may occur,
not because priming and skill learning are based on inherently
different mechanisms, but simply because the pursuit-rotor task

involves a large motor component, whereas the word-completion
task does not. Similar considerations apply to a variety of other
neuropsychological data that have been interpreted as evidence of
processing dissociations between skill learning and repetition
priming. For instance, Nissen, Knopman, and Schacter (1987)
found that administration of an amnesic agent to unimpaired
participants resulted in impaired priming in a word-fragment com-
pletion task, but unimpaired skill learning in a serial reaction time
task. Here, too, however, the dissociation could reflect differences
in the processing requirements of the two tasks rather than the
existence of different mechanisms for skill learning and repetition
priming. For a similar but more detailed analysis of neuropsycho-
logical dissociations, the reader is referred to Poldrack et al.
(1999).

Our framework also provides perspective on recent neuroimag-
ing results that appear to suggest dissociations between skill learn-
ing and repetition priming. A number of neuroimaging studies
have indicated that skill learning is characterized by increases in
the intensity or spatial extent of brain activation (e.g., Grafton,
Hazeltine, & Ivry, 1995; Grafton et al., 1992; Hazeltine, Grafton,
& Ivry, 1997; Karni et al., 1995). In contrast, in a number of
neuroimaging studies, repetition priming has been accompanied by
decreases in activation (e.g., Buckner et al., 1995; Demb et al.,
1995; Squire et al., 1992; Wagner, Desmond, Demb, Glover, &
Gabrieli, 1997). Further information may be found in a number of
recent reviews of the neuroimaging literature on repetition priming
(Schacter & Buckner, 1998; Schacter, Wagner, & Buckner, 2000;
Wiggs & Martin, 1998).

Our framework suggests that these findings need to be inter-
preted with caution. As Poldrack, Desmond, Glover, and Gabrieli
(1998) have noted, in these neuroimaging studies, skill learning
has been examined primarily in tasks involving motor processes,
such as finger-tapping (e.g., Karni et al., 1995), and repetition
priming has been examined primarily in tasks involving higher
level cognitive processing, such as word-stem completion (e.g.,
Buckner et al., 1995). Our earlier cautions about making inferences
about underlying relationships between skill learning and repeti-
tion priming that are based on performance in different tasks in
neuropsychological studies therefore apply to the neuroimaging
results as well.

In one of the few neuroimaging studies to date that has exam-
ined skill learning and repetition priming in the same task, partic-
ipants performed lexical decision on mirror-reversed text stimuli
(which were either novel or practiced), and it was found that skill
learning and repetition priming were both associated with patterns
of both increase and decrease in activation (Poldrack et al., 1998),
confirming the idea that the dissociation between increasing acti-
vation for skill learning versus decreasing activation for repetition
priming is less clear cut than it might appear to be in other
neuroimaging studies. The question remains, nevertheless, of why
the patterns of activation were not identical for skill learning and
repetition priming in the Poldrack et al. (1998) study, given that
both phenomena were studied in exactly the same task. There are
at least two factors that need to be kept in mind here. The first is
that the effect of repetition of nonwords in lexical decision tasks is
not always easy to interpret: On the one hand, repetition of
nonwords should lead to facilitation at some levels of processing
(i.e., in some of the “processors” deployed in the task); on the other
hand, at other levels of processing, there may be interference, as
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the repeating nonwords become more familiar and hence more
susceptible to being accepted as real words. This point is borne out
by Kirsner and Speelman (1996), who found that lexical decision
accuracy for the repeating nonwords actually decreased as a func-
tion of experimental practice. As the response task used in the
Poldrack et al. (1998) study was lexical decision, this makes the
results somewhat difficult to interpret.

There is also a more general consideration, however, arising
from our theoretical framework. In that framework, as we outlined
above, any task is performed by a collection of processors, and
facilitation of processing may occur in any subset of those pro-
cessors. Any overall skill learning effect that is observed in the
task is a manifestation of the sum of facilitation in various pro-
cessors. Similarly, any overall repetition priming effect that is
observed in the task is a manifestation of the sum of facilitation in
various processors. However, the loci of facilitation are not nec-
essarily the same for the skill learning and repetition priming
effects (although, in our view, the underlying facilitation mecha-
nism—incremental tuning—is the same across all processors).

To see this, consider a task in which a participant is presented
visually with familiar words, one at a time, and must judge how
many syllables each word has. One processing component that is
required for this task is the processor or ensemble of processors
that underlie the reading of single words. Another component is
the processor or ensemble of processors that must be deployed to
make the syllable judgment; this component is much more task
specific than is the first one. The first processor (for reading single
words) is highly overlearned (in a literate adult), and there is little
potential for generalized facilitation in this processing component.
Any skill learning observed in the overall task is therefore unlikely
to arise from facilitation in this component of the overall system
performing the task; its more likely locus is in the second, more
task-specific processing ensemble, which is not overlearned. The
locus of any repetition priming that is observed in the overall task
may, however, be more evenly distributed across the two process-
ing components. This is because, although there may be little
possibility for generalized facilitation in the single-word-reading
processing ensemble, there is likely to be greater possibility of
facilitation toward specific items. (The analogy with connectionist
networks may again be useful here: The network is at such a high
level of performance that adjustment of connection weights in
response to specific stimuli will facilitate performance on those
specific stimuli on a subsequent exposure, but will not contribute
greatly to generalized facilitation on novel stimuli. We will return
to a more detailed discussion of these points later in the article in
the sections entitled One View of Procedural Memory and Learn-
ing and Multiple Levels of Skill Learning and Repetition Priming).

According to our theoretical framework, then, although the
underlying mechanism of facilitation—procedural learning—is the
same in all the processing components of a task, any observed skill
learning and repetition priming effects may have differing loci
within the system of processors deployed in the task. What this
means, however, is that in a neuroimaging study, skill learning and
repetition priming may be associated with nonidentical patterns of
activation, even when these effects are examined in a single task.
We would therefore caution against the easy interpretation of
differing patterns of activation as reflecting different underlying
mechanisms.

In the Necessary and Sufficient Conditions subsection, we will
discuss a number of predictions that follow from our theoretical
framework as well as specific patterns of data that our theory
would be unable to account for. However, to our knowledge, none
of these patterns of data has ever been observed. In summary, then,
the theoretical analysis we have offered of skill learning and
repetition priming makes it clear that the various arguments that
have been made for dissociations between the mechanisms under-
lying skill learning and repetition priming are either invalid (e.g.,
with respect to the implications of power functions or correlations)
or inconclusive (with respect to patterns of increase and decrease).
Dissociations that are suggested by the available neuropsycholog-
ical and neuroimaging data are also problematic as evidence of
separate processing mechanisms, as we have attempted to show. In
fact, as far as we are aware, there is no conclusive evidence that
skill learning and repetition priming arise from separate mecha-
nisms. Of course, this does not in itself show that a single mech-
anism does underlie skill learning and repetition priming. In the
second part of this article, we therefore turn to an examination of
whether skill learning and repetition priming can indeed arise from
a single mechanism.

Computational Analysis

We begin with an informal presentation of our view of proce-
dural memory and describe the nature of the proposed underlying
mechanism. We discuss how, in this view of procedural memory,
repetition priming and skill learning are manifestations of the same
mechanism. We then present a computational model of perfor-
mance in the digit-entering task that incorporates this theory of
procedural memory. We show that this model exhibits both skill
learning and repetition priming, even though it consists of only a
single learning mechanism. We show, moreover, that the perfor-
mance of this model exhibits the same patterns of dissociation that
have led to the presumption of different underlying mechanisms in
skill learning and repetition priming.

One View of Procedural Memory and Learning

In our view, the performance of any task can be conceptualized
as a process of transduction between representations. For example,
the process of verbally expressing an idea or thought requires
transduction from a conceptual representation of the thought-idea
to the representations of an appropriate sequence of oral-motor
commands. In this case, as in many others, there may be several
intermediate levels of representation. To transduce one represen-
tation into another, there must be a transducer between those levels
of representation. Given that there may be several intermediate
levels of representation, there may in general be several transduc-
ers that underlie the performance of a given task. All the trans-
ducers that are involved in performance of a task undergo incre-
mental adjustment, or tuning, each time the task is performed (i.e.,
each time a particular input is processed). Improvement in perfor-
mance on a task arises from improvement in the effectiveness of
the transducers that are involved in performance of that task. The
improvement in effectiveness of transducers arises from the cu-
mulative effect of the incremental tuning process, operating over
many instances of performance of the task. This incremental
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tuning is, in our view, the basis of procedural memory and
learning.

This view does not claim that there is a single procedural
memory system. On the contrary, procedural memory and learning
in a particular task are viewed as being situated in whatever
processors are required for that task. Thus the locus of procedural
learning-memory may be widely different in tasks that draw pri-
marily on, say, motor versus perceptual processing. Similarly, for
a task that requires a variety of processing systems (e.g., motor as
well as perceptual), procedural learning may occur in several or all
of these processing systems. Thus we do not claim that there is a
single or specific set of processing elements constituting a proce-
dural memory “system.” What we claim, rather, is that the nature
of the procedural learning mechanism is the same in all these
cases. It is based on the incremental tuning of processors, whatever
or wherever those processors (i.e., transducers) may be.

Improvement in performance in a task may be manifested in (a)
improved performance on a specific stimulus or set of stimuli; (b)
improved performance on stimuli in general (i.e., improved gen-
eralization); or (c) both of the above. Skill learning and repetition
priming are therefore simply different manifestations of improve-
ment in the effectiveness of the tranducers on which a particular
task depends. Skill learning is manifested in improved generaliza-
tion ability. Repetition priming is manifested in improved perfor-
mance on specific items, following exposure to those specific
items. Both of these effects are an inherent part of the way the
system works. One way of stating this view is to say that skill
learning and repetition priming arise from a single mechanism. A
more accurate statement of this view is that skill learning and
repetition priming are merely the epiphenomenal outcomes of
repeated performance of any task. The “mechanism” that they arise
from is not a special process or mechanism that provides for skill
learning or repetition priming. It is merely the ongoing incremental
learning inherent to the operation of the system itself, where
“system” refers to the collection of transducers that are involved in
performance of the particular task.

To further develop these ideas, we need to introduce a distinc-
tion between transductions and mappings. For any two levels
of representation, we can define various possible sets of trans-
ductions. Each set of transductions identifies a set of particular
representations at the first level and specifies which particular
representation at the second level each of those first level repre-
sentations maps onto. We will refer to such a set of transductions
as a mapping between the two levels of representation. Note that
a mapping is an abstractly defined set of transductions. A trans-
ducer is a physical device that approximates a particular mapping.
The transducer comes to approximate the mapping by being ex-
posed to sample input–output pairs that are drawn from the map-
ping (which defines the population of all possible pairs) and by
undergoing modification as a result of each exposure. This tuning
(i.e., procedural learning) occurs in such a way as to make the
transducers more effective in approximating a particular mapping.
That is, procedural learning enables the transducers to encode
knowledge of the mapping. Procedural memory is just a demon-
stration of that knowledge, as revealed in performance of the task.
The distinction between procedural memory and learning is there-
fore blurred.

This view of procedural learning and memory can be operation-
alized in terms of the framework offered by connectionist net-

works. The system of weighted connections between two “layers”
of a connectionist network is an example of a transducer. The
process whereby a representation at the first layer evokes a repre-
sentation at the second layer in such a network is a process of
transduction from the first to the second level of representation. In
the performance of any task, several levels of transduction (and
hence several transducers) will usually be required. We assume
that representations at each level are distributed over many pro-
cessing units, so that two similar stimuli are represented at a
particular level by similar (i.e., overlapping) patterns.

In this connectionist formulation, tuning of the transducers in a
given task corresponds to incremental weight adjustment in the
connections between layers. The representation evoked at Layer 2
by a representation at Layer 1 can generally be expected to diverge
to some degree from the appropriate, or target Layer 2 represen-
tation, this divergence being the error. The incremental adjustment
of connection weights can enable the particular input representa-
tion at the first layer to evoke a closer approximation of the target
representation at the second layer the next time that particular
transduction needs to be performed. Thus improvement in effec-
tiveness of the transducers arises from the cumulative effect of
incremental weight changes over many instances of performance
of the task. Improved performance on stimuli in general corre-
sponds to improvement in the effectiveness of the overall trans-
duction such that there is improved generalization ability. Such
generalization is possible if the system employs distributed repre-
sentations, so that similar stimuli have overlapping representations
and therefore can share connection weights. Improvement in per-
formance on specific stimuli can arise as a result of weight change
that follows exposure to those specific stimuli. These ideas are
closely related to those put forth by McClelland and Rumelhart
(1985) regarding the representation of general and specific infor-
mation in a distributed network with a single set of weighted
connections; they are also implicit in our own previous work
(Cohen & Eichenbaum, 1993).

Having presented our view of procedural memory, we can now
consider how it applies to a specific task, the digit-entering task,
which we described briefly in the Implications of Correlations
subsection. In the version of the task we discussed, five-digit
number strings (e.g., 49385) were presented individually to par-
ticipants, who entered these number strings using a numeric key-
pad (Poldrack et al., 1999, Experiment 1). In each block, some
number strings appeared multiple times (repeating items) while
other items appeared only once (unique items). We can conceptu-
alize this task as requiring transduction from the visual represen-
tation of a five-digit number string to the representation of an
appropriate sequence of finger-movement commands. The exis-
tence of skill learning in the digit-entering task indicates that the
transducer(s) underlying this transduction improve(s) in effective-
ness, leading to better generalization ability. This improvement
arises from the effects of incremental tuning over many instances
of task practice. The finding of repetition priming in the digit-
entering task indicates that tuning in the transducer(s) also occurs
for specific stimuli that are repeatedly encountered, and that this
leads to better performance on these specific stimuli than on
stimuli in general. This seems very reasonable: If the effectiveness
of the overall transduction improves as a result of exposure to
unique stimuli, it follows that the transductions for the repeating
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stimuli should be tuned to an even greater extent because of the
repeated exposure to these specific stimuli.

If these ideas are correct, then it should be possible to construct
a computational model that can simulate behavioral performance
in the digit-entering task. The remainder of this section develops
such a model. The model incorporates our view of procedural
learning and memory and adopts the computational framework of
PDP (McClelland & Rumelhart, 1986; Rumelhart & McClelland,
1986). It should be noted that we have taken a similar approach in
previous work (Poldrack et al., 1999), constructing computational
models to demonstrate that skill learning and repetition priming
can arise from a single mechanism. However, the results reported
here differ from and extend the previous work in important ways.
First, the computational model that is developed here is an explicit
psychological model of performance in a specific task in which
both skill learning and repetition priming have been studied; in
contrast, our earlier work presented abstract computational models
that did not represent performance of any specific task. Second, we
use the present model to simulate a complex set of empirical
results from an experimental task; this is to our knowledge the first
computational account of specific experimental data on skill learn-
ing and repetition priming within a single domain. Third, we will
show that empirically observed patterns of dissociation between
repetition priming and skill learning arise naturally in the present
model, without manipulation of any of its parameters. For these
reasons, we believe that the present work constitutes a more
compelling demonstration of the relatedness of skill learning and
repetition priming than has previously been made and therefore
represents a significant advance in theoretical development.

The Digit-Entering Task

Prior to describing our computational model, we need to provide
a more complete description of the digit-entering task, which we
have so far described only in general terms. We will focus on the
version of the digit-entering task reported by Poldrack et al.
(1999). In this task, five-digit number strings (e.g., 49385) were
presented individually on a computer display to participants, who
entered these number strings using a numeric keypad. No visual
feedback was provided for the response. After entering the number
string, the participant pressed the “Enter” key, which triggered the
next trial after a 1-s intertrial interval. Participants were instructed
not to correct errors; they were told to press the “Enter” key if they
made an error, to proceed to the next trial. In each session, some
number strings appeared multiple times (repeating items), while
other items appeared only once (unique items).

