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Abstract

Patients with visual form agnosia exhibit a profound impairment in shape perception (what an object is) coupled with intact
visuomotor functions (how to act on an object), demonstrating a dissociation between visual perception and action. How can
these patients act on objects that they cannot perceive? Although two explanations of this ‘what–how’ dissociation have been
offered, each explanation has shortcomings. A ‘pathway information’ account of the ‘what–how’ dissociation is presented in this
paper. This account hypothesizes that ‘where’ and ‘how’ tasks require less information than ‘what’ tasks, thereby allowing
‘where/how’ to remain relatively spared in the face of neurological damage. Simulations with a neural network model test the
predictions of the pathway information account. Following damage to an input layer common to the ‘what’ and ‘where/how’
pathways, the model performs object identification more poorly than spatial localization. Thus, the model offers a parsimonious
explanation of differential ‘what–how’ performance in visual form agnosia. The simulation results are discussed in terms of their
implications for visual form agnosia and other neuropsychological syndromes. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A major finding that has influenced vision science
since the early 1980s is the discovery of relatively
separate visual pathways for object identification (what
an object is) and spatial localization (where an object is
located; see Refs. [31,47]). Ungerleider and Mishkin [47]
proposed that object identification is computed by the
ventral pathway from the occipital lobe into the tempo-
ral lobe, and that spatial localization is computed by
the dorsal pathway from the occipital lobe into the
parietal lobe. The evidence for separate ‘what’ and
‘where’ pathways was based originally on lesion studies
in monkeys, and a number of neuroimaging (e.g. Ref.
[46]), neuropsychological (e.g. Ref. [14,17,23]), and
computational investigations (e.g. Ref. [10,24,40]) have
since supported the separation of identity and location
in the primate visual system.

Goodale and coworkers [19–21,29,30], based on neu-
ropsychological studies, have suggested that the appro-
priate division of processing is between visual
perception and visuomotor processing, rather than a
division in identification and localization. Goodale and
Milner thus have proposed a ‘what’ and ‘how’ division
for the primate posterior cerebral cortex as an alterna-
tive to ‘what’ and ‘where.’ This ‘what–how’ division
has been supported by a double dissociation between
visual perception and visuomotor action in neuropsy-
chological patients. The two patient groups that form
this double dissociation are patients with apperceptive
agnosia, or visual form agnosia, and patients with optic
ataxia (see Ref. [21]).

One could argue that the separation of ‘what’ and
‘where’ or ‘how’ information is a basic principle in
vision research. But why are visual perception and
visuomotor control (action) dissociated in neuropsycho-
logical patients? What are the mechanisms that give rise
to the inability of some patients to recognize objects
(visual form agnosia) and the inability of other patients
to act on objects (optic ataxia)? I explore one possible
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mechanism of this ‘what–where/how’ dissociation in
this paper, and I focus primarily on patients with visual
form agnosia.

Patients with visual form agnosia1 are characterized
by an inability to identify objects and to copy visually
presented objects following damage to the posterior
visual cortex (see Ref. [14] for a review). Lissauer [27]
noted that these patients could not form an adequate
visual percept, which prevented object identification. In
most cases, damage results from an anoxic episode, a
lack of oxygen to the brain, often from carbon monox-
ide poisoning (e.g. Refs. [1,2,4,8,9,30]) or from heart
failure (e.g. Ref. [48]). The damage tends to be diffuse,
covering the posterior cortices, particularly the occipital
lobe. In addition to the relative homogeneity in neu-
ropathology, these patients share similar visual object
identification problems, problems that are due to low-
level impairments. One early-level ability that visual
form agnosics have lost is simple shape matching. Mr S,
Efron’s [13] patient, was unable to discriminate two
rectangular shapes that were matched for area, and he
had an inability to distinguish between an X and an O.
Adler’s [1] patient was unable to discriminate between a
circle and a triangle. Campion’s [8] patient, RC, de-
scribed a circle as ‘a lot of dots’ and was unable to
distinguish an ‘M’ from a ‘W.’ The ability to copy
visually presented shapes, which may require a rela-
tively intact shape representation, also appears dis-
rupted in visual form agnosia. (See Refs. [1,2,4] for
published examples of patients’ disrupted copying abili-
ties.) Finally, recent analyses of the visual disturbances
in these patients have implicated damaged preattentive
visual processes, such as perceptual organization and
figure–ground segregation (see Refs. [14,48–50]). Pa-
tients with visual form agnosia do not appear to be able
to use gestalt grouping cues or figure–ground cues to
organize the visual field into meaningful shapes [30,48].
For example, patients DF [30] and JW [48] were unable
to segregate two overlapping line segments based on
gestalt good continuation.

