Infants are sensitive to within-category variation in speech perception

Bob McMurray
and
Richard N. Aslin

Dept. of Brain and Cognitive Sciences
University of Rochester
Rochester, NY 14627

Corresponding Author:
Bob McMurray
Dept. of Psychology
E11 Seashore Hall
University of Iowa
Iowa City, IA 52242
319-335-2408 (voice)
319-335-0191 (fax)
Bob-mcmurray@uiowa.edu

1 Author is now in the Department of Psychology, University of Iowa
Abstract

Previous research on speech perception in both adults and infants has supported the view that consonants are perceived categorically; that is, listeners are relatively insensitive to variation below the level of the phoneme. More recent work, on the other hand, has shown adults to be systematically sensitive to within category variation (McMurray, Tanenhaus & Aslin, 2002). Additionally, recent evidence suggests that infants are capable of using within-category variation to segment speech and to learn phonetic categories. Here we report two studies of 8-month-old infants, using the head-turn preference procedure, that examine more directly infants’ sensitivity to within-category variation. Infants were exposed to 80 repetitions of words beginning with either /b/ or /p/. After exposure, listening times to tokens of the same category with small variations in VOT were significantly different than to both the originally exposed tokens and to the cross–category-boundary competitors. Thus infants, like adults, show systematic sensitivity to fine-grained, within-category detail in speech perception.

Keywords: Speech Perception, Infancy, Categorical Perception
Infants are sensitive to within-category variation in speech perception

For over half a century, a major focus of research on speech perception has been the mapping of continuous perceptual detail onto discrete categories. Early work on this mapping in adults suggested that consonants are perceived only in terms of language-relevant phoneme categories—variation below the level of the phoneme (i.e., subphonemic variation) is discarded and inaccessible to higher level processing. In particular, findings of categorical perception (Liberman, Harris, Hoffman & Griffith, 1957) motivated the view that the analysis of speech is best described as an autonomous pattern recognition process that simply transforms acoustic input into symbolic output. This view received significant support when Eimas, Siqueland, Jusczyk and Vigorito (1971) discovered that infants as young as two months displayed a pattern of discrimination consistent with categorical perception.

A sizeable body of work with adults, however, has not supported this strong version of categorical perception (Carney, Widin, and Viemeister, 1977; Miller, 1997; Pisoni & Lazarus, 1974; Pisoni & Tash, 1974; see McMurray, Aslin, Tanenhaus, Spivey & Subik, in preparation, for a review). More importantly, a number of studies have recently demonstrated that not only are within-category variants discriminable, but that these fine-grained distinctions are retained and affect lexical processes (Dahan, Magnuson, Tanenhaus & Hogan, 2001; McMurray, Tanenhaus & Aslin, 2002; Gow, McMurray & Tanenhaus, 2003; McMurray et al, in preparation). These studies suggest that subphonemic variation, rather than being treated as noise due to coarticulatory, talker and speaking rate variability, can actually be used during word recognition to take advantage of regularities in the speech signal.

Despite this emerging consensus with respect to adult speech perception, there has been no significant parallel challenge to findings of infant categorical perception—in fact, virtually all
relevant studies have reported categorical perception (Eimas et al, 1971; Eimas, 1974; Aslin, Pisoni, Hennessy & Perey, 1981; see Jusczyk, 1997, for an overview; and Miller & Eimas, 1996, for an exception discussed below). Yet there are important reasons why analogous sensitivities to within-category detail could augment word recognition and word learning in infants. First, sensitivity to within-category detail may play an important role in learning the phonological categories of the infant’s native language. Maye, Werker and Gerken (2002), for example, have shown that infants’ speech categories can be modified by the distribution of exemplars during a brief period of passive exposure. Infants exposed to a bimodal distribution of tokens on a da/ta continuum showed discrimination performance consistent with two categories, while infants exposed to a unimodal distribution appeared to have only one category. This evidence suggests that infants may extract categories, in part, from the distributional statistics in the input by implicitly building a frequency histogram along one or more acoustic/phonetic dimensions. For this model to work, infants must detect precisely where individual tokens lie along each dimension. While this approach has since become an important account of speech-category learning (see also Guenther & Gjaja, 1996; Pierrehumbert, 2004), no research to date has explicitly demonstrated the within-category sensitivity that it requires.