Training stimuli were chosen from the set of all possible five-
digit number strings by placing three constraints on them. The first
constraint was that only the digits 1–9 could appear in the number
strings (i.e., the digit 0 could not appear). This reduced the set of
permissible five-digit number strings to 59,049 possible strings.
Second, digits could not repeat immediately (e.g., “44” never
appeared as part of a number string). Third, five-digit number
strings were constrained to obey certain first-order transitions
between digits, as follows: For each of the digits 1–9, there are
eight possible (different) digits that can follow it. For each digit,
four of these eight possible transitions were chosen at random. The
set of 36 chosen transitions (4 transitions for each of the nine
digits) composed one full transition rule set. There was also a

complementary transition rule set composed of the other 36 tran-
sitions (4 complementary transitions, for each of the nine digits.
(See Figure 8 for a diagram of such transition rule sets for the digit
1). Five-digit number strings were constrained to obey one or other
of these transition-rule sets. One half of the participants in each
experiment were trained on five-digit number strings that followed
one transition rule set, and the other half were trained on items
following the complementary rule set.

The experiment (Poldrack et al., 1999, Experiment 1) consisted
of three sessions, each consisting of 12 blocks. The structure of the
experiment is summarized in Table 2. Forty-eight five-digit strings
were presented in each block. However, the composition of the 48
stimuli in a block varied across sessions. In Session 1, each block
consisted of 12 repeating stimuli that appeared once in every block
throughout Session 1 and also throughout the experiment (S1
Repeats). The remaining 36 stimuli in each block of Session 1
were unique stimuli, that is, stimuli that appeared once, in only that
one block, and that did not appear in any other block in the
experiment (S1 Uniques). In Session 2, each block consisted of
the 12 repeating stimuli from Session 1, 12 new repeating stimuli
that appeared in each block in Session 2 and through the rest of the
experiment (S2 Repeats), and 24 unique stimuli (S2 Uniques). In
Session 3, each block consisted of the 12 Session 1 repeating
stimuli, the 12 Session 2 repeating stimuli, and 12 unique stimuli
(S3 Uniques). In addition, each block in Session 3 contained a
further 12 unique stimuli that did not conform to the transition rule
structure of all the other stimuli (New Rule Uniques). That is, all
the stimuli in all three sessions of the experiment conformed to a
particular set of transition rules except for the Session 3 New Rule
Uniques, which conformed to the complementary rule set.

Response times were separated into two components: latency
and interkeystroke interval (IKI). Latency was the time from
presentation of the stimulus to the first keypress. IKI was the
average interval between subsequent digit keystrokes (i.e., key-
strokes for digits 2–5, but not the keystroke for the “Enter” key).
Poldrack et al. (1999) reported both latency and IKI and found the
skill learning and repetition priming results to be similar using
either measure. In this article, we summarize only the IKI data of
Poldrack et al. (1999, Experiment 1), as these are the results we

Figure 8. Example of transition rules used in the digit-entering task of
Poldrack et al. (1999).
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will target in our simulations. The reason for this modeling choice
will be discussed following description of the model. The IKI data
we present here include participants’ correct as well as incorrect
responses.

This experiment was designed to address several questions.
First, how does the amount of priming vary with the level of
overall skill? This, of course, is the basic question that has been
asked in investigations of the relationship between skill learning
and repetition priming. In Experiment 1, data pertinent to this
question were provided by comparing performance on S1 Repeats
throughout the three sessions with performance on the Old Rule
Unique patterns through the three sessions (which consist of the S1
Uniques, S2 Uniques, and S3 Uniques, but exclude the New Rule
Uniques that were presented in Session 3).

A second question asked in the experiment was whether the
priming observed for repeating items can be obtained at different
levels of skill learning. This question was addressed by the intro-
duction of new repeating items in Session 2 (the S2 Repeats). At
the point of their introduction in the first block of Session 2, the S2
Repeat patterns were unique stimuli for the participant. Perfor-
mance on these stimuli should therefore be no different from
performance on S2 Uniques in the first block of Session 2. Any
divergence in performance on subsequent blocks (between the S2
Repeat stimuli and the S2 Unique stimuli) would therefore indicate
that repetition priming can occur even when a considerable amount
of skill learning has already occurred (it was expected that signif-
icant skill learning would have occurred by the beginning of
Session 2 as a result of practice in Session 1).

A third question, of lesser importance for present purposes, was
whether the lower level statistical regularities of the stimuli are
represented as part of skill learning. This question was addressed
by comparing performance on new items from the studied transi-
tion rule set with performance on new items from the complemen-
tary transition rule set, that is, by comparing performance on S3
Uniques and S3 New Rule Uniques. To the extent that there was
negative transfer to the complementary rule set items, this would
indicate that statistical regularities were learned in the task.

Figure 9 illustrates pertinent results from Poldrack et al. (1999,
Experiment 1). The horizontal axis shows blocks of practice, and
the vertical axis shows participants’ performance as measured by
mean IKI per block. The four curves in the upper part of the figure
show (from the top downward) performance on S3 New Rule

Unique stimuli, performance on Old Rule Unique stimuli, perfor-
mance on S2 Repeat stimuli, and performance on S1 Repeat
stimuli. Skill learning was measured as the improvement in per-
formance on Old Rule Uniques over the course of the experiment.
That is, skill learning at block n is the difference between perfor-
mance on Old Rule Uniques at Block 1 and performance on Old
Rule Uniques at Block n. This measure is plotted as the upper of
the two curves in the lower part of the figure. Repetition priming
at Block n was measured as the difference between performance
on Old Rule Unique stimuli and performance on S1 Repeat stimuli,
both measured at Block n. This measure is plotted as the lower of
the two curves in the lower part of the figure.

The following effects are noteworthy. First, there is marked
improvement in performance on both repeating stimuli and Old
Rule Unique stimuli across blocks in Figure 9. Second, there is a
clear increase in skill learning across blocks, seen in the decrease
in IKI for Old Rule Unique items across blocks and in the plot of
skill learning in the lower part of the figure. There clearly also is
repetition priming, as shown by the difference between perfor-
mance on Old Rule Unique stimuli and performance on S1 Repeat
stimuli at each block and by the plot of repetition priming in the
lower part of the figure. Thus, the results shown in Figure 9 clearly
indicate the presence of both phenomena of interest, although
repetition priming does not appear to increase as much as skill
learning does across blocks. Third, repetition priming can be
observed at different levels of skill learning. This can be seen in

Table 2
Structure of the Digit-Entering Task in Poldrack et al.
(1999, Experiment 1)

Session Trial type Number of stimuli per block

1 S1 repeats 12
S1 uniques 36

2 S1 repeats 12
S2 repeats 12
S2 uniques 24

3 S1 repeats 12
S2 repeats 12
S3 uniques 12
New rule uniques 12

Note. S � session.

Figure 9. Key results from the digit-entering task reported in Poldrack et
al. (1999, Experiment 1). IKI � interkeystroke interval; S � session.
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the divergence in performance between S2 Repeat stimuli and Old
Rule Unique stimuli, following introduction of the S2 Repeat
stimuli in Block 13. Fourth, there is negative transfer to the New
Rule Unique stimuli introduced in Session 3. The only difference
between the Old Rule Unique stimuli and New Rule Unique
Stimuli is in the familiarity of the specific two-digit transitions
they incorporate. The negative transfer effect therefore indicates
that participants learned something about the two-digit transition
structure of the Old Rule Unique stimuli. That is, part of what they
learned were subitem regularities within the stimuli.

A Computational Model of the Digit-Entering Task

Description of the model. In each trial in the digit-entering
task of Poldrack et al. (1999), participants were presented with a
five-digit number string, which they were required to convert into
a sequence of keyboard strokes that represented the sequence of
digits composing the five-digit number string. Our model’s task
was formulated to have the same structure: The input to the model
was a representation of a five-digit number string, and the model’s
task was to produce a sequence of outputs that represented the
sequence of digits in the input. Figure 10 illustrates the architecture
of the model, which is an adaptation of simple recurrent network
architectures that have been studied by several researchers (e.g.,
Cleeremans, Servan-Schreiber, & McClelland, 1989; Elman, 1990;
Jordan, 1986).

The input was represented as a pattern of activation over five
banks of units that constituted the Input Layer. Each of these banks
was composed of 10 units, which represented the digits 0–9, with
each unit representing a specific digit. Thus the five-digit string
“49683” was represented as a pattern of activation in which the 5th
unit in the first bank of units was active, representing the occur-
rence of “4” as the first digit in the string; the 10th unit in the
second bank of units was active, representing the occurrence of “9”
as the second digit in the string; the 7th unit in the third bank was
active, representing the occurrence of “6” in third position; the 9th
unit in the fourth bank was active, representing the occurrence of

“9” as the fourth digit; and the 4th unit in the fifth bank was active,
representing the occurrence of “3” as the fifth digit. All other units
in the 50-unit Input Layer were inactive.

The Output Layer consisted of a single bank of 10 units,
representing the digits 0–9, with each output unit representing a
specific digit. When presented with an input pattern of the kind
described above, the network’s task was to “spell out” the input as
a sequence of activations at the Output Layer. For the input
“49683”, the network had to activate, in sequence, the Output
Layer units representing the digits “4”, “9”, “6”, “8”, and “3”.

At the first step in processing this input, activations from the
Input Layer and from the Context Layer were propagated forward
to the Hidden Layer, and activations from the Hidden Layer were
in turn propagated forward to the Output Layer. This resulted in
some pattern of activation at the Output Layer. An error signal was
generated, representing the distance of this actual activation pat-
tern from the target pattern, in which the output unit representing
“4” should be maximally activated and all other output units
inactive.5 The error signal was then used to adjust the strength of
connection weights throughout the system to reduce error via the
“back propagation” of error (Rumelhart et al., 1986).

5 The rationale for assuming the availability of a target pattern is as
follows. A naive human participant performing the digit-entering task can
be assumed to know, at a cognitive level, what the correct sequence of key
presses should be for any given digit string. We assume that this cognitive
representation can serve as a teaching target for the subsystem that actually
executes a sequence of key presses. Our model and simulations represent
the execution system and accordingly, we assume the availability of a
target pattern. These assumptions are analogous to those made in similar
models. For instance, in Seidenberg and McClelland’s (1989) model of
word naming, it was assumed that a target pattern can be self-generated on
the basis of the learner’s prior knowledge of the orthography and phonol-
ogy of words. See Jordan and Rumelhart (1992) for a more detailed
discussion of “teaching signals” and their availability to connectionist
models.

Figure 10. Architecture of the model of the digit-entering task.
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At the next step in processing the input, the activation of Hidden
Layer units was copied to the Context Layer (Elman, 1990), and
the network was now expected to produce as output the second
digit in the input string. Note that the input pattern that represented
the digit string 49683 was still present. As in the first step of
processing, the actual output produced by the network was com-
pared with the target output for the second digit and connection
weight strengths adjusted to reduce the magnitude of error. Pro-
cessing continued in this way for three further time steps, at which
the network’s task was to output the third, fourth, and fifth digits,
respectively, of the input. At the end of the fifth time step, the
Context Layer was cleared, and the next five-digit input string was
presented for the network to “spell out.”

It is worth clarifying some representational decisions that were
incorporated in the model, particularly as regards choices between
distributed and localist representations. The crucial characteristic
of distributed representations is that they provide a basis for the
representation of similarity between different stimuli. The use of a
distributed scheme for a particular level of representation is ap-
propriate, therefore, when it is theoretically important that there be
a basis for generalization from one stimulus to another similar
stimulus at that level of representation.

In our account of the digit-entering task, the system must be
capable of processing the novel five-digit string 59378, even if it has
never previously encountered it, where “processing” means being
able to produce the correct sequence of outputs when presented with
a representation of the entire five-digit string at the input. A system
will be able to process a novel string such as 59378 correctly if it has
previously processed similar five-digit strings such as 59371, 59376,
42568, and 31728 and can generalize from these similar previous
strings. For the system to be able to generalize in such fashion, there
must be a basis for representing the similarities between similar
five-digit strings. This calls for the use of distributed representations
at the input layer in our account of the digit-entering task. And in fact,
our representations of five-digit stimuli at the input layer are distrib-
uted representations. For example, they provide a means of represent-
ing the similarity between the digit strings 59376 and 59378: The
patterns of activation that represent these strings are identical across
the first four banks of input units and differ only in activation within
the last bank of units.

We could have used a distributed scheme at the output layer
also; for instance, one in which each digit was represented as a
pattern of activation across a set of units that represented various
visual features of digits. However, it was not critical for our
theoretical account of the digit-entering task that the system be
able to generalize from one digit to another; the use of a distributed
representation would therefore not have affected the results. For
this reason, we did not incorporate distributed representations at
the output level. The same is true of our decision not to use
distributed representations for individual digits at the input level.

Description of simulations. The model was used to simulate
performance in the digit-entering task of Poldrack et al. (1999,
Experiment 1). Sixteen participants took part in that experiment.
One complete simulated “replication,” accordingly, comprised 16
runs of the model. Each run of the model consisted of three parts.
First, weights in the system were initialized to random values,
corresponding to variation between participants. Second, the
model was trained on 1,000 five-digit strings, which were ran-
domly chosen from the set of all possible five-digit strings, but

which excluded strings that would appear in the actual experimen-
tal simulations. This training consisted of four epochs, that is, four
cycles of presentation of the 1,000-stimulus set. The model’s task
at each five-digit stimulus presentation was to spell out the se-
quence of digits composing the string. This second step of pre-
training was intended to provide the model with a preexperimental
level of skill approximately equivalent to that of participants
entering the experiment. The rationale was that human participants
enter the experiment with significant practice in translating digit
strings into output sequences of digits, whether on a keyboard or
in writing. At the end of preexperimental training, the model was
correctly able to spell out 85.3% of novel five-digit inputs, which
corresponded quite well with the 86.98% accuracy of human
participants on unique stimuli in the first block of Poldrack et al.’s
(1999) digit-entering task.

The third step consisted of the actual experimental phase of the
simulation run. The structure of this third phase precisely mirrored
the structure of the digit-entering task in Poldrack et al. (1999,
Experiment 1), which was summarized in Table 2. Thus, in the
first epoch of a simulation, the model was presented with 48
stimuli (five-digit strings) that obeyed a particular transition rule
structure. Twelve of these stimuli were to repeat throughout the
simulation (S1 Repeats), whereas the other 36 stimuli would not be
presented again during the simulation (S1 Uniques). As explained
in the previous section, the model’s task at each five-digit stimulus
presentation was to spell out the sequence of digits composing the
string, just as in the experiment with human participants. Thus
Epoch 1 in the simulation corresponded to Block 1 in the exper-
iment. In the second epoch of a simulation, the 12 S1 Repeat
stimuli were presented again, and 36 novel stimuli were also
presented. Thus Epoch 2 corresponded to Block 2. In analogous
fashion, each epoch in the simulation mirrored the corresponding
block of the experiment. It may be worth noting that the model’s
task in response to presentation of a five-digit string was the same
during Step 2 (pretraining) and during Step 3 (experimental sim-
ulation). The only difference was that the presentation of stimuli
during Step 3 had a carefully controlled structure, just as in the
digit-entering task of Poldrack et al. (1999, Experiment 1).