Although patients with visual form agnosia exhibit
impaired visual perception and identification, they seem
to posses intact visuomotor control — for example,
they can reach out and grasp shapes appropriately.
Patient DF [30] could and align her hand appropriately
to place a card in an oriented slot (see Refs. [19,20]),
although she could not perceive form or shape. DF also
could grasp objects at appropriate points with a ‘preci-
sion grip’ [21], and could by accurately grasp objects by
calibrating the aperture between her thumb and

forefinger [19]. Similarly, patient JW, who was unable
to perceive form or to use gestalt grouping cues [48],
could scale the opening of his hand to correspond to the
size of an object for which he was reaching [28]. This
dissociation is puzzling: How can visual form agnosics
act on an object that they cannot perceive?

2. Two explanations of the perception–action
dissociation in visual form agnosia

How can the dissociation between visual perception
and visuomotor control (action) in visual form agnosia
be explained? Answers to this question are important
because they could inform us about the organization of
the primate visual system. The existence of the percep-
tion–action dissociation automatically rules out certain
architectures for the visual system. For example, the
‘what–how’ dissociation rules out a two-stage architec-
ture in which form perception processes provide the sole
input to visuomotor processes; in this architecture,
damage to form processes also would impair visuomo-
tor processes, and this is a result inconsistent with
results from visual form agnosics.

There are two straightforward accounts of the ‘what–
how’ dissociation, both of which stem from insights
based on neuropsychological inference (see Ref. [19] for
a review). In what follows, I critically examine each of
these explanations for the ‘what–how’ dissociation in
visual form agnosia and find weaknesses with each.
Because of the inadequacies with the two standard
accounts, I propose a third explanation of the ‘what–
how’ dissociation observed by Goodale and coworkers.

Both of the standard accounts assume that there are
two cortical visual streams, the ventral stream which
mediates visual perception and the dorsal stream which
mediates visuomotor control. An additional shared as-
sumption of these explanations is that the two cortical
pathways receive shared input from early-level visual
areas in the occipital lobe (see Ref. [19] for a review).
The shared assumptions of these explanations are
shown in the simplified visual architecture shown in Fig.
1.

The first account is the �entral disconnection account,
depicted in Fig. 1A. In this account, visual form agnosia
occurs because of damage along the ventral processing
pathway (the ‘what’ pathway). Because the neural dam-
age in visual form agnosia is diffuse, the circumscribed
lesion depicted in Fig. 1A represents the functional
consequence of brain damage. Damage along the ven-
tral pathway impairs the connection between early-level
vision and shape perception, preventing adequate shape
representation. However, the inputs from early-level
vision to the dorsal action pathway are intact, thus
sparing visuomotor skills (see Refs. [19, p. 190; and 30,
pp. 424–425]).

1 Because ‘apperceptive agnosia’ is used to refer to different patient
groups (contrast Ref. [14] with Ref. [51], for example), I will refer to
the syndrome as ‘visual form agnosia’ to avoid confusion. My use of
visual form agnosia corresponds to Farah’s [14] narrow definition of
apperceptive agnosia.
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Fig. 1. Two possible explanations for the ‘what–how’ dissociation observed in patients with visual form agnosia. (A) The ventral disconnection
account, in which damage occurs along the ventral ‘what’ pathway, sparing processing along the dorsal ‘where–how’ pathway. (B) The spared
input account, in which damage occurs to an input common to both pathways. Undamaged inputs to the dorsal pathway, possibly from the
superior colliculus and pulvinar, spare processing in this pathway.