Second, sensitivity to within-category detail may be involved in learning phonological regularities of the language. Such regularities, like English coronal place assimilation (Gow, 2001), effects of prosodic strength on consonant articulation (Fougeron & Keating, 1997), coarticulatory coloration of vowels (Clark & Hillenbrand, 2003) and the relationship between voice onset time (VOT) and vowel length (e.g. Kessinger & Blumstein, 1997; Allen & Miller, 1999), take the form of subphonemic signal modifications. While it is clear that adults use these regularities during on-line word recognition to integrate material over time and segment fluent
speech (e.g. Gow & Gordon, 1995; Gow, 2001), their abilities may be augmented by the
lexicon—lexical feedback may implicitly store between-unit regularities (e.g. Magnuson,
McMurray, Tanenhaus & Aslin, 2003; Samuel & Pitt, 2003), and lexical competition may
segment the signal without explicit cues (McClelland & Elman, 1986). However, given infants’
sparse lexicons, this route may not be available, thereby increasing the importance of bottom-up
mechanisms. Indeed, it has been shown that infants are capable of using allophonic differences
between phonemes at word boundaries to segment words from fluent speech (Jusczyk, Hohne &
Bauman, 1999; Hohne & Jusczyk, 1994).

Thus, previous work suggests that subphonemic sensitivity is present in infants, but does
not speak to the organization and representational form of early phonetic categories. A study by
Miller and Eimas (1996) on voicing discrimination in 3-month-old infants, however, provides
some clues. Infants who were habituated to non-prototypical voiceless sounds (VOTs longer or
shorter than the prototypical value) dishabituated to same-category, prototypical variants,
implying within-category discrimination. Infants habituated to prototypical sounds, however, did
not show evidence of discrimination to any tokens. While this study is important in revealing an
overall prototypicality to infant speech categories, it assessed VOT differences that were too
large to be of use in statistical learning (45 and 100 ms). Moreover, the asymmetry of the effects
(no discrimination when habituated to prototypical tokens) makes it difficult to interpret how
such VOT information might be used.

The present study contrasts with Miller and Eimas in three ways. First, we assessed
discrimination after exposure to more prototypical exemplars. Second, much smaller VOT
differences were used. And third, discrimination on both the voiced and voiceless sides of the
category boundary was measured. Thus, the present study examines within-category
discrimination at a much finer grain—at a resolution necessary to support statistical learning of the phonemic category structure and extraction of the phonological regularities of the language.

The present study differs from previous studies of categorical perception in a number of important ways. First, we used the head-turn-preference procedure (HTPP: Jusczyk & Aslin, 1995), a technique that has become a standard method for assessing word recognition during infancy. Although similar to habituation, the HTPP does not utilize as much initial exposure to the stimuli (e.g., 2 min rather than the 10 min or more used in High Amplitude Sucking or Conditioned Headturning). As a result, it is less susceptible to selective adaptation effects that can shift category boundaries (Samuel & Newport, 1977; Sawusch & Jusczyk, 1981).

Second, while many previous studies have employed synthetic stimuli, the present study uses stimuli constructed from natural speech, which is more engaging to infants. Finally, rather than presenting infants with a single token and speech continuum, we used four pairs of words (as in other studies using multiple exemplars of natural speech: see Werker & Tees, 1984). This not only better maintains the infant’s interest, but also introduces slight within-category acoustic variability, encouraging a category-based representation.

Experiment 1

Experiment 1 used the HTPP in a word memory paradigm. After exposure to items from a single category, listening time to novel items within and across category boundaries was assessed. If infants perceive and remember words categorically, their response to the novel, within-category tokens should be equivalent to their response to the originally exposed items. If infants show a graded response to within-category variation, their listening time should be midway between the original familiar items and the novel, cross-category tokens.
Methods

Participants. Ninety-five infants from monolingual English environments between the ages of 6.5 and 9 months (M=8.0 mon; SD=.60) were tested in this experiment. Infants were randomly assigned to one of two exposure conditions: /b/ or /p/, with 35 infants in the /p/ condition and 60 in the /b/ condition. Ten infants were excluded for failing to reach our minimum criterion of 2 sec of listening time to 11 out of the 12 test tokens, leaving 85 infants in the final sample (52 for /b/, 33 for /p/).