In Experiment 1 of Poldrack et al. (1999), the specific stimuli in
each category (S1 Repeats, S1 Uniques, etc.) were carefully coun-
terbalanced across the 16 participants. In simulations, the model
was run once with each of these actual sets of stimuli. Thus one
simulation run consisted of (a) random weight initialization; (b)
pretraining for 4 epochs; and (c) simulation of the 36 Blocks of
Experiment 1, using one of the 16 stimulus sets actually presented
to participants. A set of 16 such runs constituted one simulated
replication of Experiment 1. Twenty such replications were run
and the results averaged.6

Simulation results. The latency and IKI measures that were
derived from the digit-entering task represent somewhat different
components of the response to a particular five-digit stimulus. In

6 All simulations were run using the bp program of McClelland and
Rumelhart (1988). Weights were initialized with values distributed uni-
formly between �0.5 and �0.5 and were updated after every pattern
presentation. The momentum parameter was set to 0.9. The learning rate
parameter was set to 0.0005 for simulations of the experiment (Stage 3 of
the simulations), reflecting our view that procedural learning consists of
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particular, the latency measure is likely to include time that is
required for planning of the five-digit sequence as a whole, while
the IKI measure is likely more indicative of the execution of the
individual components of the five-digit sequence (as previously
noted by Fendrich et al., 1991, p. 139). In the computational model
described above, there is no “planning” process during which the
plan is assembled; rather, the entire plan is presented to the model
in fully assembled form. What the model does is to execute this
plan, one digit at a time. Thus, our computational model has no
plausible analogue of the planning latency component of process-
ing. However, it does have an analogue of the execution of
individual keystrokes. For this reason, we view the model’s be-
havior as affording a simulation of IKI data but not of latency data.
(It is important to note, however, that this is a limitation of the
particular implementation that we have chosen for the model and
not an in-principle limitation of our approach. A model could be
constructed in which assembly of the plan itself required process-
ing in the model. In the interests of simplicity, we chose not to
pursue such an implementation.)

To relate the patterns of activation that were produced by the
model to the experimental IKI data, we used mean squared error
(MSE) per digit, which was the mean squared difference between
the target output pattern and the actual output pattern for every
digit.7 For example, the model’s performance on Unique Stimuli in
Block 1 (Epoch 1) of the simulations was measured by the squared
error per digit, averaged over all digits presented in Block 1,
averaged over the correct as well as incorrect responses of all 16
simulated participants, averaged over all 20 replications. We found
that this measure was linearly related to the IKI measure that was
used in the behavioral experiments. The simulated IKI measure we
report here is derived from MSE by the equation IKIsimulated �
(MSE � 10,000)/3. That is, we needed only a linear model with a
single parameter to approximate the magnitude of the behavioral
IKI measure.

Figure 11a redisplays the results from Poldrack et al. (1999,
Experiment 1). Figure 11b shows the corresponding simulation
results. As can be seen, the simulations provide a good fit to the
data and exhibit all of the phenomena that are characteristic of
the empirical results: (a) improvement in performance on both
unique and repeating stimuli across blocks; (b) the existence of
both skill learning and repetition priming; (c) the effects of
repetition as observed even after significant skill learning has
occurred, as shown by performance on the new repeating items
(S2 Repeats) introduced in Session 2; and (d) the negative
transfer to stimuli that follow the complementary transition rule
structure in Session 3.

These results demonstrate that the skill learning and repetition
priming that are observed in the digit-entering task can be ac-
counted for in a model that consists of a single mechanism. The
fact that this single-mechanism model provides a good fit to a
complex pattern of empirical data suggests that this demonstration
deserves to be taken seriously.

It is further noteworthy that this one-mechanism model ex-
hibits some of the very dissociations between skill learning and
repetition priming that have been cited in the literature as
evidence of dual underlying mechanisms. Let us first examine
correlations between skill learning and repetition priming. We
have already established that a lack of correlation between skill
learning and repetition priming has no theoretical implication
with regard to the relatedness or unrelatedness of underlying
mechanisms (see the Implications of Correlations subsection).
We also saw that the empirical results from a digit-entering task
(Poldrack et al., 1999, Experiment 1) exhibit an inconsistent
pattern of correlation between skill learning and repetition
priming across blocks (Figure 6). What is the pattern of corre-
lations in the model? Figure 12 shows the correlation between
the skill learning and repetition priming measures at each epoch
or block of the simulations just described. As can be seen, there
is no consistent pattern of correlation, just as in the empirical
data that is shown in Figure 6. The mean correlation between
skill learning and repetition priming in the digit-entering task
(Poldrack et al., 1999, Experiment 1) is r � �.263, averaged
across all blocks. In the simulations, the mean correlation is r �
�.101, averaged across all epochs. Even though they arise from
a single underlying mechanism in the model, the two measures
are uncorrelated. These results further strengthen our argument
that empirical observation of an inconsistent pattern of corre-
lations between the skill learning and repetition priming mea-
sures does not constitute evidence for different underlying
mechanisms.

We also used our simulation results to examine another kind
of dissociation that has been reported in the literature, namely,
that between the form of functions for skill learning and repe-
tition priming (e.g., Kirsner & Speelman, 1996). We have
already established that the form of the repetition priming
measure has no theoretical significance (see discussion in The
Form of Functions subsection). However, it is of interest to
examine whether such dissociations arise in the model. If they
do, this would constitute a further and quite compelling dem-

7 When a five-digit input is presented to the model, the spelling out of
digits occurs in five time steps, with the production of each individual digit
occurring in a single time step. That is, the production of a particular digit
occurs in a single feedforward pass of activation from the Input and
Context Layers, through the Hidden Layer, to the Output Layer. The
production of each digit is therefore not a temporally extended process. It
has been shown, however, that activations that are computed in such a
manner correspond to the asymptotic activations that would be reached in
a cascaded system (Cohen et al., 1990; McClelland & Rumelhart, 1988). It
has also been shown that patterns that asymptote at a relatively low level
of error will reach a criterion level of accuracy relatively quickly (Cohen
et al., 1990). The error measure that is associated with a particular output
pattern can therefore be viewed as an analogue of reaction time—in this
case, IKI—in a feedforward system (McClelland & Rumelhart, 1988;
Seidenberg & McClelland, 1989).

very gradual and incremental tuning or weight change. During pretraining
(Stage 2 of the simulations), we used a higher learning rate of 0.085. This
is because we make no claims about the correspondence of our pretraining
regimen (four presentations of 1,000 pretraining stimuli) with the actual
extent or nature of human participants’ previous exposure to “spelling out”
digit strings. Rather, pretraining simulations aimed merely to bring the
model to approximately the same preexperimental level of “spelling out”
performance as that exhibited by human participants at the start of the
digit-entering task. We therefore adopted the computational expedient of
using a higher learning rate to speed up the pretraining simulations.
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onstration that such dissociations do not constitute evidence of
separate underlying mechanisms.

To examine this question, we fitted functions to three measures,
using data from the experimental digit-entering task (Poldrack et
al., 1999, Experiment 1) and from our simulations. The three
measures were performance on unique stimuli, performance on
repeating stimuli, and inverted repetition priming (IRP). IRP at
Block n was computed as the difference between final block
repetition priming and repetition priming at Block n. We used this
measure (instead of repetition priming) for reasons of practical
convenience. Power functions of the form y � a � bP�c (where
P is practice) were fitted using PASTIS (Cousineau & Larochelle,
1997), which in turn uses STEPIT (Chandler, 1969).

Figure 13a displays data points and best-fit power functions for
performance on unique stimuli and performance on repeating
stimuli in the digit-entering task (Poldrack et al., 1999, Experiment
1). Parameters of the best-fit power functions are shown in the
upper half of Table 3, along with two goodness-of-fit measures,
root-mean-squared deviation (RMSD) and r2, which show that
these power functions provide a good fit to performance on unique
stimuli and performance on repeating stimuli in the digit-entering
task. For IRP, we found that a linear power function provided as
good a fit in terms of RMSD and r2 as did the best fitting nonlinear
power function.8 This best linear fit is also graphed in Figure 13a,
and its parameters are shown in the upper half of Table 3. These

fits to empirical data from the digit-entering task exhibit the same
pattern as that obtained by Kirsner and Speelman (1996): Perfor-
mance on unique stimuli and performance on repeating stimuli
follow the nonlinear power law, but repetition priming is linear.
Does the same pattern of results hold in our single-mechanism
model?

Figure 13b displays data points and fitted functions for data
from the digit-entering task simulations that are described in this
section. For the simulations, as for the empirical data, we found
that nonlinear power functions provided an excellent fit to the
performance on unique stimuli and performance on repeating
stimuli measures. For IRP, however (again, as with the empirical
data), a linear power function provided as good a fit as did the best
fitting nonlinear power function. The parameters of these fitted
functions are shown in the lower half of Table 3, along with the
goodness-of-fit measures. Even though these measures arise from
a single learning mechanism in the model, they exhibit the same
pattern of dissociation as in the digit-entering task empirical re-
sults, viz., that performance on unique stimuli and performance on
repeating stimuli follow the nonlinear power law, but repetition

8 Note that a linear function of the form y � a � bP is just a special case
of the generally nonlinear power function y � a � bP�c, where P �
practice.

Figure 11. Comparison of experimental and simulation results. (a) Results from the digit-entering task of
Poldrack et al. (1999, Experiment 1). (b) Simulation results. IKI � interkeystroke interval; S � session.
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priming does not. This dissociation is similar, although not iden-
tical, to the pattern of dissociation found in Kirsner and Speel-
man’s (1996) study. Clearly, such patterns of dissociation can arise
from a single mechanism and therefore do not constitute evidence
for separate underlying mechanisms.9

As a final point, note that the parameters of the functions that are
fitted to the simulation results are not identical to the parameters of
the functions that are fitted to the empirical results. This simply
reflects the fact that the simulation results are not identical to the
empirical results. Therefore, the best fitting functions are closely
similar, but not identical, in the two cases. This raises the question
of just how well the simulations model the empirical results. To
make a quantitative evaluation of this, we compared the perfor-
mance on unique stimuli curves from the empirical data, Fig-
ure 13a, and the simulation results, Figure 13b. The RMSD be-
tween the empirical and simulated performance on unique stimuli
curves was 13.282 and r 2 � .925. The simulated performance on
unique stimuli curve thus provides almost as good a fit to the
empirical performance on unique stimuli curve as does the best
fitting power function, whose RMSD and r 2 values are 5.974 and
.950, respectively (Table 3). Similarly, the RMSD and r2 values
for the comparison between empirical and simulated performance
on repeating stimuli curves, Figure 13a vs. 13b, are 16.771 and
.953, respectively, which compare very favorably with the RMSD
and r2 values of 8.280 and .936, respectively, for the power
function that provide the best fit to the empirical performance on
repeating stimuli data (Table 3).

We take these various results as a strong demonstration that skill
learning and repetition priming can indeed arise from a single
underlying mechanism. Furthermore, as we have seen, even when
arising from a single learning mechanism, they can exhibit the
kinds of dissociation that have been taken as evidence of dual
mechanisms. We believe that these demonstrations, together with
the theoretical analyses that were presented in the first part of the
article, provide strong evidence that the phenomena of skill learn-
ing and repetition priming are in fact outcomes of a single kind of
learning mechanism.

Simulated Patterns of Increase and Decrease

We now return to our discussion in the Patterns of Increase and
Decrease subsection. There we argued that all possible relation-
ships between the skill learning and repetition priming measures
were consistent with the view that the phenomena of skill learning
and repetition priming arise from a single mechanism. Indication
of the relatedness came from the close relations between the shape
of the performance on unique stimuli and performance on repeat-
ing stimuli functions. There were, however, two cases where this
was not immediately obvious from the shape of performance on
unique stimuli and performance on repeating stimuli. One of these
was Case II, in which repetition priming increases with practice,
but there is no skill learning (see Figure 7). The other was Case IV,
in which performance on unique stimuli improves with practice,
but there is little or no improvement in performance on repeating
stimuli, with the result that skill learning increases while repetition
priming decreases. In this section, we demonstrate that each of
these cases can arise from a single learning mechanism.

Repetition priming without skill learning. To demonstrate that
the pattern of results in Case II can indeed arise from a single
mechanism, we used our model for a further simulation. First, we
pretrained the model for 15 epochs (instead of only 4 epochs, as in
the simulations reported in the preceding section). The intent was
to greatly improve the model’s preexperimental level of skill at the
basic task of spelling out digit strings. Following this preexperi-
mental practice, we reran the simulations of Experiment 1, exactly
as described in the previous section, and computed skill learning
and repetition priming scores. The results are shown in Figure 14a.
The results represent a pattern in which repetition priming in-
creases in the absence of skill learning, and correspond to Case II
in Figure 7. As a further check on what the simulation results
represent, they can be compared with the results of Schwartz and
Hashtroudi (1991, Experiment 1, word-fragment completion),

9 In Kirsner and Speelman’s (1996) results, skill learning increased as a
function of practice and was best approximated by a curvilinear power
function; in contrast, repetition priming did not increase as a function of
practice and was best approximated by a (horizontal) linear function. The
dissociation in the digit-entering task and in our simulation results is
slightly different: Skill learning increases and is best approximated by a
curvilinear power function, while repetition priming increases and is best
approximated by an increasing linear function. The difference between the
two patterns of dissociation is that in the Kirsner and Speelman study, skill
learning increases as a function of practice, while repetition priming does
not. However, as we explained in the Patterns of Increase and Decrease
subsection, this pattern is not necessarily indicative of a processing disso-
ciation either.

Figure 12. Correlation between skill learning and repetition priming
(simulation results).
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which are redrawn in Figure 14b, and which represent a specific
example of priming in the absence of skill learning. The skill
learning and repetition priming functions from the simulation
results are remarkably similar to the skill learning and repetition
priming functions in Schwartz and Hashtroudi’s (1991) results.10

These simulations suggest that such a pattern of findings can
indeed arise from a single mechanism.

Increasing skill learning with decreasing repetition priming.
We next consider Case IV from Figure 7. In that scenario, perfor-
mance on unique stimuli improves with practice, but there is little
or no improvement in performance on repeating stimuli, so that
skill learning increases while repetition priming decreases. Given
the difference between the form of the performance on unique
stimuli and performance on repeating stimuli functions, it is not
entirely clear whether this pattern is actually consistent with a
single underlying mechanism. We reasoned that such a pattern of
results could arise if the repeating stimuli had been highly over-
learned prior to experimental testing, that is, through preexperi-
mental practice. During experimental testing in the digit-entering
task, facilitation in performance on such repeating stimuli might
then be small or nonexistent. It might still be possible, however, to
obtain facilitation in generalized task performance (i.e., improve-
ment in performance on unique stimuli) during experimental
testing.

To test these intuitions, we performed a further simulation,
using exactly the same architecture that we have described so far.
We modified the set of 1,000 five-digit stimuli that were used for
pretraining in the previous two simulations, by adding 10 stimuli
that would later be the repeating stimuli in the experimental
simulation. Twenty repetitions of each of these 10 stimuli were
randomly interspersed throughout the pretraining corpus, which
thus consisted of 1,200 stimuli (1,000 random stimuli, plus 20
repetitions of each of 10 to-be-repeating stimuli). The model was

10 For completeness, we have included not only the skill learning and
repetition priming functions, but also the performance on unique stimuli
and performance on repeating stimuli functions, in Figure 14a and 14b. It
should be kept in mind that improvement in performance as measured by
reaction time is manifested as a numerical decrease with practice, as we see
in the simulation results, and that improvement in performance as mea-
sured by proportion correct is manifested as a numerical increase with
practice, as seen in Schwartz and Hashtroudi’s (1991) results. What may
appear to be different patterns for performance on unique stimuli and
performance on repeating stimuli in the simulations compared with the
results from Schwartz and Hashtroudi (Experiment 1, word-fragment com-
pletion) are therefore in fact quite similar patterns. Note the clear improve-
ment in performance on repeating stimuli and the relative lack of improve-
ment in performance on unique stimuli in both cases.