Although the ventral disconnection account is
straightforward, there are two shortcomings with the
account. The first shortcoming is based empirically: the
ventral disconnection account would have difficulty
explaining some recent data on perceptual organization
in patients with visual form agnosia. Early cortical
visual areas play a role in gestalt perceptual organiza-
tion, including figure–ground organization (for recent
neurophysiological evidence see Refs. [26,39,52]).
Therefore, if early-level vision was intact and provided
inputs to visuomotor processes, early-level visual pro-
cesses such as segregation should also be intact. But
early-level perceptual organization processes are dis-
rupted in visual form agnosics (see Refs. [30,48]). The
second shortcoming of the ventral disconnection ac-
count is based theoretically: this account implicitly
makes the locality assumption [15] in which (1) the
cognitive architecture is modular and (2) brain damage
has local effects (i.e. effects on a module and the
outputs of that module). As Farah [15] has pointed out,
the locality assumption in neuropsychology is unlikely
to be correct, and more biologically plausible ap-
proaches based on neural network models may lead to
a better understanding of normal cognitive processes.

The second account of the dissociation in visual form
agnosia is the spared input account, depicted in Fig. 1B.
Under this account, the primary damage occurs to
early-level visual areas which provide the input to both
pathways. Visuomotor function is preserved because
additional inputs exist to the dorsal system (see Refs.
[19, p. 190;21, p. 605;29]). There is ample evidence that
the superior colliculus projects to parietal lobe visual
areas via the pulvinar, and these preserved inputs may
allow visually guided action to remain intact. There are
at least two shortcomings with this account, however.
First, there are undoubtedly intact subcortical projec-

tions to ventral stream visual areas (e.g. the lateral
geniculate nucleus projects to extrastriate visual areas
that lie within the ventral stream; [11,18,38,44]). Thus, a
simple spared input account also would predict that
ventral processing (i.e. object perception) could be rela-
tively intact. Second, and more important, although
appealing to spared anatomical inputs is entirely rea-
sonable, appealing to such spared inputs does not in-
form visual theorists about the function of these inputs.
Additional information, such as single-unit recording
data that demonstrate the effects of pulvinar or collicu-
lar inputs on the dorsal stream, would strengthen the
spared input account.

In the next section, I propose a third account of the
‘what–how’ dissociation in visual form agnosia. It is
not my intent to rule out the ventral dissociation and
spared input accounts; rather, I intend my account to
provide another means by which dissociated ‘what–
how’ performance could arise from a damaged neural
system. My account is aimed at addressing the short-
comings of the ventral disconnection and spared input
accounts.

3. A third explanation: the ‘pathway information’
account

In my pathway information account, I hypothesize
that a common input to the ventral and dorsal streams
has been damaged, as in the spared input account.
However, unlike the shared input account, I suggest
that differences between perceptual and visuomotor
representations may explain the dissociation observed
in visual form agnosia. The input–output transforma-
tions that occur in the dorsal ‘where’ pathway may be
computationally easier than the input–output transfor-
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mations that occur in the ventral ‘what’ pathway. Fur-
ther, the separability of the input representations may
lead to the difference in the input–output transforma-
tions. Separability refers to the degree to which a set of
patterns’ features overlap with one another; patterns
that share many overlapping features are less separable
than patterns that share fewer features. Object identity
may be less separable than spatial location because an
individual object will share many features with other
objects. For example, handles can appear on many
objects — cups, suitcases, and buckets — which pre-
vent handles from being a unique feature. In contrast,
an individual location will share features with few
locations (only those locations that are nearby). The
consequence of greater separability for representations
of object identity than for spatial location is that object
identity is a more computationally complex task than is
spatial location. The greater separabilty of location
inputs than identity inputs may allow the dorsal ‘where’
pathway to be more resilient to neural damage than the
ventral ‘what’ pathway. Thus, the neurological damage
seen in patients with visual form agnosia may degrade
the inputs to both the ventral and dorsal pathways,
with more detrimental consequences for the ventral
stream than for the dorsal stream because the neural
damage may further reduce the separability of the input
representations.

The pathway information account explains the
‘what–how’ dissociation as follows: the degraded in-
puts along the ‘what’ pathway prevent shape percep-
tion; the same degraded inputs along the ‘where–how’
pathway disrupt but do not prevent localization be-
cause this pathway may operate relatively well in the
face of noisy or limited input. This account predicts
that a lesion to an input shared by both the ‘what’ and
‘where’ pathways would allow ‘what’ and ‘where’ tasks
to be dissociated, precisely the dissociation observed in
some patients with visual form agnosia.