Stimuli. Stimuli were taken from four 9-step b/p continua: beach/peach, bear/pear, bale/pail, and bomb/palm (originally created as part of another study: McMurray et al, in preparation). Each token was constructed from natural recordings of both endpoints made by a single male talked sampled at 11025 kHz in a quiet room on a Kay Elemetrics Computerized Speech Lab (model 4300B). For each continuum, seven to ten exemplars of each of the two endpoints were recorded. From these tokens pairs of endpoints were selected that best matched each other on voice quality as well as first and second formant frequencies during the initial portion of the syllable.

Once b/p endpoints were selected for each of the four continua, they were normalized to have equivalent amplitudes (root-mean-square energy). Continua were then constructed using digital-editing software by progressively removing material from the onset of the voiced endpoint and replacing it with approximately the same amount of material from the voiceless endpoint. Care was taken to only cut and splice at zero-crossings of the waveform (to avoid artifactual clicks). For each continuum, 8 splice points were used at approximately 5 ms
increments to create VOT continua ranging from approximately 3 ms (good exemplars of /b/) to 40 ms of VOT (good exemplars of /p/). In addition, 1-3 ms of the release burst of the voiceless tokens was spliced onto the endpoint voiced tokens, so that each continuum step would have a spliced portion.

The stimuli selected from these continua for the present infant study were based on adult identification data (see McMurray et al., in preparation). Category boundaries for each continuum were estimated by fitting logistic functions to these identification data (within-subjects). Means are reported in Table 1 along with VOTs of the tokens selected for the present infant study.

From these 9-step continua, endpoint tokens (B and P) were chosen to be as close to 5 ms and 40 ms (respectively) as possible. Tokens for the intermediate B* and P* conditions were selected to have at least a 5 ms difference in VOT from the endpoints, while maintaining at least 90% “correct” identification by the adult subjects (mean performance in Table 2).

Procedure. For each infant, either the voiced or voiceless endpoints of the four voicing continua were designated as targets, with the opposite endpoint designated the competitors. At the beginning of the experiment, infants were seated on their mother’s lap in a dimly illuminated, sound-attenuated booth and exposed to 20 repetitions of each of the four target words in random order (400 ms inter-stimulus interval) while watching a children’s movie on a small video screen. This 80-word familiarization phase lasted 75 sec.

Immediately after familiarization, the video monitor was extinguished and testing began. On each trial, the infant was presented with repetitions of one of the tokens and listening time was assessed. Test tokens consisted of the same four target items, four novel competitor items, and four novel, within-category tokens (either B* or P*), yielding a total of 12 testing trials.
Each test trial started with a blinking red light immediately in front of the infant that served to center the infant’s attention. When the infant looked at this light (determined by an observer watching the infant on a video monitor), it was extinguished and one of two lights to the left or right began blinking. When the observer indicated that the infant was looking at this side-light, a single auditory item was presented repeatedly until the infant looked away from the light for more than 2 consecutive seconds.

The total time spent listening to each of the 12 stimuli was automatically computed, based on the observer’s responses. Trials in which total listening time was less than 2 seconds were automatically excluded and rerun at the conclusion of the 12 testing trials. If, after these additional trials, the infant did not listen for 2 seconds to at least 11 of the 12 tokens, the infant was excluded from further analysis. Throughout the procedure, the parent listened to music over headphones to prevent them from hearing the stimuli and covertly biasing their infant’s responses.

Results and Discussion

The logic of the HTPP is that the familiarization phase biases stimulus preferences. Unfortunately, preferences are free to vary in two directions, with listening times either longer (or shorter) to test items from the familiarization phase than to novel test items. Although there are a number of hypotheses as to what factors affect the direction of preferences (i.e., novelty or familiarity), no consensus has emerged, and few studies make a priori predictions (Hunter & Ames, 1988; Wagner & Sakovits, 1986; Aslin, 2000; but see Thiessen & Saffran, 2003).