Figure 13. Best-fit functions for performance on unique stimuli, performance on repeating stimuli, and
inverted repetition priming. Points represent data, lines represent best-fit functions. (a) Fits to data from Poldrack
et al. (1999, Experiment 1). (b) Fits to simulation results. IKI � interkeystroke interval.
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pretrained on this corpus for four epochs. This pretraining was
meant to correspond to a situation where there is preexperimental
practice in the task as well as extensive familiarity with certain
specific stimuli that occur very frequently. After pretraining the
model in this manner, the experimental simulation was run. Instead
of using stimuli from the actual digit-entering task experiment (as
in the two simulations previously described), we used 40 stimuli in
each epoch (block). Thirty of these stimuli were unique to each
epoch. The remaining 10 stimuli appeared in every epoch and thus
constituted the repeating stimuli. These were the same 10 stimuli
that the model had been repeatedly exposed to during pretraining.
The model was presented with 24 such experimental epochs.

Simulation results are shown in Figure 15. Figure 15a shows the
functions for performance on unique stimuli and performance on
repeating stimuli. As can be seen, performance on unique stimuli
improves with practice, whereas performance on repeating stimuli
exhibits virtually no improvement. Figure 15b shows the derived
skill learning and repetition priming functions. As can be seen,
skill learning increases with practice, but repetition priming actu-
ally decreases with practice. This pattern of results corresponds
with Case IV in Figure 7. The simulations thus demonstrate that a
pattern in which there is improvement in performance on unique
stimuli with practice, but little or no improvement in performance
on repeating stimuli, can arise even in a single mechanism; con-
sequently, so can a pattern of results in which skill learning
increases while repetition priming decreases. Case IV from Fig-
ure 7 is thus fully compatible with the existence of a single
underlying mechanism. This concludes our demonstration that all
the possible patterns of relationship shown in Figure 7 are indeed
consistent with the possibility of a single underlying mechanism.

General Discussion

This article has focused on the relationship between skill learn-
ing and repetition priming. There has been controversy over
whether they reflect a single underlying mechanism (Kirsner &

Speelman, 1993, 1996; Logan, 1990; Schwartz & Hashtroudi,
1991), and this question has important repercussions for thinking
about the nature of procedural memory as a whole. The analysis in
the first part of the article indicated that previous arguments
regarding the separation of mechanisms that underlie skill learning
and repetition priming are invalid. Specifically, we showed that the
lack of a power function for the repetition priming measure does
not have any bearing on the processing relationship between the
phenomena of skill learning and repetition priming. We showed
that the lack of correlations between the skill learning and repeti-
tion priming measures also does not bear on the processing rela-
tionship between the phenomena. We further showed that none of
the possible patterns of increase or decrease between the skill
learning and repetition priming measures constitutes evidence that
the two phenomena are based on separate mechanisms. These
analyses do not of course show that a single mechanism does
underlie skill learning and repetition priming. In the second part of
this article, we therefore focused on the complementary demon-
stration that skill learning and repetition priming can indeed arise
from a single learning mechanism. We outlined our theory of
procedural memory and then presented a computational model
incorporating that theory. We showed that the model provides an
accurate account of a fairly complex body of behavioral data from
the digit-entering task. In particular, the model showed improve-
ment in performance on both unique and repeating stimuli across
blocks and exhibited both skill learning and repetition priming.
The model also exhibited a number of the apparent dissociations
between the skill learning and repetition priming measures that
have been taken as evidence for dual mechanisms. All of these
effects were exhibited, even though the model consists of only a
single learning mechanism, which provides further evidence that
the presence of such dissociations in empirical results does not
imply the existence of dual mechanisms. The fact that this single-
mechanism model provided a good fit to a complex pattern of
empirical data suggests that these various demonstrations deserve
to be taken seriously.

Necessary and Sufficient Conditions

Our discussion so far may have suggested that skill learning and
repetition priming are both necessary consequences of perfor-
mance in any task. This is not strictly true. In the first place, it may
be the case that the transducers (sets of weighted connections) that
are involved in performance of a particular task have been tuned to
all the transductions in the mapping to such a degree that no further
tuning is possible. Under these conditions, practice will yield no
further improvement in performance on either repeating or unique
stimuli and hence no skill learning or repetition priming. Note that
this corresponds to Case IIIb in Figure 7.

Next let us consider the more usual case where there is room for
adjustment in the weighted connections. We can identify necessary
and sufficient conditions for the occurrence of skill learning and
repetition priming. Before doing so, however, we need to make
one further observation and introduce some definitions. The ob-
servation is that in general, if there is enough room for the
weighted connections (i.e., the transducer) to be tuned in response
to unique stimuli, then there is necessarily even more room for the
transducer to be tuned in response to repeating stimuli. That is, if
performance on unique stimuli is improving with practice, then

Table 3
Parameters of Best-Fit Functions for Digit-Entering Task
Empirical and Simulation Results

Measure

Parameter Goodness of fit

a b c RMSD r2

Experimental data

POU 145.772 245.187 0.184 5.974 .950
POR 52.652 331.963 0.159 8.280 .936
IRP 27.034 1.884 4.202 .706

Simulation data

POU 192.656 178.635 0.224 3.619 .974
POR 83.289 294.916 0.209 3.585 .990
IRP 39.506 3.554 4.101 .900

Note. Functions for POU and POR are power functions of the form y �
a � bP�c, where P � practice. Functions for IRP are linear functions of the
form y � a � bP, where P � practice. RMSD � root mean squared
deviation between observed and predicted values, in milliseconds; POU �
performance on unique stimuli; POR � performance on repeating stimuli;
IRP � inverted repetition priming.
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performance on repeating stimuli must necessarily be better than
that on unique stimuli; if performance on unique stimuli is im-
proving, then the performance on repeating stimuli curve must lie
below it. Equivalently, if skill learning occurs, there necessarily
must be some repetition priming (because the performance on
repeating stimuli curve must lie below the performance on unique
stimuli curve).

This means that Case Id in Figure 7 is proscribed by our
processing theory. That scenario shows improving performance on
unique stimuli, but the performance on repeating stimuli curve is
no lower than the performance on unique stimuli curve. In our
earlier discussion of the scenarios in Figure 7, we were concerned
with logical possibility and with showing that none of the logical
possibilities provides evidence for separate underlying mecha-
nisms. What we are now claiming is that one of these logically
possible scenarios is humanly impossible; our processing theory
makes a strong prediction in this regard. If Case Id were to be
observed in a multiple-repetition paradigm, we would be forced to
revise our processing account. Note, however, that even if Case Id
were ever observed, this would still not prove that there are
different mechanisms that underlie skill learning and repetition
priming. It would show that our present single-mechanism account

of the relationship between skill learning and repetition priming is
inadequate; it would not show that single-mechanism accounts are
in principle inadequate.

This brings us to definitions. We need to distinguish between
systematic mapping and arbitrary mapping. In a systematic map-
ping, similar stimuli at the first level of representation map onto
similar representations at the second level. If stimulus A is similar
to stimulus G at the first level of representation, then the trans-
duced representation A� will be similar to G� at the second level of
representation. In an arbitrary mapping, there is no such guarantee.
Even if A and G are similar at the first level of representation, A�
and G� may be quite dissimilar at the second level. To take an
example, the mapping between a word’s written form and its
spoken sound form is in general a systematic mapping, at least to
the extent that the spelling system of the language is phonetically
consistent. In contrast, the linguistic mapping between a word
meaning and its spoken sound form is in general arbitrary; indeed,
this is viewed almost as a defining feature of language in general.
For example, there is no guarantee that two semantically similar
objects such as a mug and a cup will have names that are phono-
logically related to each other. It should be noted that in most
languages, there are partial regularities in the mapping: for exam-

Figure 14. Repetition priming without skill learning. (a) In a single mechanism: digit-entering task simulations
after extensive pretraining. Repetition priming increases while skill learning exhibits no clear increase. (b) Data
from Schwartz and Hashtroudi (1991), Experiment 1: word-fragment completion. Here, too, repetition priming
increases while skill learning exhibits no clear increase. The pattern is very similar to that seen in the simulation
results.
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ple, certain aspects of meaning such as plural number may tend to
be expressed consistently in a particular fashion (by adding -s, for
example, in English). Nevertheless, the mapping is for the most
part arbitary.

One further distinction needs to be made. Up to this point, we
have assumed implicitly that when stimuli are repeated, they
always map onto the same output response.11 We now relax this
assumption. Assume that certain stimuli are presented repeatedly
to a given transducer, that is, to a given set of weighted connec-
tions. These, of course, constitute what we have termed repeating
stimuli. Under our relaxed assumptions, the transduction (and
hence the appropriate output response) required for a particular
repeating stimulus may be the same on each repetition, or it may
be different on different repetitions. We refer to the first case as
consistent repetition, and to the latter case as inconsistent repeti-
tion of stimuli.

We can now examine the circumstances under which there will
be improvement in performance on unique stimuli and perfor-
mance on repeating stimuli. The possibilities are summarized in
Table 4. The first row shows expectations for performance on
unique stimuli under conditions of arbitrary mapping and system-
atic mapping. We would expect no improvement in performance

on unique stimuli in an arbitrary mapping. In our formulation, such
improvement arises from generalization in a set of weighted con-
nections (which constitute the transducer). If the weights encode
(approximate) an arbitrary mapping, there is, by definition, no
basis for generalization. Exposure to unique stimuli in a systematic
mapping, however, may lead to generalization, if the unique stim-
uli provide a broad enough sampling of all possible input–output
pairings. That is, the necessary and sufficient conditions for im-
provement in performance on unique stimuli are (a) that the
mapping must be systematic and (b) that practice must cover a
“sufficient” portion of the set of possible transductions in the
mapping. The sufficiency of a particular regime of practice is
dependent on the particular mapping and on the particular stimuli

11 That is, we have assumed that our mappings are functions. A function
is a mapping in which each input representation maps onto exactly one
output representation. However, our mappings may not always be func-
tions. It may be the case that a given input representation maps onto more
than one output representation. To approximate such a mapping, a trans-
ducer has to be able to transduce a given input stimulus into different
possible outputs.

Figure 15. Increasing skill learning with decreasing repetition priming in a single mechanism. The simulation
shows improving performance on unique stimuli but relatively constant performance on repeating stimuli. This
gives rise to increasing skill learning with decreasing repetition priming. These effects all arise from the single
mechanism that is incorporated in the model. (a) Functions for performance on unique stimuli and performance
on repeating stimuli. (b) Functions for skill learning and repetition priming.
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sampled. A corollary to this is that there can be improvement in
performance on novel stimuli even without a regimen of presen-
tation of “unique” stimuli as we have defined them. If a set of
repeating stimuli is presented to a transducer, there may be general
improvement in performance on unique stimuli, if the mapping is
systematic and if the repeating stimuli sample the mapping broadly
enough.

What about the necessary and sufficient conditions for improve-
ment in performance on repeating stimuli? There are potentially
four situations to be considered here, determined by whether there
is an arbitray or systematic mapping and by whether there is
consistent or inconsistent repetition. As shown in Table 4, one of
these situations can be ruled out as impossible: It is impossible to
have systematic mapping and inconsistent repetition together. This
leaves three other situations. We expect performance on repeating
stimuli to improve under consistent repetition, irrespective of
whether the mapping is systematic or arbitrary. This is because
repeated exposure to these stimuli results in tuning of connection
weights for these specific stimuli. If the mapping is systematic, and
the repeating stimuli provide broad coverage of the mapping, there
may be accompanying improvement in performance on unique
stimuli. If the mapping is arbitrary, there will be no accompanying
improvement in performance on unique stimuli no matter how
broadly the repeating stimuli sample the mapping. But in either
case, there will be improvement in performance on repeating
stimuli. Under inconsistent repetition, however, we do not expect
to see any improvement in performance on repeating stimuli. This
is because connection weights cannot be adjusted to yield two or
more different transductions for input stimuli. Repeated presenta-
tion of the stimuli therefore yields no benefit. The necessary and
sufficient condition for improvement in performance on repeating
stimuli is that there be consistent repetition.

Much of the discussion in this section has focused on specifying
conditions under which improvements in performance on unique
or repeating stimuli can be expected to occur, and these amount to
testable predictions. Our theory makes a particularly strong pre-
diction regarding the impossibility of Case Id in Figure 7. For the
reasons noted earlier in this section, empirical observation of such
a scenario (in which there was skill learning but no repetition
priming in a multiple-repetition paradigm) would require recon-
sideration of our processing account. Additionally, our account
specifies conditions under which various relative patterns of
increase–decrease in skill learning and repetition priming can be

expected, as in our computational demonstrations of the possibility
of Cases II and IV in Figure 7. Case II (in which there is a flat
performance on unique stimuli function together with improve-
ment in performance on repeating stimuli) may be expected when
subjects have a very high level of preexperimental skill in the task.
Case IV (in which there is a flat performance on repeating stimuli
function together with improvement in performance on unique
stimuli) may be expected when the specific stimuli that repeat have
very high preexperimental frequency familiarity. These specifica-
tions also amount to theoretical predictions. Our framework further
makes a prediction about the magnitude of repetition priming.
Repetition priming is measured, of course, by the separation be-
tween the performance on unique stimuli and performance on
repeating stimuli functions, and according to our theory, the mag-
nitude of this separation will depend on the degree of similarity
between the repeating and unique stimuli. If the specific repeating
stimuli that are encountered in a task are similar to the specific
unique stimuli that are encountered in the task, the separation
between the performance on unique stimuli and performance
on repeating stimuli functions will be less than if the two sets
of stimuli are dissimilar.12 Overall, there are several predictions
that follow from our theoretical framework, which is therefore
falsifiable.

Multiple Levels of Skill Learning and Repetition Priming

The results we described from Poldrack et al. (1999, Experiment
1) showed that performance in the digit-entering task was better
for the repeating five-digit strings than for the unique five-digit
strings; that is, there was repetition priming for five-digit strings.
The results also showed, however, that performance in Session 3
was better for rule-following unique stimuli than for non-rule-
following unique stimuli. Stated another way, performance was
better for those five-digit strings that contained two-digit se-
quences that had been repeatedly encountered than for those five-
digit strings that contained two-digit sequences that had not pre-
viously been encountered; that is, there was facilitation for
repeating two-digit sequences. These results emphasize that the
effects of repetition are seen at a variety of unit sizes. They also
highlight the fact that “items” can exist at multiple levels. Repe-
tition priming is often defined as the difference between perfor-
mance on repeating versus unique items. In the digit-entering task,
repetition priming occurred for five-digit items, as indicated by the
superior performance on repeating versus unique five-digit strings.
However, the results suggest that two-digit sequences are also
items: There is repetition priming for these units also. Thus how an
“item” is defined in such tasks needs to be approached with some
caution.

We have characterized the phenomena of skill learning and
repetition priming as being manifestations of the same underlying
process of incremental adjustment in the transductions on which a
particular task depends. A corollary of this is that skill learning and
repetition priming can arise in multiple transducers and thus at
multiple levels in a system. Let us further explore this notion,
applying it to understanding the differences between the multiple-

12 We thank Stellan Ohlsson for pointing this out (personal communi-
cation, February 1998).

Table 4
Conditions Under Which Improvement Can Be Expected in
Performance on Unique Stimuli and Performance on Repeating
Stimuli

Performance on Arbitrary mapping
Systematic
mapping

Unique stimuli No improvement Improvement
(if sufficient
sampling)

Repeating
stimuli

Consistent
repetition

Improvement Improvement

Inconsistent
repetition

No improvement Impossible
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repetition and study–test repetition priming paradigms. Consider
the hypothetical task that was introduced earlier in which words
are presented visually, and a participant has to say how many
syllables each word contains. Performance in the task is measured
by response latency. In a multiple-repetition paradigm, there
would be several blocks of practice. Some of the words would
appear in every block (the repeating stimuli), while other words
would appear exactly once (the unique stimuli). That is, each block
would consist of repeating stimuli as well as unique stimuli. We
would expect an improvement, over blocks, in task performance
on unique stimuli and on repeating stimuli, and we would expect
performance on repeating stimuli to be better than performance on
unique stimuli. That is, we would expect to see both skill learning
and repetition priming.