Another consequence of this account is that it may
explain the impaired gestalt organization observed in
visual form agnosics, results that the ventral disconnec-
tion account may not easily explain. Perceptual organi-
zation would be impaired because of the disruption of
early-level cortical visual areas and processes, those
areas involved in perceptual organization and figure–
ground segregation, as noted earlier. However, elemen-
tary visual functions, such as acuity or color
perception, could remain relatively intact in these pa-
tients because these processes may rely on neural struc-
tures that operate before the level of gestalt
organization processes.

Note that the pathway information account goes
beyond a simple ‘performance threshold’ analysis,
which proposes that the object recognition simply is
more difficult than spatial localization. This difference
between recognition and localization may be obscured

in neurologically normal adults because of extensive
practice with both tasks. The important point made by
my pathway information account is that the structure
of the neural representations of each task may differ, a
point that provides a specific reason that identification
may be more difficult than localization. The object
identity task may require a higher-dimensional repre-
sentational space to distinguish objects that are highly
similar compared to the localization task. These repre-
sentational differences may emerge only under large
amounts of neural noise, such as neurological damage
or brief, masked presentations in normal control
subjects.

It is difficult to test the pathway information account
with neuropsychological patients because of the
difficulties associated with measuring the amount of
information required by the ‘what’ and ‘where–how’
processing streams. The plausibility of the pathway
information approach can, however, be examined with
neural network simulations in which the separability of
identity information and location information can be
determined within the network’s simulated environ-
ment. For example, a network could be trained on an
environment that contains more similarity among ob-
jects’ shapes than among spatial positions. This envi-
ronment would place greater demands on the ‘what’
task than on the ‘where’ task. Performance following a
lesion could then be assessed.

In what follows, I present four simulations that test
the idea that the behavior of visual form agnosia results
from differential similarity structure required by the
‘what’ and ‘where–how’ pathways. I used a simple
neural network, originally tested by Rueckl et al. [40],
that learns to correctly identify objects along one path-
way (the ‘what’ pathway) and learns to correctly local-
ize those objects along a second pathway (the
‘where–how’ pathway). In Simulation 1, I ask if the
model exhibits any phenomena that would suggest dif-
ferences between the ‘what’ and ‘where’ pathways. If
such a difference existed, it could provide a computa-
tional mechanism for differential performance between
the two pathways following a lesion. In Simulation 2 I
conduct a lesion analysis with the model to measure the
consequences on the two pathways of lesioning their
shared input. The pathway information account pre-
dicts that a lesion to the shared input of the two
pathways should impair object identification more than
spatial processing. In Simulation 3 I show that equating
the similarity structure of the two pathways abolishes
the post-lesion differences between the two pathways.
Finally, in Simulation 4 I replicate the results of Simu-
lation 2 using a ‘where–how’ task that more closely
approximates the tasks used with neuropsychological
patients. The results of these simulations provide an
‘existence proof’ of the pathway information account,
suggesting that this account should be added to the list
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of possible explanations of the ‘what–how’ dissociation
in visual form agnosia.

4. Simulation 1: exploration of a split-pathway model

For convenience, in the remainder of the paper I
refer to the network’s pathways as the ‘what’ and
‘where’ pathways. As noted in Section 1, Goodale [19]
has argued that the dorsal pathway can be viewed as
having a central role in the control of movements
within visual space. Thus, the dorsal pathway may be
better described as a ‘how’ pathway, responsible for the
coordination of visually guided actions. My use of
‘where’ in place of ‘how’ to describe the dorsal pathway
follows the terminology of Rueckl et al. [40] and is a
term generally applied to the dorsal processing path-
way. I would not disagree that the dorsal pathway is
involved in visuomotor functions, as implied by numer-
ous single-unit recording studies (for reviews see Refs.
[25,42]). The dorsal pathway likely underlies a variety
of visual functions, including spatial attention (e.g.
Refs. [12,37]), metric information about the size of an
object or the center of mass of an object (e.g. Refs.
[6,21]), and information about the orientation of sur-
faces [43]. These visual functions may be used to guide
visuomotor functions (e.g. Ref. [19]).

My goal in Simulation 1 was to determine if the
‘what’ and ‘where’ pathways differ in the necessary
amount of network resources (e.g. units) when a net-
work learns the same number of objects and locations.
If the pathways do differ in their processing require-
ments, then the ‘what–how’ dissociation in visual form
agnosia could be the result of this difference. The
network I used to study visual form agnosia is shown in
Fig. 2. There were five layers in this network, and these

five layers were divided into two pathways with a
shared input to the pathways. The network takes an
object in a location as input. From this input, the
model learns to identify the object irrespective of its
location (the ‘what’ task) and to localize the object
irrespective of its identity (the ‘where’ task).