Fortunately, conclusions from the present study rest on an analysis of three test conditions (e.g. B, B*, and P for infants familiarized to B). That is, the question of gradiency
hinges on the relative performance on the B* and P* test items compared to the two endpoints. Thus, we sorted infants into two groups on the basis of their listening times to these endpoint stimuli. Infants who listened longer to the target stimuli presented during familiarization than to the novel competitors were classified as familiarity-preferring (FAM), and those who listened longer to the competitor stimuli were novelty-preferring (NOV). Note that this classification relies only on the target and competitor stimuli (B and P), not on the within-category stimuli (B* and P*). Table 3 reports the number of infants in each exposure condition classified as NOV or FAM.

After each infant was classified, data were analyzed, within each group, with respect to the target and competitor tokens. Recall that our hypothesis is that if infants show a gradient effect, listening times to within-category tokens should differ from both endpoints. A mixed design ANOVA with two factors was conducted separately for each of the two preference groups (NOV and FAM), with the endpoint of the target (B- vs. P-exposure) presented during familiarization as the between-subjects factor. The within-subjects factor was the three types of test trials: for infants exposed to /b/, B was designated Target, B* was Target* and P was the Competitor; for infants exposed to /p/, P was designated Target, P* was Target* and B was the Competitor.

NOV infants (Figure 1, panel A) showed significant differences between Target and Target* (F(1,55)=23.7, p<.001) and between Target* and Competitor (F(1,55)=6.1, p=.017). Neither comparison interacted with the two exposure conditions (T vs. T*: F(1,55)=2.0, p>.1; T* vs. C: F(1,55)=2.7, p>.1). FAM infants (Figure 1, panel B) showed similar results (despite the smaller sample size). Target* differed significantly from both Target (F(1,26)=11.0; p=.003)
and Competitor (F(1,26)=7.3; p=.012). Neither interaction with exposure condition was significant (F’s<1).

A series of planned comparisons was performed to verify within-category sensitivity in each exposure condition. Infants familiarized to /b/ and classified as NOV showed a significant difference between B and B* (t(35)=4.9, p<.0001) but not between B* and P (t(35)=.6; p>.1). Infants who were classified as FAM showed a similar pattern, with a marginally significant difference between B and B* (t(15)=2.0, p=.062) but not between B* and P (t(15)=1.5; p>.1). Infants familiarized to /p/ exhibited much stronger effects. The NOV infants showed differences between P and P* (t(20)=2.5, p=.02) and also between P* and B (t(20)=2.9, p=.009). The FAM infants showed similar effects (P vs P*: t(14)=2.42, p=.03; P* vs. B: t(14)=2.62; p=.02).

To verify that sorting infants did not inflate the likelihood of obtaining gradient effects, a Monte Carlo simulation was conducted. We created a dataset that contained no effect of VOT but which generally matched the mean and variability associated with the experimental data. This simulated dataset consisted of each infant’s mean listening times to the three types of test stimuli (B, B* and P or P, P* and B), but randomly shuffled (i.e., reassigned) to these three conditions. This shuffling disrupted any consistent relationship between VOT and listening time across subjects. As a result, when these shuffled datasets were analyzed using the same sorting procedure and statistical tests as the original data, evidence of gradiency should be extremely weak. If our NOV/FAM sorting procedure itself, rather than true differences in looking time, was the source of our gradient results, then the dominant pattern in this new (random) dataset should be the same—significant differences between B* or P* and the two endpoints. Five hundred random reshufflings (and analyses) revealed that the pattern of gradiency observed in our actual data was very rare in the “null”-datasets, occurring with a probability of .051 for NOV and .047.
for FAM. Thus, our sorting procedure did not yield a greater likelihood of finding reliable
effects than our predetermined alpha of .05.

Experiment 2

Overall, the results of Experiment 1 provided clear evidence for graded sensitivity to
within-category differences. The significant differences between Target and Target*, and
between Target* and Competitor, coupled with the lack of an interaction with VOT, suggest that
gradiency extends to both sides of the category boundary. However, results from planned
comparisons demonstrated that while infants exposed to /p/ showed clear evidence for graded
sensitivity, this sensitivity was attenuated for the infants exposed to /b/. Contrary to the
predicted null-hypothesis, however, it appeared that for these infants, responses to B* were more
similar to P than to B. In a two-alternative-forced choice framework, this pattern would suggest
that the infants in this condition may have a category boundary between B and B* rather than
between B* and P. Although this contrasts with the adult data, we cannot be sure that infants’
category boundaries are at the same location along the VOT continuum. Thus, in Experiment 2
we altered the VOT values of the B and B* tokens to shift them away from the adult category
boundary.