The study–test version of the same task would consist of two
phases. Prior to performing the actual syllable-judgment task (re-
ferred to as the “test” phase), there would be a “study” phase. The
study phase would include exposure to some of the stimuli that
would later appear in the test phase. The purpose of the study
phase would be to provide prior familiarization with these stimuli,
but not task-specific facilitation. For example, at study, partici-
pants might be asked to rate words for correctness of spelling.
After a distractor-filled interval, the test phase would begin. Now,
participants would perform the syllable-judgment task. Some of
the stimuli would be drawn from the previously studied words. In
this paradigm also, we would expect to see superior performance
on the repeated (studied) stimuli than on the nonrepeated stimuli.
That is, we would expect to see repetition priming.

Conceptualizing the task as a system of transductions helps us to
see that the locus of priming is different in the two cases. Figure
16 is a schematic of the transducers that are involved in the
syllable-judgment task. The first transducer (A) enables the sen-
sory stimulus to be converted into an internal representation of the
word through processes of word identification. For the present
analysis, we do not need to specify what the representations or
processes are in this transduction. It is enough to point out that this
transducer must exist, quite independent of whether a participant
has ever performed a syllable-judgment task, because this is the
transducer that enables single words to be read. Furthermore,
assuming that the participant is a normal adult reader, this trans-
duction is highly overlearned. The second transduction shown (B)
is task specific. Its input is the representation delivered as the
output of the first transduction; this representation must be further
transduced into information about the number of syllables that are
contained in the represented word. This transduction is much less
practiced than is the first one. However, performance of the
syllable-judgment task relies on both of the transducers.

Now let us consider performance improvement in the multiple-
repetition paradigm. Transducer A (which consists of the ability to
read words) is overlearned. This means that there is little room for
general improvement in this transducer: Reading the relatively
small number of words that are contained in the experiment will
lead to little, if any, general improvement. However, we would
expect a significant improvement in performance on unique stim-
uli in the second, more task-specific transducer B, because this
transduction is relatively unpracticed. Thus, the locus of improve-
ment in performance on unique stimuli will be primarily in trans-
ducer B. What about the locus of improvement in performance on
repeating stimuli? We would expect substantial adjustment toward

repeating stimuli in the connection weights in transducer B, and
hence substantial improvement in performance on repeating stim-
uli. In addition, we would expect some improvement in perfor-
mance on repeating stimuli in transducer A as well: Repeated
exposure will lead to some facilitation for these specific stimuli,
although not to generalized facilitation. To summarize, the locus of
improvement in performance on unique stimuli is largely or en-
tirely in the task-specific second transduction B; accordingly, the
locus of skill learning is at this second level. The locus of im-
provement in performance on repeating stimuli is in the second
transduction as well as in the first one; accordingly, repetition
priming occurs in both of the transductions, that is, at multiple
levels.

Let us next consider performance improvement in the study–test
paradigm. At study, certain stimuli are read, that is, transduced at
the first level. Incremental weight adjustments occur for these
stimuli. At test, some of these stimuli are read again. There will be
an advantage in processing of these stimuli by transducer A,
relative to those test stimuli that were not studied. That is, adjust-
ment in connection weights in transducer A will lead to repetition
priming. As in the previous case, however, the relatively small
number of words contained in the experiment is unlikely to lead to
generalized improvement in transducer A, and so we would expect
no skill learning in transducer A. Turning to the task-specific
transducer B, we can note that it is only exposed to any stimulus
once. That is, from the point of view of this transducer, there are
no repeating stimuli, only unique stimuli. Therefore, there can be

Figure 16. Levels of representation and transductions in a hypothetical
syllable-counting task.
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no repetition priming in this second transducer; we would, how-
ever, expect skill learning to occur in transducer B. Comparing the
multiple-repetition and study–test versions of the task, we see that
in both versions, the locus of skill learning is in transducer B.
However, the locus of repetition priming differs in the two variants
of the task: In the multiple-repetition paradigm, it is in both
transducers, whereas in the study–test paradigm, repetition prim-
ing can only occur in transducer A.

It is important to distinguish our formulation from a view in
which, in any given task domain, there are two different modules
(representing skill learning and repetition priming) that process
different kinds of information in that domain, with one module
processing information that is relevant to skill learning and the
other module processing information that is relevant to repetition
priming, but with both modules operating via an incremental
tuning process of the kind we have described. Our formulation is
crucially different in the following way. In our framework, the
modules (i.e., processors or transducers) that are deployed in a task
indeed operate on different representations and thus process dif-
ferent kinds of information (e.g., transducers A and B in the
syllable-judgment task). However, the distinction between the
transducers and the distinction between the kinds of information
they process corresponds not to a distinction between skill learning
and repetition priming, but to a distinction between functional
components or processing stages of the task, or both. Even if the
locus of repetition priming is in transducer A and the locus of skill
learning is in transducer B, as in the study–test version of the
syllable-judgment task, this is not because transducer A is special-
ized for repetition priming and transducer B specialized for skill
learning; rather, the differing loci of skill learning and repetition
priming emerge from the operation of transducers that map onto
different task components.

The difference between study–test paradigms and multiple-
repetition paradigms is a significant one. In a multiple-repetition
paradigm, the task remains the same throughout, and this means
that the same transducers are exposed to both the repeated and
nonrepeated stimuli. Even so, the loci of any observed skill learn-
ing and repetition priming effects may be in different transducers,
as just discussed. In a study–test paradigm, there is usually a
change in task between study and test, and the transducers that are
exposed to the repeated and nonrepeated stimuli will therefore
usually be different. The loci of any observed skill learning and
repetition priming effects are therefore even more likely to be in
different transducers than is the case in a multiple-repetition par-
adigm, as also just discussed. Conclusions about the mechanisms
that underlie observed patterns of skill learning and repetition
priming in a study–test paradigm must therefore be approached
with even more caution than in a multiple-repetition paradigm. For
example, Schwartz and Hashtroudi (1991, Experiments 1 and 2)
studied repetition priming and skill learning in a partial-word
identification task, using both a multiple-repetition paradigm (Ex-
periment 1, which we have already discussed in this article) and a
study–test paradigm (Experiment 2). In the study–test paradigm,
they found that repetition priming was no higher in a group of
participants who were skilled in the task than in participants who
were not skilled in the task and interpreted this result as a disso-
ciation between repetition priming and skill learning. However, as
we discuss in detail in the Appendix, this interpretation does not

hold up when a careful consideration is made of the nature of the
study–test paradigm that was used.

In an earlier section, we pointed out that differences that have
been observed between repetition priming and skill learning in
neuropsychological studies have often been based on different
tasks (see the discussion at the end of the Theoretical Analysis
section). Because different tasks involve different sets of transduc-
ers, interpretation of these results as indicating a dissociation
between repetition priming and skill learning is invalid. A similar
point arises in interpreting the results of neuropsychological stud-
ies that use a study–test paradigm. To see this, let us return to the
study–test version of the syllable-judgment task that was described
above. Let us suppose that an individual who will participate in
this task has a lesion that selectively impairs transducer A (see the
earlier discussion of this task), thus reducing the facilitation (ad-
justment of connection weights) that can arise in this transducer.
When the individual undertakes the study phase, the lesioned
transducer A supports a reasonable level of performance in the task
(which is simply to read each word), but only a small amount of
facilitation toward these stimuli takes place. At test, therefore, in
the syllable-judgment task proper, there is little or no benefit in
transducer A for the previously presented words, that is, little or no
repetition priming in transducer A. We would not expect skill
learning either in transducer A, both because this is a highly
overlearned mapping and because facilitation is impaired in this
transducer. Turning to transducer B, at test, there cannot be any
repetition priming, because, as discussed earlier in this section, this
transducer did not previously process the studied stimuli. How-
ever, over the course of the test phase trials, there might be skill
learning in transducer B. Thus, in performance of the study–test
task overall, we might see no repetition priming but some skill
learning.

Such a result might appear to indicate that there had been
selective impairment of repetition priming but not of skill learning
in what appeared to be a single task, and thus that repetition
priming and skill learning are dissociable processes. However,
such a conclusion would fail to take into account that the trans-
ducers were different at study and test, and that the impairment
was selective to processing that is differentially involved in the
study and test phases, rather than selective to repetition priming.
Note also that such a result would not refute our earlier prediction
(see the Necessary and Sufficient Conditions subsection) that rep-
etition priming without skill learning is impossible in a multiple-
repetition paradigm or, more generally, in a task in which the same
transducers are involved at all points. The hypothetical result
currently under discussion is permissible in our framework be-
cause in the syllable-judgment study–test task, the transducers that
are involved are not constant across study and test.

As a further example of the relevance of such task analysis to
neuropsychological investigation, let us consider the case of pa-
tient M.S., whose pattern of priming following a right occipital
lesion has been examined in a number of studies (e.g., Fleischman
et al., 1995; Gabrieli, Fleischman, Keane, Reminger, & Morrell,
1995; Vaidya, Gabrieli, Verfaellie, Fleischman, & Askari, 1998).
In the most pertinent study, M.S. and various types of controls
participated in a study–test paradigm (Gabrieli et al., 1995). In the
study phase of the task, each participant read aloud 24 visually
presented words. In the test phase, which was a perceptual iden-
tification task, 48 words (24 from the study phase and 24 unstudied
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words) were shown very briefly to each participant, whose task
was to identify the word. Of interest was how much better partic-
ipants would be at identifying studied versus unstudied words in
the test phase, the measure being the mean duration needed to
identify the two types of words. The controls had significantly
shorter durations to identify studied than to identify unstudied
words, thus exhibiting priming. However, M.S. did not exhibit
priming for the studied words.

How should we interpret these results? Let us begin by consid-
ering what transducers might have been involved in the task at
study and at test. The processing system engaged at study can be
broadly conceptualized as consisting of a transducer A that maps
from the visual representation of a word to an internal word form
representation (essentially identical to transducer A in the syllable-
judgment task) and a transducer B that maps an internal word form
representation to a sequence of articulatory gestures (i.e., pro-
nouncing the word out loud). The perceptual identification task at
test involves speeded presentation of stimuli, and, presumably,
speeded responses. Let us make the simplifying assumption, how-
ever, that the system engaged at test consists of exactly the same
transducers A and B that were involved in the study phase. The
priming that was observed in controls and absent in patient M.S.
was presumably due to the presence and absence, respectively, of
facilitation in transducer A (as there is no reason to believe that
M.S. had any impairment in transducer B). We also note that, in
reality, transducer A is likely to be a complex system that consists
of several subtransducers that collectively implement the mapping
from visual word form presentation to internal word form repre-
sentation; the impairment to transducer A may be localized to
some subset of its subtransducers. Let us now return to interpre-
tation of the results.

One interpretation would be that the presence of priming in
controls and its absence in M.S. indicate the operation of a spe-
cialized visual implicit memory system (e.g., Gabrieli et al., 1995).
This view amounts to hypothesizing that transducer A (or some
subtransducer within A) is specialized for visual implicit memory
and is selectively impaired. An alternative view that we favor is as
follows. In an unimpaired system, presentation of a stimulus at
study leads to facilitation in some subset of A’s subtransducers.
What facilitation is revealed at test will depend on what aspects of
stimulus presentation are manipulated at test. Impairment in some
subset of subtransducers within A will affect the operation of those
subtransducers, including the operation of procedural learning and
hence facilitation within them during study. At test, the facilitation
that is obtained in the overall task may differ from what would
have been obtained in an unimpaired system, depending on the
specific loci of impairment within A and on which aspects of the
stimulus are repeated from study to test. However, neither trans-
ducer A nor its subtransducers are viewed as being specialized
implicit memory systems; rather, transducer A is a complex visual
stimulus processing system that incorporates procedural learning
(and hence implicit memory) as a fundamental part of its operation
in every subtransducer.13 On this view, M.S. has an impairment
somewhere in transducer A, and this impairs the operation of that
subcomponent of A, including procedural learning in that subcom-
ponent; this leads to reduced facilitation in that subcomponent of
A at study, which is revealed at test. It should be possible to
distinguish between the two views that we have outlined, because
the second view makes the testable prediction that if patient M.S.

manifested an impairment of priming in a multiple-repetition ver-
sion of the perceptual identification task, he would also manifest
an impairment in skill learning in the task; this follows by modus
tollens from our earlier general prediction that if skill learning
occurs in a multiple-repetition paradigm, it must necessarily be
accompanied by repetition priming.

In summary, skill learning and repetition priming can occur at
multiple levels within a system. Furthermore, the locus of repeti-
tion priming may be rather different in different versions of what
prima facie might appear to be the same task. These considerations
suggest that an understanding of repetition priming and skill learn-
ing effects that are obtained in any given task needs to be preceded
(a) by a task analysis that conceptualizes the various transductions
involved in the task and (b) by an analysis of the loci of improve-
ments in performance on unique stimuli and performance on
repeating stimuli. The present framework encourages careful anal-
ysis of the mappings and transducers that are involved in a task and
highlights the importance of examining whether the effects ob-
served in two tasks (or in variants of what appears to be the same
task) are in fact comparable.

Broader Implications

Skill learning, repetition priming, and automaticity. In this
article, we have sketched a theory of procedural memory, focusing
chiefly on its implications for skill learning and repetition priming.
How does this theory relate to broader issues in memory and
cognition? We will begin by considering the phenomenon of
automaticity, which is an important subject in the study of skill
acquisition. Automaticity refers to the mode of cognitive process-
ing in which certain activities can be performed quickly, effort-
lessly, with little awareness, and with little need for conscious
thought (Logan, 1988). According to the present theoretical frame-
work, automatization in a task arises as a result of the same
processes of incremental tuning that we have described as under-
lying improvements in performance on unique stimuli and perfor-
mance on repeating stimuli. On our account, automaticity is a state
in which the transductions for certain stimuli have been tuned
through repeated exposure, to such a degree that performance on
those particular stimuli has become highly facilitated. When task
performance is examined with respect to these particular stimuli,
performance gives indication of having become “automatized.”

We wish to highlight three aspects of this formulation. First,
automaticity is merely a state in which performance on repeating
stimuli has improved greatly; it is the near-asymptotic part of the
performance on repeating stimuli function. Performance on non-
repeating stimuli will necessarily be inferior, because the connec-
tion weights have not undergone repeated tuning toward these
stimuli. The item-specific nature of automaticity therefore falls out
of this conceptualization, as it does out of Logan’s (1988) instance

13 Similarly, in this view, dissociations between perceptual priming and
conceptual priming in healthy people (e.g., Blaxton, 1989; Roediger &
Blaxton, 1987) do not reflect distinct implicit memory systems but rather
the differential involvement of different transducers, each of which incor-
porates procedural learning and can thus exhibit priming, which therefore
appears as either more perceptual or more conceptual. We return to these
points in our discussion of multiple memory systems and components of
processing.
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theory of automaticity. The second point we wish to emphasize is
that whether performance is judged to be automatic depends on
what criterion of performance is used, as Logan has previously
noted. The term automaticity can thus be seen as being merely a
label that is applied to performance on repeating stimuli when it
improves beyond some arbitrarily defined criterion. Third, given
that in our framework, automaticity is merely the extremum of the
phenomenon of repetition priming, we can specify the conditions
under which automaticity will arise, as we have already specified
these conditions for improvement in performance on repeating
stimuli. Referring back to Table 4, we can see that performance on
repeating stimuli will improve whenever there is consistent repe-
tition of stimuli (provided that there is some room for adjustment
of connection weights). That is, the necessary and sufficient con-
ditions for automaticity are (a) consistent repetition and (b) plenty
of it. This theoretical prediction is borne out by empirical evi-
dence, which indicates that automaticity is acquired only when
stimuli are mapped consistently onto the same responses through-
out practice (Logan, 1978, 1979; Schneider & Fisk, 1982; Schnei-
der & Shiffrin, 1977; Shiffrin & Schneider, 1977). Our framework
offers an account of this finding.