The operation of the model is similar in spirit to
Goodale and Milner’s [19,29] ‘transformation account,’
in which the ‘what’ and ‘where’ pathways receive the
same input but transform this input differently. The
focus of the transformation account is on the output
systems to which the ‘what’ and ‘where’ pathways
project. The operation of the model described below
can be described in similar terms. Knowing the input to
the model is insufficient for understanding the func-
tional differences between the ‘what’ and ‘where’ path-
ways; one also must know the input-to-output
transformation that is performed by each pathway. As
will be evident from the simulation results, the transfor-
mation along the model’s ‘what’ pathway is more com-
putationally demanding than the transformation along
the model’s ‘where’ pathway.

Because Rueckl et al. [40] did not explore differences
between the ‘what’ and ‘where’ pathways in detail, in
Simulation 1, I investigated two ways in which the
‘what’ and ‘where’ pathways may differ from one an-
other. First, following Rueckl et al. [40], I manipulated
the resources (units) allocated to each of the two path-
ways. This manipulation amounts to changing the
configuration of the network to determine the critical
number of units required to perform each of the two
tasks. Second, I examined the time course of learning
along the two pathways. There is some evidence from
my own preliminary simulations and from Rueckl et
al.’s [40] report that the ‘where’ task may be learned
faster than the ‘what’ task, although both tasks are
learned equally well by the end of training. Both the
resource allocation and the initial learning advantage
for the ‘where’ task over the ‘what’ task could underlie
the relative preservation of function along the ‘where’
pathway observed in visual form agnosia.

4.1. Network architecture

The network architecture is shown in Fig. 2. There
were five different layers of units, beginning with the
Input layer that presented input to both pathways. The
Input layer consisted a 5×4 array. The ‘what’ pathway
contained the What Hidden layer, which contained
units that received input from the Input layer and
projected to the What Output layer. There were a
variable number of units in the What Hidden layer,
depending on the network’s configuration. The What
Output layer contained six units, each of which coded
the identity of one of six different objects.

Fig. 2. The general architecture of the split-pathway neural network
used in the present simulations. See text for the details of each layer
and patterns of connectivity.
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Fig. 3. A representation of the ‘what’ and ‘where’ tasks learned by the
network. (A) The six objects (each appearing in the same location).
(B) The six locations (shown with the same object). (C) Each pathway
receives a 5×4 unit array as input, which contains an object in a
location. The network learns to identify the object irrespective of
where it appears (the ‘what’ task) and to localize the object irrespec-
tive of what it is (the ‘where’ task).

In Simulation 1 I examined the performance of five
network configurations on ‘what’ and ‘where’ tasks.
The configurations consisted of a pool of 14 hidden
units; these 14 units were differentially allocated to the
‘what’ and ‘where’ tasks. The network configurations
are referred to by the number of hidden units in the
‘what’ and ‘where’ pathways, respectively. For example,
in one network configuration, 8 hidden units were
allocated to the ‘what’ pathway and 6 hidden units were
allocated to the ‘where’ pathway; this network architec-
ture formed the 8/6 configuration. The other configura-
tions were 9/5 (i.e. 9 ‘what’ hidden units and 5 ‘where’
hidden units), 10/4, 11/3, and 12/2. All of these network
configurations give more units to the ‘what’ pathway
because, as reported by Rueckl et al. [40], the ‘what’
pathway needs more units to learn as effectively as the
‘where’ pathway. The network configurations I chose
will allow me to equate ‘what’ and ‘where’ perfor-
mance, which would be analogous to comparable iden-
tification and localization in neurologically normal
adults.

4.2. Network training

All network configurations were given the same two
tasks of identifying the object in the input image and
localizing that object to a specific spatial region in the
image. These ‘what’ (or identification) and ‘where’ (or
localization) tasks were performed concurrently. Each
network was trained on 36 images, one for each object/
location pairing. To correctly identify an object, the
network needed to activate the one output unit that
represented that object while simultaneously not acti-
vating (or ‘turning off’) the other five output units. To
correctly localize the object, the network needed to
activate the one output unit that represented that loca-
tion while simultaneously not activating the other five
‘where’ output units.