Method

Participants. Sixty-nine infants raised in a monolingual English environment between the
ages of 6.5 and 8.5 months (M=8.15 mos. sd=.49) were tested. None of them participated in
Experiment 1. Ten infants were excluded for failing to reach our criterion of 2 sec of listening
time to 11 of the 12 test tokens, leaving 59 infants in the final sample.
Stimuli. The target B tokens were shifted from a mean VOT of +4.8 ms in Experiment 1 to −9.8 ms in Experiment 2 (although in English, such prevoicing is still robustly judged as exemplars of /b/). The prevoiced tokens were constructed from recordings of the same speaker in Experiment 1 by taking a single voicing-pulse from the onset of a prevoiced exemplar and splicing it to the onset of the original voiced tokens. The B* tokens in Experiment 2 were identical to the B tokens in Experiment 1, with a mean VOT of +4.8 ms. Competitor (P) tokens were the same as in Experiment 1 (VOT = 40 ms).

Procedure. An identical procedure to that used in Experiment 1 was used to assess listening times after familiarization. Infants were exposed to 20 repetitions each of the four prevoiced B words, followed by 12 testing trials with B, B* and P words.

Results and Discussion

As in Experiment 1, infants were classified as NOV or FAM with 25 NOV infants and 34 FAM infants. Infants in the NOV (Figure 2a) group showed significant differences in listening times between B and B* \((t(24)=3.73, p=.001) \) and between B* and P \((t(24)=2.5, p=.02) \). Infants in the FAM group (Figure 2b) showed a similar pattern with significant differences between B and B* \((t(33)=2.5, p=.016) \) and a marginally significant difference between B* and P \((t(33)=2.0, p=.057) \).

These results are consistent with gradient categories for 8-month-old infants, and suggest that the attenuation of the gradiency seen in the voiced stimuli from Experiment 1 may have been due to the fact that the contrasts we chose were located suboptimally with respect to the location
of the voiced category. An alternative view, however, is that by measuring responses to prevoiced stimuli, we tapped a non-native category that had not yet been “lost” (e.g. Aslin, Pisoni, Hennessy, & Perey, 1981). Under this view, our B stimuli activated this prevoiced category, while the B* activated the “native” voiced category. While a strictly categorical version of this explanation would not yield the graded results seen here (since B* and P are equally non-B), category representations with significant overlap (and gradience outside the prototypical range) would yield such results since B would be more confusable with B* than P. This explanation is broadly consistent with gradient categories, but does not require gradations within-categories. However, it does not seem likely, given the small VOT difference tested here (14.5 ms). Moreover, it cannot explain the graded effect found on the voiceless side of the continuum in Experiment 1, since there is no reason to think that VOTs of 30ms and 40ms are in different categories.

General Discussion

The experiments presented here support the hypothesis that infants are sensitive to within-category variation in stop consonants. Our results provide clear evidence for graded representations for both voiced and voiceless speech categories. The attenuation of this effect for voiced consonants in Experiment 1 can be explained in at least two ways. As mentioned earlier, it is possible that the infants categorized the B* stimuli as /p/ which would posit a category boundary somewhere between 4.8 and 11.8 ms. This boundary is quite small and inconsistent with prior work on VOT in infants (e.g. Eimas et al 1971; Aslin et al, 1981).

The alternative explanation rests on the fact that the HTPP is a one-alternative task. Infants in this procedure are not “deciding” whether a stimulus is B or P, but rather whether the
stimulus is B or not-B. Under this view, B* may be sufficiently far from B that it is not a part of that category, while still not being a part of the P category. Infants’ early phonetic categories may reside in dimensional “islands”, with gaps near category boundaries (and possibly at extreme values along a dimension as well) where no category is strongly activated. Such a representation may in fact be adaptive—by withholding judgment at certain regions of the acoustic-phonetic space, the infant may in fact be preserving plasticity until more data are obtained from native-language input. Work in progress is using a two-alternative task, the Anticipatory Eye Movement (AEM) procedure (McMurray & Aslin, in press), to further examine this hypothesis.