As Logan (1988) has noted, the term automaticity has also been
used in another sense: to refer to the kinds of effects observed in
Stroop tasks (Stroop, 1935). Cohen, Dunbar, and McClelland
(1990) presented a computational model that accounted for a wide
variety of phenomena in Stroop paradigms. In their account, per-
formance in tasks such as word reading and color naming lies
along a continuum of strength of processing. When a task is highly
practiced, the strength of processing in the pathways that enable its
performance is high. Stroop-like interference and facilitation ef-
fects arise from the relative strength of processing in the pathways
in competing tasks. The starting point in the work of Cohen et al.
(1990) was Stroop-like paradigms. The starting point for the
present work was the kinds of paradigms in which repetition
priming has been studied. Both approaches converge on the notion
that the processing factor that leads to automaticity is the effec-
tiveness of the underlying processing pathways, and that this
effectiveness is altered by incremental tuning of connection
weights. The present work thus complements that of Cohen et al.
in highlighting the relationship between two senses of the term
automaticity.

Multiple memory systems and components of processing. Our
framework also makes contact with another significant issue in the
study of memory, namely, the debate over whether memory is
better characterized as being a single system or as consisting of
multiple systems. This debate was recently reviewed in an insight-
ful article by Roediger et al. (1999). As Roediger et al. note,
advocates of multiple memory systems have proposed that there
are distinct memory systems for such things as episodic versus
semantic memory (Tulving, 1972) and procedural versus declara-
tive memory (Cohen & Squire, 1980; Cohen & Eichenbaum, 1993)
as well as a presemantic perceptual representation system (PRS),
which is a memory system that is distinct from the other systems
and that itself has a number of distinct memory subsystems such as
a word form PRS and a structural description PRS (Tulving &
Schacter, 1990). Advocates of a unitary view of memory, on the
other hand, have argued that a focus on processing operations is
critical to understanding of memory (e.g., Craik & Lockhart, 1972;
Kolers, 1975) and have suggested that the distinction between

data-driven and conceptually driven processing needs to be con-
sidered in interpreting results from different memory tasks that
have been thought to reflect the operation of different memory
systems (e.g., Blaxton, 1989; Jacoby, 1983).

Roediger et al. (1999) argue that each point of view has its
strengths and weaknesses, and that a more illuminating way of
thinking about memory is one that offers a resolution of the two
viewpoints. In particular, as in earlier work (Roediger & McDer-
mott, 1993), they endorse the “components of processing” ap-
proach put forward by Moscovitch (1992, 1994). This approach is
based on the assumption that performance of each task requires the
operation of many components, some of which are common to
tasks and some of which are not. In this view, any two tasks that
are dissociated must differ in at least one task component.

Roediger et al. (1999) illustrate the application of such an
approach by means of a thought experiment with three groups of
participants. In this thought experiment, each group is given a
series of word stems (the first three letters of words, e.g., COU

) as a cue for their task, so that the perceptual display is the
same for all groups. One group is instructed to say the first word
that comes to mind that fits the stem. A second group performs the
same task, with the same instructions and the same stems, but this
group had previously studied a list of words. Some of the stems
they now see represent words that appeared on the previous list
(e.g., COURAGE). The third group of participants studies the
same list of words as that studied by the second group and receives
the same word stems at test. However, at test, they are instructed
to use each stem to think back to an item in the studied list and to
produce words to fit the stems only if the word had occurred in the
list. As Roediger et al. (1999) note, the procedure for the second
group instantiates a typical implicit memory test, whereas the
procedure for the third group instantiates a typical explicit memory
test. The first group represents a baseline against which repetition
priming is calculated in the implicit memory test.

Roediger et al. (1999) note that from the point of view of
Moscovitch’s (1992, 1994) components of processing theory, the
tasks would be analyzed as follows. The first condition, complet-
ing word stems, relies on a complex set of processing components.
This set of components represents a cognitive system that achieves
the task of producing words from three letters. When participants
have studied some of the words prior to completing stems, as in the
second condition, components of the system responsible for com-
pleting the word stem might change—some might be added, and
others might drop out. But these are changes in components of the
system rather than the engagement of an independent system. For
the third group of participants, the system is once again different,
with different components that are involved in remembering being
brought into play. The differences in components between the
three tasks could be labeled as “memory systems,” but in the
components of processing approach, this is not regarded as par-
ticularly fruitful.

The theoretical framework we have presented here is completely
consonant with Roediger et al.’s (1999) articulation of the com-
ponents of processing view. At several points in the present article,
we have outlined our view that a particular task is carried out by
a particular configuration of transducers, and that this ensemble
constitutes the system that underlies performance of that task.
Furthermore, we completely agree that when two different tasks
deploy different components (i.e., different, albeit possibly over-

435SKILL, REPETITION PRIMING, AND PROCEDURAL MEMORY



lapping, sets of transducers), these differences do not necessarily
mean that there are independent or different “memory systems”
involved.

It may be worth elaborating on this discussion to clarify our own
views about the multiplicity (or otherwise) of memory systems. In
our view, there is a fundamental distinction between two kinds of
biological learning and memory mechanisms, which we have
termed procedural memory and declarative memory, respectively
(Cohen & Squire, 1980; Cohen & Eichenbaum, 1993). It should be
noted that there is now considerable evidence regarding the neural
basis of such a dissociation between two kinds of memory systems,
as acknowledged by Roediger et al. (1999). The declarative mem-
ory system is believed to be subserved by the hippocampus and
related medial temporal lobe structures (we will refer to this
loosely as “the hippocampal system”); these structures provide for
the inital encoding of memories that involve arbitrary conjunctions
and also for their eventual consolidation and storage in neocortex
(e.g., Cohen & Squire, 1980; Mishkin, Malamut, & Bachevalier,
1984; Squire, Knowlton, & Musen, 1993). The procedural memory
system, which provides for the learning and processing of motor,
perceptual, and cognitive skills, is believed to be subserved by
learning that occurs in nonhippocampal structures such as neocor-
tex and the basal ganglia (e.g., Cohen & Squire, 1980; McClelland
et al., 1995; Mishkin et al., 1984; Squire et al., 1993). It has further
been suggested that there is a computational reason for the exis-
tence of two memory systems (McClelland et al., 1995). Accord-
ing to this view, the neocortex processes distributed representa-
tions. Such representations have the desirable property of
providing a basis for similarity-based generalization. However, in
a computational system that uses distributed representations, the
learning of arbitrary associations must be slow and interleaved
(McClelland et al., 1995), if the system is not to suffer from
catastrophic interference, that is, the overwriting of previously
existing knowledge (McCloskey & Cohen, 1989). However, the
encoding of the kinds of arbitrary associations that constitute
declarative memory (episodes and new facts, which are arbitrary
conjunctions of items of information) must often occur swiftly,
within a single encounter. It therefore cannot proceed via slow
cortical learning. It has been proposed that the role of the hip-
pocampal system is to convert distributed representations into
localist nonoverlapping ones and to establish fast mappings be-
tween such converted representations. That is, the hippocampal
system performs fast learning, based on orthogonalized represen-
tations, and thus provides a basis for the swift encoding of arbitrary
associations of the kind that constitute episodic and factual infor-
mation (Cohen & Eichenbaum, 1993; McClelland et al., 1995).
Neocortex and the hippocampal system thus perform complemen-
tary learning functions and provide the basis for procedural and
declarative memory, respectively. The neocortical learning system
proposed by McClelland et al. (1995) is essentially equivalent to
the present view of procedural memory learning.

In designating the kind of learning that occurs in nonhippocam-
pal structures as procedural learning, we adopt the view that
neocortical and other nonhippocampal structures can usefully be
characterized as operating according to a common learning mech-
anism that stands in contrast to hippocampal learning mechanisms
and takes the form of slow, associative, error-driven learning. The
procedural memory system is merely the set of structures that can
be characterized as operating via this procedural learning mecha-

nism. Clearly, there are a host of differences in the morphology of
different nonhippocampal structures, but, ex hypothesi, these
structures can nevertheless be usefully characterized as operating
according to a common learning principle. It is worth noting,
furthermore, that our assumption of an error-driven learning pro-
cess is consistent with the widely adopted Rescorla-Wagner model
of conditioning (Rescorla & Wagner, 1972). Variants of this basic
model have been proposed as accounts of a variety of conditioning
phenomena relying on neural structures including neocortex and
cerebellum (see Bartha & Thompson, 1995, and Schmajuk, 1995
for review). As pointed out by Sutton and Barto (1981), the
learning principle that underlies the Rescorla-Wagner model is
equivalent to the error-driven Widrow-Hoff learning algorithm
(Widrow & Hoff, 1960). Important for present purposes, this
learning algorithm (often called the delta rule; e.g., Rumelhart et
al., 1986), typifies the kind of error-driven learning we assume for
procedural learning. Our assumptions about the nature of proce-
dural learning therefore make contact with well-established tradi-
tions of inquiry.

As a final point, it may be noted that we use the terms proce-
dural learning and procedural memory almost interchangeably.
This is because procedural learning occurs in the connections
between cortical (or other nonhippocampal) representations, and
procedural knowledge or memory inheres in the same connections
and representations. The situation is slightly different for declar-
ative knowledge. Acquiring new declarative knowledge depends
on the hippocampal system. Eventually, however, this knowledge
will be redistributed to cortical tissue via a process of consolida-
tion (provided that the hippocampal system is intact), and this
knowledge will then reside in cortical tissue in the form of con-
nections between cortical representations (Cohen & Eichenbaum,
1993; McClelland et al., 1995). Thus, at any point in time, older
declarative memories will be less dependent on the hippocampal
system (because they will have been consolidated into neocortex to
a greater extent), whereas more recently formed declarative mem-
ories will be more dependent on the hippocampal system. Thus the
key mechanisms of declarative learning reside in the hippocampal
system, but declarative memory or knowledge is distributed across
the hippocampal system and cortex.

To return to the preceding discussion, performance of a given
cognitive task may invoke either or both of the procedural and
declarative learning mechanisms. Different tasks will require dif-
ferent relative contributions from these two mechanisms. Some
tasks (such as explicitly recalling whether a given word was on a
previously viewed list) depend crucially on the mechanisms of
declarative learning and memory. Other cognitive tasks (such as
comprehending language) do not appear to depend crucially on
declarative learning and thus appear to be more procedural in
nature (although aspects of language acquisition are likely to have
a strong reliance on declarative learning, a point to which we will
return).

Let us relate this to the idea that there is a particular configu-
ration of processors that underlies performance of any given cog-
nitive task. What it means for a task to rely critically on declarative
learning is that the set of processors that is necessary for perfor-
mance of the task includes structures in the hippocampal system.
Cognitive tasks that are used in investigation of implicit memory
in general, and of skill learning and repetition priming in particu-
lar, are tasks that do not depend critically on the hippocampal
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system. This must be the case, because these are tasks on which
patients with hippocampal amnesia demonstrate normal perfor-
mance. Therefore, the processors deployed in these tasks must
consist primarily of neocortical or other nonhippocampal struc-
tures, and the procedural learning that occurs in these tasks occurs
in these nonhippocampal processors.

The issue with which we have been concerned in this article is
whether dissociations observed between skill learning and repeti-
tion priming in this “implicit” class of tasks necessarily implicate
different learning procedures within the underlying processors. We
have attempted to show that such dissociations do not necessitate
the assumption of different learning procedures or mechanisms
within the procedural system. Furthermore, we have shown that
dissociations of the kind observed between skill learning and
repetition priming can be accounted for under the hypothesis that
there is a single procedural learning mechanism in operation.

Therefore, on the one hand, there is in our view a real distinction
between two different kinds of learning mechanisms, which we
term declarative learning and procedural learning, and this view is
supported by a great deal of converging evidence. In this respect,
we would argue there there are indeed multiple (or rather, dual)
memory systems. On the other hand, we would also argue that to
interpret differences in performance between tasks, it is critical to
analyze the processing components that underlie those tasks, and
in this respect we agree with the need for a processing emphasis in
the study of memory. We believe there is an important method-
ological difference between the inferring of a distinction between
procedural and declarative memory mechanisms, which is sup-
ported by evidence independent of behavioral dissociations be-
tween tasks (such as the computational considerations and biolog-
ical evidence reviewed above) and inferring the existence of
memory systems purely on the basis of behavioral dissociations
between tasks (which we, along with Roediger et al. (1999), regard
as unfruitful).

Overall, our approach is consistent with Roediger et al.’s (1999)
formulation of the components of processing view, which empha-
sizes that (a) any particular task depends on a complex configu-
ration of processors, (b) the deployment of different sets of pro-
cessors in different tasks does not in and of itself mean that there
are different memory systems underlying those tasks, and (c)
dissociations between tasks do not in and of themselves mean that
there are different memory systems underlying those tasks. How-
ever, tasks do differ in the extent to which their underlying
configuration of processors depends on procedural or declarative
learning mechanisms.

The processing framework we outline in this article thus bears
on the debate between multiple systems and processing systems
approaches to memory and contributes toward resolution of that
debate. In so doing, it is in closer agreement with the “components
of processing” approach championed by Moscovitch and col-
leagues and Roediger and colleagues than might previously have
been apparent. In recent years, other authors have also outlined
somewhat similar views (Blaxton, 1995; Gabrieli, 1995; Jacoby &
Kelley, 1992; Kirsner, 1998).

Procedural memory, declarative memory, and language. Ac-
cording to a view of language learning that has been increasingly
adopted in recent years, many aspects of language learning can be
understood as proceeding via the gradual, experience-driven ad-
justment of connection weights between levels of distributed rep-

resentation. This view has been applied to aspects of language as
varied as sentence comprehension (McClelland, St. John, & Tara-
ban, 1989), inflectional morphology (Gupta & MacWhinney,
1992; Hoeffner, 1992; MacWhinney & Leinbach, 1991; Rumelhart
& McClelland, 1987), phonology (Dell, Juliano, & Govindjee,
1993; Gupta & Touretzky, 1994), and reading (Plaut, McClelland,
Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989).
This is, of course, the view of learning and cognitive processing
embodied in the PDP framework (McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986). It is also, however, the view of
procedural learning that we have outlined here. In fact, we have
hypothesized elsewhere (Gupta & Dell, 1999) that those aspects of
language learning that can be characterized as gradual, experience-
driven tuning are in fact forms of procedural memory, a suggestion
that has also been made by a number of other researchers (e.g.,
Cleeremans, 1993; Reber, 1993). This suggestion extends the
domain of procedural memory to encompass many of the system-
atic aspects of language learning.

Let us consider a specific example of how ideas about skill
learning and repetition priming are applicable to language. We
start by noting that a well-known model of errors in speech
production (Dell et al., 1993) incorporates essentially the same
computational architecture that we have used in our model of the
digit-entering task. Like the present model, the Dell et al. (1993)
model takes as its input a static representation of an entire se-
quence (in that model, a word) and produces as its output the
elements of the sequence (in that model, phonemes). That is, the
model “spells out” its input as a sequential output, just as in our
model of the digit-entering task. The model uses the same learning
algorithm we use in the present simulations. Thus there is a
striking similarity between our formulation of the mechanism
underlying skill learning and repetition priming in a digit-entering
task and Dell et al.’s (1993) formulation of learning to produce
speech sounds.