The networks’ task was to take an image and cor-
rectly produce the identity and location of that object.
Any discrepancy between the output generated by the
network and the correct representation of identity and
location is scored as an error termed the sum of
squared error (SSE). For each of the input patterns, the
difference between the networks’ output and the correct
(‘target’) output was calculated. This difference was
then squared, and these squared differences were
summed across the 36 input patterns, resulting in the
SSE. The SSE was computed separately for the ‘what’
and ‘where’ tasks. The networks were trained with the
backpropagation learning algorithm (also known as the
generalized delta rule; see Ref. [41]). The weights in
each network were randomized initially; the value of
each weight in the network was set by randomly select-
ing from a Gaussian distribution with a mean weight
value of 0 and a standard deviation of 0.5.

The ‘where’ pathway contained the Where Hidden
layer, which received input from the Input layer. The
Where Hidden layer also had a variable number of
units depending on the network’s configuration. The
Where Output layer contained six units, each of which
represented one of six locations in which an object
could appear. The coding scheme of the What Output
and the Where Output layers is shown in Fig. 3. The
network architecture consisted of feedforward projec-
tions only. There was full interconnectivity between two
connected layers (i.e. every unit in one layer projected
to every other unit in the following layer).
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During a training epoch, a network was shown the 36
input patterns individually; for each pattern, the net-
work’s output was then compared with the correct
representation, and the SSE was computed. The net-
works’ weights were adjusted with the backpropagation
algorithm to reduce the SSE (for details see Refs. [3,41])
The parameters used in the present simulations are
standard, and in preliminary simulations I found that
minor changes in these parameters did not alter the
qualitative performance of the networks.

For each of the five network configurations, ten
different networks with different random weight
configurations were trained to ensure that the results
were not due to a specific set of weights. The averages
across the ten networks are presented in the next
section.

4.3. Results and discussion

For the ten networks at each configuration, the SSE
from the last 50 training epochs was averaged together
to minimize random noise in the SSE measure. Bonfer-
roni corrected t tests were used to compare the perfor-
mance of the ‘what’ and ‘where’ tasks to control for
multiple comparisons (one comparison for each of the
five network configurations). The Bonferroni correction
for five tests results in a critical probability of 0.01,
instead of the standard 0.05 level.

Fig. 4 depicts the networks’ performance. Each graph
presents the performance averaged across ten different
weight initializations for each of the hidden unit
configurations. As is evident in the graph, by the end of
training the 8/6 and 9/5 configurations resulted in sig-
nificantly larger ‘what’ SSE compared to ‘where’ SSE,
t(9)=4.13, P�0.005 for the 8/6 configuration and
t(9)=5.69, P�0.0005 for the 9/5 configuration. These
results indicate that the ‘what’ pathway may not have
been allocated sufficient hidden units. There was no
difference between the ‘what’ and ‘where’ SSE for the
10/4 and 11/3 networks, t(9)=1.46, P�0.10 for the
10/4 configuration and t(9)=2.73, P�0.02 for the
11/3 configuration. (Note that there was a trend toward
a significant difference in the 11/3 configuration; this
comparison did not reach statistical significance be-
cause the Bonferroni correction required a P value of
0.01 in order to claim statistical significance.) Finally,
the 12/2 configuration showed significantly larger
‘where’ error than ‘what’ error, t(9)=29.59, P�
0.0001. Two ‘where’ hidden units were insufficient to
perform the localization task, so the 12/2 networks
could not reduce the ‘where’ SSE to fully trained levels
in which the SSE was near zero.

These results replicate those of Rueckl et al. [40] in
that the ‘what’ and ‘where’ error depends on the hidden
unit configuration of the model. Specifically, in the
present simulations either 8 or 9 ‘what’ hidden units

appear to be insufficient for the network to perform the
‘what’ identification task. Although the networks re-
duced the error associated with this task, the ‘what’
error remained significantly larger than the ‘where’
error. The same interpretation holds for the ‘where’
hidden units, in which 2 ‘where’ hidden units are in-
sufficient to perform this task. Networks with only 2
hidden units devoted to the ‘where’ task have signifi-
cantly larger ‘where’ error compared to ‘what’ error.