We acknowledge that our claim of graded representations, like all other data collected on infant speech perception, is based on between-subject averages. It is possible that the graded sensitivity we see across infants is actually the result of categorical representations within-subjects, (with highly variable category boundaries between subjects). We do not believe this alternative is likely because the medial tokens (B* and P*) were quite far from expected boundaries; this extreme boundary-variability would contrast with prior reports of consistent boundaries during infancy. Moreover, this alternative cannot be ruled out by any current infant methodology (e.g., HTPP, High Amplitude Sucking, Habituation, or Conditioned Head-turning) because none of these methods yields sufficient repeated measurements within individual infants.

The present study bridges several areas of research in speech perception. We have demonstrated that infant voicing categories have graded sensitivity to subphonemic variation. This within-category sensitivity bears on theories of underlying phonological representations in early language acquisition and provides a necessary mechanism for statistical accounts of
phonological learning. These results also link infant abilities with a growing body of work with adults demonstrating sensitivity to and use of within-category detail during word recognition.
Notes

2 Because preliminary results suggested that within-category sensitivity on the voiced side of the continuum would have a smaller effect size, more infants were assigned to that condition. However, this proved to be unnecessary.

3 For more information and examples of these continua, see http://www.bcs.rochester.edu/people/mcmurray/naturalspeechcontinua

4 Note that our sorting procedure guaranteed a main effect and linear trend, so these analyses were not conducted. It did not guarantee our predicted results, that Target* differed from both Target and Competitor. Therefore, these analyses were conducted as a series of planned comparisons within an ANOVA framework.

5 Such gaps may also map to non-native categories, or more likely, their remnants as they are lost through language exposure.
Acknowledgements

The authors would like to thank Julie Markant for recruiting and running the participants in this study, Katherine Crosswhite who provided the tools for amplitude normalization, and Richard Pastore for helpful discussions leading to experiment 2. This study was supported by a NIH predoctoral NRSA (F31DC006537-01) to BM and a NIH research grant (HD-37082) to RNA.
References

Perception & Psychophysics, 58(8), 1157-1167.

Figure 1: Mean listening time to Target, Target* and Competitor as a function of exposure group. Panel A shows a clear gradient effect for infants classified as NOV. Panel B shows the same for infants classified as FAM. Error bars represent standard error of the mean.
Figure 2: Mean listening time to B, B* and P for infants exposed to prevoiced stimuli. Panel A shows a clear gradient effect for infants classified as NOV. Panel B shows the same for infants classified as FAM. Error bars represent standard error of the mean.
Tables

Table 1: Adult category boundaries and voice onset time (VOT) values (in ms) for stimuli used in Experiment 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Boundary</th>
<th>B</th>
<th>B*</th>
<th>P*</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bale</td>
<td>17.6</td>
<td>5.7</td>
<td>15.1</td>
<td>30.8</td>
<td>42.9</td>
</tr>
<tr>
<td>Beach</td>
<td>23.8</td>
<td>4.8</td>
<td>12.2</td>
<td>29.9</td>
<td>41.7</td>
</tr>
<tr>
<td>Bear</td>
<td>23.3</td>
<td>4.6</td>
<td>10.4</td>
<td>30.2</td>
<td>39.4</td>
</tr>
<tr>
<td>Bomb</td>
<td>18.15</td>
<td>4.0</td>
<td>9.7</td>
<td>29.7</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Table 2: Mean proportion correct identification from adults for B, B*, P* and P stimuli used in Experiment 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>B</th>
<th>B*</th>
<th>P*</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bale</td>
<td>0.95</td>
<td>0.91</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>Beach</td>
<td>1.00</td>
<td>1.00</td>
<td>0.90</td>
<td>0.98</td>
</tr>
<tr>
<td>Bear</td>
<td>0.98</td>
<td>0.96</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>Bomb</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 3: Number of infants in each exposure condition who showed a preference for the novel or familiar test tokens.

<table>
<thead>
<tr>
<th>Exposed to:</th>
<th>Novel</th>
<th>Familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>P</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>B- (exp 2)</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>