Furthermore, although Dell et al. (1993) did not focus on this,
we can consider the effects of practice on such a model of speech
errors. Let us suppose that the model is exposed to a number of
word forms in each period of time. In each period of time (such as
a day), some of these word forms are ones that have previously
been encountered, and some of the word forms are novel, as
depicted in Figure 17a. Let us further suppose that the model’s task
is simply to spell out each input word form representation as a
sequence of output phonemes or phonological features. How might
the system’s basic ability to perform this task develop? Figure 17b
shows the pattern of results that we might expect. The ability to
spell out familiar forms would improve greatly, as a result of
multiple exposures to these forms; this is depicted by the lower
curve in Figure 17b. Additionally, we would expect cumulative
practice to result in generalized performance improvement, as a
result of continual adjustment of connection weights in the system.
That is, we would expect the model to become more effective at
the process of spelling out word forms in general, irrespective of
whether they were familiar. This is shown in the upper curve in
Figure 17b.

It should be clear that these effects of repetition on novel and
familiar stimuli are precisely those that are studied under the
general heading of “skill learning” and “repetition priming” in
implicit memory research, as emphasized in Figure 17c and 17d.
Our framework thus suggests that the phenomena of skill learning

437SKILL, REPETITION PRIMING, AND PROCEDURAL MEMORY



and repetition priming are highly relevant to understanding lan-
guage processing and learning. In fact, we can go further than this.
The preceding discussion indicates that skill learning in the lan-
guage production task is manifested as improved ability to pro-
nounce nonwords (i.e., novel word forms), whereas repetition
priming is manifested in improved knowledge of known words. In
the study of language, these effects are often viewed as separate
phenomena—the learning of phonological rules versus the learn-
ing of a lexicon. But to the extent that these are merely skill
learning and repetition priming effects within a single speech
production system, and given the arguments we have advanced in
this article about the mechanisms that underlie skill learning and
repetition priming, it can be seen that the linguistic distinction
between the “lexicon” and “phonological rules” may be less clear-
cut than is often supposed.

As another example of the applicability of ideas about proce-
dural memory to language processing, we can consider the phe-
nomenon known as structural priming, which refers to the ten-
dency for speakers to repeat syntactic structures in successive
utterances (e.g., Bock, 1986; Levelt & Kelter, 1982). The phenom-
enon can be demonstrated in experiments in which participants are
presented with a mixture of pictures and auditory sentences and are
required to repeat each sentence and to describe each picture. If the
auditorily presented sentences incorporate a particular syntactic
structure (such as the passive construction), then participants be-
come biased to use that structure in their description of the pictures
(Bock, 1986; Bock & Loebell, 1990; Bock, Loebell, & Morey,
1992). It has been specifically proposed that structural priming is
a form of implicit learning (Bock et al., 1992; Chang, Griffin, Dell,
& Bock, 1997; Dell, Chang, & Griffin, 1999). Furthermore, the

Figure 17. Comparison of expected developmental course of repetition of word forms with skill learning and
repetition priming. (a) Hypothetical regimen of environmental exposure to word forms. (b) Expected schedule
of development. (c) Regimen of experimental practice in a typical implicit memory multiple-repetition paradigm.
(d) Measures of interest in such a paradigm.
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viability of such a view has been demonstrated in the form of a
computational model in which connection weights are adjusted
slightly each time a sentence is presented to the model. This
incremental tuning process (identical to our view of procedural
learning) leads to structural priming in the model (Chang et al.,
1997; Dell et al., 1999). The view of procedural learning that we
have outlined here thus has relevance to the linguistic domain of
syntactic processing as well.

The theoretical framework within which we view procedural
and declarative memory also has further implications for aspects of
lexical learning. In particular, consideration of the processes that
are involved in learning a novel word suggests that learning a new
word has two components, and that these components rely differ-
entially on procedural and declarative memory (see Gupta & Dell,
1999, for more detailed discussion). To see this, note that the
mappings between sequences of sounds and the internal phono-
logical representation of a word form are systematic mappings, in
that similar sequences of input phonemes map onto similar internal
word form representations, and similar internal word form repre-
sentations map onto similar sequences of output phonemes. How-
ever, the mapping between word forms and meanings is arbitrary,
in that similar internal word form representations are not guaran-
teed to map onto similar meanings. The import of these observa-
tions becomes clearer when we consider that learning a new word
can in general be a fast process, occurring within just one or two
exposures (Carey, 1978; Dollaghan, 1985). This implies that both
the arbitrary semantics and the systematic phonology of a novel
word can be learned very rapidly. As noted earlier, the rapid
learning of arbitrary mappings is precisely the function that is
ascribed to declarative memory (Cohen & Eichenbaum, 1993;
McClelland et al., 1995). We therefore might expect that learning
the meanings of new words relies heavily on declarative memory,
but that procedural memory suffices for learning the phonology of
new words. Two predictions follow from this. First, under condi-
tions of impairment in declarative memory, it should be difficult to
learn new word meanings quickly. Second, even if declarative
memory is impaired, it should nevertheless be possible for proce-
dural learning to occur in the input and output phonology trans-
ductions; we might expect such tuning to be manifested in the form
of repetition priming. This, of course, is precisely the pattern of
behavioral results observed in patients with hippocampal amnesia.
Such patients are virtually unable to learn new word meanings
(e.g., Gabrieli, Cohen, & Corkin, 1988; Grossman, 1987) as a
result of their impairment in declarative memory. However, these
same patients exhibit intact repetition priming for both known and
novel words (e.g., Haist, Musen, & Squire, 1991) as a result of
their relatively spared procedural memory. The present view of
procedural and declarative memory may therefore offer some
insight into aspects of language learning: It suggests that the
apparently unitary process of learning a new word is in fact based
on two quite different forms of memory and learning.

Skill Learning and Repetition Priming:
Constructs or Labels?

In our discussion throughout this article, we have been con-
cerned with analyzing relationships between the standard measures
of skill learning and repetition priming. We have attempted to
show that observed dissociations between these measures do not

constitute evidence that there are different underlying processes.
Now we wish to offer a more radical view, which has three parts
and a conclusion. The three parts of the view are as follows. (a)
There are no canonical or “right” measures of either skill learning
or repetition priming. (b) Underlying the effects that are measured
as skill learning or repetition priming, there is only a single factor:
the facilitatory effect of repetition of various aspects of stimuli on
task performance. This facilitation has its effects at every level at
which there is repetition. (c) Skill learning is just a form of
repetition effect.

The conclusion is that “skill learning” and “repetition priming”
are best viewed as terminological labels rather than as psycholog-
ical constructs.

Let us begin by considering a digit-entering task in which
participants are presented with a variety of different types of
stimuli (five-digit strings) in each block. In particular, let us
consider the types of stimuli that are summarized in Table 5 and
assume that each block of the digit-entering task consists of
presentation of an equal number of each of these types of stimulus.

Type A stimuli (see Table 5) are five-digit strings that do not
repeat within or across blocks, and in which the two-digit transi-
tions are random, both within and across blocks. These might be
labeled “Random Unique” stimuli. Type B stimuli are five-digit
strings that do not repeat within or across blocks, and which
incorporate a fixed set of two-digit transitions within a block,
which remains constant across blocks. These correspond to the
“rule-following unique” stimuli of Poldrack et al. (1999, Experi-
ment 1). Type C stimuli are five-digit strings that repeat across
blocks, but which incorporate random two-digit transitions. These
might be labeled “random repeating” stimuli. Type D stimuli are
five-digit strings that repeat across blocks, and which incorporate
a fixed set of two-digit transitions within a block, which remains
constant across blocks; let us further assume that the particular
two-digit transitions they incorporate are the same as those incor-
porated in the Type B stimuli. Type D stimuli also correspond to
the “rule-following repeating” stimuli of Poldrack et al.

Let us now consider participants’ (or the model’s) performance
on Type A stimuli (the random unique stimuli), over several blocks
of performance in the digit-entering task. We would expect facil-
itation in performance on Type A stimuli, as depicted in Figure 18.
Such facilitation would in an important sense be a repetition effect:

Table 5
Some Possible Types of Stimuli Presented in Each Block in a
Digit-Entering Task

Type Stimulus characteristics Description

A Nonrepeating five-digit transitions,
randomly varying two-digit transitions

Random unique

B Nonrepeating five-digit transitions, two-
digit transitions that are systematic
within a block, consistent across blocks

Rule-following
unique

C Repeating five-digit transitions,
randomly varying two-digit transitions

Random repeating

D Repeating five-digit transitions, two-
digit transitions that are systematic
within a block (and same as
transitions in Type B stimuli),
consistent across blocks

Rule-following
repeating
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Each time the system is exposed to a five-digit representation
containing the digit 3 and in response executes a keystroke for the
digit 3, it becomes more practiced in making this mapping, and this
is a repetition effect. Next consider performance on the Type B
stimuli (the rule-following unique stimuli). Compared with the
repetition of individual digits in Type A stimuli, the Type B stimuli
incorporate repetition at a second level as well: There is systematic
repetition of first-order transitions (i.e., two-digit transitions), both
within blocks and across blocks. (Note that repetition of individual
digits, as in Type A stimuli and all other stimuli, can be thought of
as repetition of zero-order transitions between digits.) As a result
of such repetition, the processing system would become practiced
on the specific two-digit transitions in the Type B stimuli. We
would therefore expect performance on Type B stimuli to be better
than on Type A stimuli, as depicted in Figure 18. Next considering
performance on Type C stimuli (random repeating stimuli), we
would expect, as shown in Figure 18, that performance would be
better than on Types A and B. This is because these stimuli
incorporate repeating fourth-order digit transitions (i.e., entire five-
digit transitions are repeated), and this greater degree of repetition
should facilitate processing of Type C stimuli relative to the Type
A and B stimuli. Finally, performance on Type D stimuli (rule-
following repeating stimuli) should be best of all, because these
stimuli incorporate repeating zero-order, first-order, and fourth-
order transitions.

The question now arises of what is to be considered “skill
learning.” One proposal, illustrated in Figure 18, might be to use
the term skill learning to refer to the facilitation in performance on
Type A stimuli, because these have the smallest repetition com-
ponent. However, as we have just argued, the facilitation in per-
formance on these stimuli is no less a repetition effect than is
facilitation in performance on any of the other types of stimuli. To
see this point more clearly, let us imagine a transformation of the
digit-entering task, called the artificial character-entering task. In
this task, the stimuli are five-character strings composed of char-
acters chosen from an artificial alphabet of 200 characters that are
unfamilar to the participant. The computer system has been ap-

propriately modified so that the screen can display these charac-
ters, and the keys on the keyboard are labeled with these charac-
ters. The participant’s task is simply to type on the keyboard each
five-character string that appears on the display, just as in the
digit-entering task.

Now let us suppose that (unknown to the participant) we des-
ignate nine randomly chosen characters of this alphabet to be
“digits.” Four sets of stimuli that correspond to Types A–D above
are constructed using only these nine characters. If we conducted
the artificial character-entering task with these four kinds of stim-
uli in each block, we would expect the relative patterns of partic-
ipants’ performance on these types of stimuli to be very similar to
the relative patterns of performance described above for the digit-
entering task (although absolute levels of performance would
undoubtedly be lower). Skill learning would be measured as im-
provement in performance on Type A stimuli, as proposed for the
digit-entering task.

Let us now add a fifth kind of stimulus to the mix. These stimuli
are made up of the “nondigit” characters. Furthermore, in these
stimuli, no character ever repeats, that is, each of these “nondigit”
characters appears exactly once throughout the experiment. Let us
call these Type A� stimuli. We would certainly expect performance
to be worse on Type A� stimuli than on Type A stimuli, so the
curve for Type A� stimuli would lie above that for Type A stimuli.
Arguably, facilitation on Type A� stimuli is now the better measure
of skill learning than is facilitation on Type A stimuli, because the
Type A� stimuli incorporate even less repetition than the Type A
stimuli. But this highlights the fact that there is repetition in the
Type A stimuli and emphasizes that what is called “skill learning”
is itself a repetition effect—in this case, the repetition of specific
digits (real or artificial). The drawing of a sharp distinction be-
tween skill learning and repetition priming is therefore somewhat
arbitrary. Moreover, there is not necessarily a canonical best
measure of skill learning—it might always be possible to find
some other stimulus type that contains even less repetition at some
level of stimulus structure or processing in the task.

Similar considerations apply to the designation of any one
particular measure as “repetition priming.” Returning to the digit-
entering task and Figure 18, one proposal might be to view the
difference between performance on Type A and Type D stimuli as
the appropriate measure of repetition priming because this differ-
ence reflects the maximum effect of repetition. This raises the
question, however, of what to call the many other differences. To
take just one example, the difference in performance between Type
B and Type D stimuli is clearly due to the fact that there is greater
repetition in the Type D than in the Type B stimuli. Is this
difference to be viewed as something other than repetition prim-
ing? The same question applies to the difference between every
pair of curves depicted in Figure 18. It might be argued that even
if the difference between performance on Type A and Type D
stimuli is not the only measure of repetition priming, it neverthe-
less remains in some sense the canonical or best measure of
repetition priming. To examine this idea, let us consider an addi-
tional type of stimulus (Type D�), in which not only do the
five-digit transitions and two-digit transitions repeat, but so do
three-digit transitions. We can expect that performance on these
stimuli would be better than on Type D stimuli. But if so, the
canonical measure of repetition priming would now be the differ-
ence between performance on Type A and Type D� stimuli. There

Figure 18. Pattern of performance that is expected on various types of
stimuli in a digit-entering task.
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appears to be no absolute measure of repetition priming that is
“truly” the best.

We suggest that a more appropriate way to think about all of
these effects is that they all reflect the effects of repetition at
various levels of stimulus structure. The effect of repetition at the
least repetitive of the levels that is measured in a given task is what
might be labeled “skill learning.” However, it is really no different
from any other repetition effect. Also, among the various levels of
stimulus structure at which the effects of repetition are measured,
there is no particular pair that is uniquely qualified to be thought
of as indexing real “repetition priming.” The label can perhaps be
applied to the difference between those two levels that exhibit the
greatest and least degree of repetition. However, in reality, there is
a multiplicity of repetition effects. Note also that these various
repetition effects may each be distributed across a variety of
processors, as discussed in the Multiple Levels of Skill Learning
and Repetition Priming subsection. The effect of repetition at the
level of two-digit stimulus structure, for example, may have a
processing locus that is distributed across multiple transducers
(i.e., levels of processing) and is not necessarily confined to one
particular transducer. In sum, “skill learning” and “repetition prim-
ing” are merely labels that are applied to somewhat arbitrarily
selected levels of repetition effect, as we have pointed out in
previous work (Cohen & Eichenbaum, 1993; Cohen, Poldrack, &
Eichenbaum, 1997).

Conclusions

As we have discussed in this article, the relationship between the
phenomena of skill learning and repetition priming has been the
subject of considerable debate, with some reports suggesting that
they arise from a single mechanism (Cohen & Squire, 1980;
Kirsner & Speelman, 1993; Logan, 1990) and other reports sug-
gesting that they arise from different mechanisms (Kirsner &
Speelman, 1996; Schwartz & Hashtroudi, 1991). We believe that
this article makes a strong case that skill learning and repetition
priming are manifestations of a single underlying procedural mem-
ory mechanism. We offered a particular characterization of such a
procedural memory mechanism and showed how it can be related
to the debate over memory systems, to the phenomena of skill
acquisition and automaticity, and to aspects of language learning.
At the very least, we believe that the present work helps clarify the
terms of the debate over the relationship between skill learning and
repetition priming. To the extent that our arguments are convinc-
ing, it may also represent a first step toward resolution of that
debate and toward a broader conceptualization of procedural mem-
ory and its relationship to other domains of memory and cognition.
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Appendix

Further Analysis of Previous Results

Schwartz and Hashtroudi (1991), Experiment 2

In their second experiment, Schwartz and Hashtroudi (1991, Experiment
2) examined whether the amount of skill learning in the partial-word
identification task would influence the magnitude of priming in that task.
Some of their participants were given five trials of preexperimental prac-
tice with identification of degraded words (note that Schwartz and Hash-
troudi use the term “trials” to mean blocks), whereas other participants
were given no preexperimental practice in partial-word identification. In
the experiment itself, all participants first underwent a study phase in which
they were given a new list of words to study, in undegraded form. All
participants then underwent a test phase, in which they were required to
perform partial-word identification, with the stimuli consisting of the
studied words as well as new, nonstudied words, all stimuli being in
degraded form. Schwartz and Hashtroudi reasoned that if priming effects
are related to the acquisition of skills and procedures, then priming should
be greater for those participants who had previous exposure to degraded
words (i.e., skilled participants) than for those who did not (i.e., unskilled
participants). Schwartz and Hashtroudi found that the magnitude of prim-
ing did not differ significantly for the two groups of participants and
concluded that priming in partial-word identification is unrelated to the
amount of previous practice in identifying degraded words.