A striking pattern that emerges from Fig. 4, and
from Rueckl et al.’s [40] results, is that the ‘where’ task
appears to be learned much more rapidly than the
‘what’ task. This pattern emerges even for network
configurations that do not permit low asymptotic learn-
ing for the ‘where’ task, such as the 12/2 configuration
in the present simulations. I investigated this early
training advantage for the ‘where’ task further because
this training difference between the two tasks may
provide a mechanism to explain the dissociation be-
tween ‘what’ and ‘where’ tasks in visual form agnosia.

To examine the apparent early training advantage for
the ‘where’ task, the average SSE was computed for
training epochs 1–40 across all network configurations.
The first 40 epochs were chosen because the majority of
the learning (i.e. reduction in SSE) occurs within these
epochs. Across the first 40 epochs of training, the
‘where’ error is was significantly smaller than the ‘what’
error, t(9)=16.31, P�0.0001, with an average SSE of
20.69 for the ‘what’ task and an average SSE of 9.21 for
the ‘where’ task. This indicates that the ‘where’ path-
way in the model initially learned the localization task
more rapidly than the ‘what’ pathway learned the iden-
tification task. Because three of the network configura-
tions led to less-than-optimal performance for the two
tasks (the 8/6, 9/5, and 12/2 configurations), the same
analysis was performed separately for the 10/4 and 11/3
configurations because these configurations resulted in
comparable performance between the ‘what’ and
‘where’ tasks at the end of training. For the 10/4
networks, the ‘where’ error was significantly smaller
than the ‘what’ error across the first 40 training epochs,
t(9)=29.16, P�0.0001, with an average SSE of 21.01
for the ‘what’ task and an average SSE of 7.03 for the
‘where’ task. Similarly, for the 11/3 networks, the
‘where’ error was significantly smaller than the ‘what’
error in the first 40 training epochs, t(9)=13.36, P�
0.0001, with an average SSE error of 20.14 for the
‘what’ task and an average SSE of 10.1 for the ‘where’
task.

The conclusion that the ‘where’ task was learned
more rapidly than the ‘what’ task was corroborated by
an additional analysis of the 10/4 and 11/3 networks.
Across the first 20 training epochs, a simple regression
was calculated between the epoch number and the SSE
for the two tasks. The first 20 epochs were chosen
because the reduction in SSE was approximately linear



S.P. Vecera / Neuropsychologia 40 (2002) 187–204194

Fig. 4. Learning functions for the five different network configurations tested in Simulation 1. Each panel presents the SSE averaged across ten
networks with different initial weights.

within this range, thus enabling description of these
data with a simple linear regression. The slope of the
regression equation measures the learning rate for each
of the two tasks, with larger negative slopes indicating
faster learning than smaller negative slopes. A separate
regression was computed for each of the ten networks
in both the 10/4 and 11/3 configurations. The slopes of
the ten regression equations were compared between
the ‘what’ and ‘where’ tasks.

For the 10/4 network configuration, the slope from
the regression equation was significantly larger for the
‘where’ task than for the ‘what’ task as indicated by a

Wilcoxon signed rank test, P�0.01 (slope of −0.59
for the ‘what’ task and −1.72 for the ‘where’ task).2

The 11/3 network configuration exhibited similar per-
formance, with significantly larger slopes associated
with the ‘where’ task than with the ‘what’ task, P�
0.01 (slope of −0.622 for the ‘what’ task and −1.487

2 The Wilcoxon signed rank test, a nonparametric statistic, was
used for this comparison because the slopes of regression equations
may not be normally distributed. Indeed, inspection of the ten slopes
from the 10/4 and 11/3 configurations indicated that the slopes were
approximately uniformly distributed, not normally distributed.
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for the ‘where’ task). These results indicate that the
initial learning of the ‘where’ task was faster than the
initial learning of the ‘what’ task.

The differences between the ‘what’ and ‘where’ tasks
in early training can be understood in terms of how
each task influences the learning algorithm and the
update of the weights and the SSE term. The ‘where’
task is, apparently, an easier task computationally than
the ‘what’ task because ‘where’ task is linearly separa-
ble and the ‘what’ task is nonlinearly separable [24].
Linearly separable problems have mathematically sim-
pler input–output contingencies than do nonlinearly
separable problems. Task difficulty provides the basis
for the learning rate differences between the two path-
ways. Because the learning algorithm seeks to minimize
SSE across training epochs, weight changes that pro-
duce larger reductions in error will be made, which
allows early weight changes to reduce the ‘where’ error
more rapidly than the ‘what’ error.