Note that Schwartz and Hashtroudi (1991) used two different paradigms
to study priming in the partial-word identification task. In Experiment 1,
they used the multiple-repetition paradigm that we have examined exten-
sively in this article, in which both repeating and unique items are pre-
sented in each of several blocks (“trials,” in Schwartz and Hashtroudi’s
terminology). In Experiment 2, they used a study–test paradigm, which has
two phases: a study phase, in which stimuli are presented outside the
context of the task in which priming is to be studied; and a test phase, in
which the studied items are presented once, along with nonstudied items,
in the experimental task, in which priming is sought to be examined. Each
of these paradigms has been used extensively in priming studies (examples
of use of the multiple-repetition paradigm include Kirsner & Speelman,
1996; Poldrack et al., 1999, and Schwartz & Hashtroudi, 1991, Experiment
1; examples of use of the study–test paradigm include Church & Schacter,
1994, and Schacter & Church, 1992). It is of some interest to examine the
relationship between these two paradigms, and we will begin our reanalysis
of Schwartz and Hashtroudi’s Experiment 2 results by attempting to relate
the paradigms. Figure A1 redisplays the performance on unique stimuli and
performance on repeating stimuli curves from the partial-word identifica-
tion task in Schwartz and Hashtroudi’s Experiment 1. In addition, the
figure displays the results of Schwartz and Hashtroudi’s Experiment 2. Let
us consider how the two paradigms relate to each other.

The performance of the nonpracticed participants in Experiment 2 (the
study–test paradigm) can be related to Trial 1 performance in Experiment 1
(the multiple-repetition paradigm). In the test phase of Experiment 2,
nonpracticed participants performed the partial-word identification task for
the first time, as did participants in Experiment 1 on Trial 1; these are
corresponding data points in the two tasks. This is corroborated by com-
parison of skill levels: For the Experiment 2 nonpracticed participants,
performance on nonstudied stimuli in the test phase is very similar to the
performance of Experiment 1 participants on novel stimuli in Trial 1. For
this reason, we have plotted the performance of Experiment 2 nonpracticed
participants at the point on the x-axis that corresponds to Trial 1 in
Experiment 1. The performance of the practiced participants in the test
phase in Experiment 2 can also be mapped onto the structure of Experi-
ment 1. The Experiment 2 practiced participants had received five trials of
practice (on nonstudied stimuli) in the partial-word identification task prior
to the study and test phases. At the test phase, therefore, these participants

were at a level of skill that was equivalent to Experiment 1 participants at
Trial 6; these are corresponding data points in the two tasks. This is
corroborated by comparison of skill levels: For the Experiment 2 practiced
participants, performance on nonstudied items is very similar to the per-
formance of Experiment 1 participants on unique stimuli at Trial 6. We
have therefore graphed the results of the Experiment 2 practiced partici-
pants at the point on the x-axis that corresponds to Trial 6 in Experiment 1.
These observations apply not only to the present experiments, but also
establish a correspondence between the structure of multiple-repetition
paradigms and study–test paradigms in general.

It is also worth examining the magnitude of the priming effect, which is
much greater in Experiment 2 than it is in Experiment 1. In general, it is to
be expected that priming in a study–test paradigm will be greater than it is
in Trial 1 of a multiple-repetition paradigm.A1 However, this does not
explain why priming in Experiment 2 is so much greater than even the

A1 To see this, note that in a multiple-repetition paradigm, there is no
difference from the participant’s point of view between unique and repeat-
ing stimuli: In Trial 1, they are all unique stimuli. In the test phase of a
study–test paradigm, however, there is by definition a difference between
studied and nonstudied items, even if participants have had no practice in
the task that they perform in the test phase.

Figure A1. Comparison of partial-word identification task in two different
priming paradigms (Schwartz & Hashtroudi, 1991, Experiments 1 and 2).
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eventual magnitude of priming in Experiment 1 at the end of nine trials. The
reason for this appears to be that the study phase in Experiment 2 exposed
participants to the studied items “in the clear,” whereas in Experiment 1,
participants were only exposed to repeating items in their degraded form.

This bring us, finally, to the crucial question: In Experiment 2, why is
priming for the practiced participants no greater than is priming for the
nonpracticed participants? If skill learning is related to priming, then shouldn’t
the more skilled participants exhibit more priming? The answer to this ques-
tion is in the negative. Let us compare performance on Trial 1 and on Trial 6
in the multiple-repetition paradigm. There are two differences between per-
formance at these two levels. First, participants have had more practice on
unique stimuli at Trial 6 than at Trial 1. Because of this, performance on
unique stimuli is superior at Trial 6 than at Trial 1; that is, there has been an
increase in skill. Second, participants have had more practice on the specific
repeating stimuli at Trial 6 than at Trial 1. Because of this, performance on
these specific repeating stimuli has improved more than generalized perfor-
mance has improved; consequently, repetition priming has increased. Next, let
us consider the difference between the nonpracticed and the practiced partic-
ipants in the test phase of the study–test paradigm. Practiced participants have
had five trials of practice on nonstudied (i.e., unique) stimuli. They are at a
Trial 6 level of performance, with respect to general ability, that is, skill. This
skill level is superior to that of nonpracticed participants, which is in effect at
a Trial 1 level. However, practiced participants have had no more exposure to
the studied stimuli than nonpracticed participants have had. Therefore, there is
no reason why the advantage for studied over nonstudied stimuli should be any
different for the two groups. The crucial point is that practiced participants in
the study–test paradigm have had five more trials of practice (than have the
nonpracticed participants) on the nonstudied stimuli, but not on the studied
stimuli. With respect to studied items, there is no difference between practiced
and nonpracticed participants in the study–test paradigm, unlike the situation
in the multiple-repetition paradigm, where there is a difference between
participants at Trial 6 and at Trial 1, even with respect to the studied (i.e.,
repeating) items.

The expectation that practiced participants should show greater priming
arises from two errors in reasoning. First of all, it fails to take into account
the differences between the study–test and multiple-repetition paradigms.
In a multiple-repetition paradigm, participants receive practice as well as
further exposure to the repeating stimuli on each trial. Thus participants’
practice on the task increases along with the number of times they have
been exposed to the repeating stimuli; extent of practice and number of
repetitions are tightly coupled. In such a paradigm, it will therefore often
be the case that both skill learning and repetition priming increase together
(although this is not a necessary result, as we showed in the Patterns of
Increase and Decrease subsection). In the study–test paradigm, however,
practice and repetition do not increase together. In Experiment 2, the
practice that was given to participants was not accompanied by practice on
to-be-studied items. The effects of practice and of repetition were therefore
decoupled. The expectation that practiced participants in Experiment 2
should have shown greater priming than should nonpracticed participants
thus arises from an erroneous transfer of expectations from a multiple-
repetition paradigm to the study–test paradigm. There is also, however, a
second error in reasoning: the expectation that skill learning and repetition
priming should necessarily increase together in a multiple-repetition par-
adigm is itself mistaken (as we showed in the Patterns of Increase and
Decrease subsection). All possible patterns of increase and decrease in skill
learning and repetition priming are consistent with a single underlying
mechanism, and there is no reason to expect that any particular one of these
patterns must hold. For all of these reasons, the results of Schwartz and
Hashtroudi’s Experiment 2 do not constitute evidence that skill learning
and repetition priming are supported by different mechanisms.

Schwartz and Hashtroudi (1991), Experiment 3

Schwartz and Hashtroudi (1991) also reported a further study aimed at
examining whether skill learning and repetition priming are supported by
the same or different mechanisms. In Experiment 3, they examined
whether word frequency would modulate priming. The rationale was that
participants have greater preexperimentally acquired skill in processing
high-frequency words compared with low-frequency words. If skill learn-
ing and repetition priming are related, then priming should be greater for
the high-frequency words than for the low-frequency words. Experiment 3
used the partial-word identification task in a multiple-repetition paradigm.
Word frequency was manipulated between participants. Schwartz and
Hashtroudi found that skill learning was significantly greater for the
high-frequency words than for the low-frequency words, whereas the
magnitude of repetition priming was unaffected by frequency. They sug-
gested that these differential effects of word frequency indicate that skill
learning and repetition priming are unrelated (p. 1183).

The data from Experiment 3 are redrawn in Figure A2a and A2b for
low-frequency and high-frequency words, respectively. The results indicate
that performance on uniques and performance on repeats is similarly affected
by word frequency. Thus performance on unique stimuli is higher for high-
frequency words than for low-frequency words, and similarly, performance on
repeating stimuli is higher for high-frequency words than for low-frequency
words. Additionally, performance on unique stimuli increases more with
practice for high-frequency words than for low-frequency words (i.e., there is
more skill learning for high-frequency words than for low-frequency words);
and similarly, performance on repeating stimuli increases more with practice
for high-frequency words than for low-frequency words (i.e., there is a greater
benefit of repetition for high-frequency words than for low-frequency words).

As can also be seen in Figure A2, the gap between the performance on
unique stimuli and performance on repeating stimuli curves is very similar for
both high- and low-frequency words; that is, repetition priming is similar. This
can also be seen from the fact that the repetition priming functions do not
appear to differ systematically for the high-frequency and low-frequency
words. As a result, the derived repetition priming and skill learning measures
show a dissociation: Skill learning is greater for high-frequency words than for
low-frequency words, whereas repetition priming is the same for high- and
low-frequency words. In light of our analyses, we can see that this is an
artifactual result. It follows from the definitions of the skill learning and
repetition priming measures. The results of Schwartz and Hashtroudi’s Exper-
iment 3 therefore do not constitute evidence for the unrelatedness of processing
underlying skill learning and repetition priming. Here, once again, as in other
cases we have discussed, a clearer understanding of the pattern of results can
be achieved by taking into account the performance on unique stimuli and
performance on repeating stimuli curves. When these measures are incorpo-
rated into the analysis, it becomes clear that word frequency has almost
identical effects on the processing of unique and repeating stimuli in the
partial-word identification task. What the results of Experiment 3 suggest, in
fact, is that the processing of unique and repeating stimuli is highly related.

McAndrews and Moscovitch (1990), Experiment 4

Let us also consider results reported by McAndrews and Moscovitch
(1990, Experiment 4), who examined participants’ anagram-solving abil-
ity. In the “study” or “training” phase in that experiment, participants were
given 60 five-letter anagrams to solve. All of these anagrams incorporated
a specific reordering pattern such that if the original word was composed
of letters in the order “12345”, the corresponding anagram consisted of
letters in the order “51324”. Over the course of training on these 60
anagrams, participants showed steady improvement (with solution time
following a decreasing power function), which suggested that they were
learning the skill of solving anagrams that followed this ordering pattern.
One week after the training session, the same participants underwent the
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“test” phase of the experiment, in which they were presented with a further 100 five-letter anagrams. These 100 anagrams
consisted of four sets of 25 anagrams each. In one set (which we will term the rule-following repeats), the anagrams were
identical to 25 of the anagrams presented during training. In a second set (which we will term the non-rule-following
repeats), the stimuli were anagrams of 25 of the same words presented at study, but were derived using a different reordering
scheme. A third set of 25 anagrams (which we will term the rule-following uniques) were novel and incorporated the same
“51324” reordering rule as in the training stimuli. The fourth set of 25 anagrams (which we will term the non-rule-following
uniques) consisted of novel anagrams that incorporated a different reordering scheme from that used in the training stimuli.

The test phase thus used a 2 	 2 factorial design, with the two factors being Presentation (whether or not the anagram was a
repetition, as compared with the training phase) and Rule Status (whether or not the anagram followed the same reordering rule
as in the training phase). McAndrews and Moscovitch found that although there was a main effect of both Presentation and Rule
Status, there was no significant interaction. Thus, both the application of a previously learned implicit rule (i.e., the learning of
a skill) and previous experience with a specific anagram (i.e., the effect of repetition) facilitated performance, and the effects of
these two sources of facilitation were additive and independent. The authors took this lack of interaction to be inconsistent with
the view that skill learning and repetition priming are supported by the same procedural memory system (p. 784).

Our analytical framework makes it possible to see that such statistical independence is not very informative as to the
underlying processing. Let us suppose that participants were trained on each of these kinds of stimuli for several blocks of
practice. Figure A3a illustrates four performance functions of the kind that we might expect for the four categories of stimuli
that were presented in the test phase of McAndrews and Moscovitch’s Experiment 4. With practice, we would expect
response times to (perhaps) decrease somewhat for non-rule-following unique anagrams, to decrease somewhat more for
rule-following unique anagrams, decrease still more for non-rule-following repeat anagrams, and to decrease the most for
the rule-following repeat anagrams. The general shape assumed for these functions is consistent with the results reported
by McAndrews and Moscovitch from the experiment’s training phase (in which performance on rule-following repeat
anagrams followed the power law of practice).

From our discussion throughout this article, and particularly from our presentation of simulation results and from our
discussion in the Skill Learning and Repetition Priming: Constructs or Labels? subsection, it should be clear that a family
of four performance functions of this kind is quite consistent with the operation of a single underlying learning mechanism.
Now, the data points reported by McAndrews and Moscovitch can be seen as representing four points, one on each of these
functions. In Figure A3a, we have labeled these points NRU (non-rule unique), RU (rule unique), NRR (non-rule repeat),

Figure A2. Results from Schwartz and Hashtroudi (1991, Experiment 3). (a) Low-frequency words. (b)
High-frequency words.
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Figure A3. Analysis of results from McAndrews and Moscovitch (1990, Experiment 4). (a) Performance
functions expected for various kinds of stimuli used at test. (b) Results for the four data points for unaware
participants (redrawn from McAndrews & Moscovitch, 1990, Table 9). NRU � non-rule-following unique;
RU � rule-following unique; NRR � non-rule-following repeat; RR � rule-following repeat.
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and RR (rule repeat). In Figure A3b, we plot the mean values reported by McAndrews and Moscovitch for each of these
points. (These are data for participants who were unaware of the implicit anagram-ordering rule.)

McAndrews and Moscovitch’s key finding was that there was no interaction between the rule and repetition effects, and
they interpreted this as indicating a lack of commonality in underlying mechanisms. However, when we situate the four data
points against the framework of our analysis, as in Figure A3b, it becomes clear that what we are trying to interpret is the
relative magnitude of the differences between two pairs of performance functions at a particular point in practice. The lack
of interaction in Figure A3b is in effect a finding that the separation between the rule-following unique and non-rule-
following unique functions was not statistically different from the separation between the rule-following repeating and
non-rule-following repeating functions at the level of practice at which participants were examined. Although there might
not have been an interaction at that particular level of practice, there almost certainly would be an interaction at some other
level of practice, given that the performance functions are power functions, as indicated by McAndrews and Moscovitch’s
own data. This can be seen by considering the points labeled NRU�, RU�, NRR�, and RR� on the same performance curves.
Thus, success or failure to find statistical differences at arbitrarily selected levels of practice says little about the underlying
mechanisms that generate the functions. Here again, our theoretical framework helps clarify that these empirical results do
not directly bear on the question of underlying mechanism.
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