The results of Simulation 1 are important for two
reasons. First, replicating the findings of Rueckl et al.
[40] is important to ensure that the ‘what’ and ‘where’
pathways have sufficient numbers of hidden units to
perform the identification and localization tasks. These
tasks must be performed accurately before lesions of
the model can be tested in Simulation 2. Any differ-
ences between ‘what’ and ‘where’ performance could be
due to the choice of an idiosyncratic network configura-
tion. Demonstrating that ‘what’ and ‘where’ can be
learned to the same degree after 300 training epochs in
an optimal configuration, such as the 10/4 configura-
tion, reduces the role of network configuration as a
trivial explanation of the lesion results. Second, Simula-
tion 1 demonstrated that there is an initial training
advantage for the ‘where’ task over the ‘what’ task.
This result is important because this early ‘where’ ad-
vantage may provide the basis of dissociating identifica-
tion and localization tasks in visual form agnosia.
Importantly, the initial training advantage for the
‘where’ task is observed across all network configura-
tions, including those that allow both ‘what’ and
‘where’ tasks to be learned to similar levels. Because an
optimal network configuration can be chosen based on
the results of Simulation 1, an informed lesion analysis
can be performed.

In Simulation 2, a lesion analysis was performed with
the 10/4 network configuration. This configuration was
chosen because the ten Simulation 1 networks trained
with this configuration showed no difference between
the ‘what’ and ‘where’ error after 300 training epochs
and, therefore, had no biases toward either the ‘what’
or ‘where’ task. The critical insight with this split-path-
way network is that under noisy (i.e. damaged) situa-
tions, the ‘where’ task performance may remain more
stable than the ‘what’ task performance based on the
early-learning differences along the two pathways in the

model. More stable ‘where’ performance than ‘what’
performance would mirror the results from visual form
agnosics, thereby providing a dissociation between
‘what and ‘where’ tasks under damaged conditions.
This hypothesized dissociation was examined in Simula-
tion 2, in which a model was ‘lesioned’ by adding noise
to the activations of the units in the input layer. This
lesion has the potential to influence processing along
both pathways equally because the lesion occurs to an
input common to both pathways. However, if the per-
formance of the ‘where’ task is more robust than the
‘what’ task, as suggested by the initial learning differ-
ences between the two pathways, then the two path-
ways may be differentially influenced by an early-level
lesion.

5. Simulation 2: lesioned performance

The goal of Simulation 2 was to determine if ‘what’
and ‘where’ performance could be dissociated following
a lesion to a processing layer that lies before the
separation of the two pathways. The ultimate goal, of
course, is to try to understand the puzzling phe-
nomenon in visual form agnosia whereby these patients
are profoundly impaired at object recognition but per-
form spatial tasks, including visuomotor tasks, reason-
ably well.

How would a lesioned model look like a patient with
visual form agnosia? The present simulations are not
intended to mimic an individual patient’s performance
from specific tasks; instead, these simulations investi-
gate the relative performance differences between the
‘what’ and ‘where’ tasks that are typical of the aggre-
gate population of visual agnosics. To effectively simu-
late visual form agnosia, the model needs to show that
‘what’ tasks are performed more poorly than ‘where’
tasks when the model is lesioned in a manner that
simultaneously influences both the ‘what’ and ‘where’
pathways.

As noted previously, the 10/4 network configuration
was lesioned by adding noise to the activations of the
units in the input layer. This type of lesion was chosen
because it influences the two pathways in a similar
manner; that is, both pathways receive degraded, noisy
input. Several methods exist for lesioning neural net-
work models (see Refs. [16,22,32,33,35,36]), such as
adding noise to units’ activations, adding noise to
weights, removing weights, and removing units. Perfor-
mance across different lesion types (e.g. weight removal
vs adding noise to weights) results in similar impair-
ments (see Ref. [22]). In the present simulations, how-
ever, some lesion methods could produce an artificial
advantage favoring the ‘where’ pathway over the ‘what’
pathway. For example, removing input units would
impact the ‘what’ pathway more than the ‘where’ path-
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way result because each input unit is connected to 10
‘what’ hidden units but only to 4 ‘where’ hidden units.
Thus, removing an input unit would remove more
weights one the ‘what’ pathway than on the ‘where’
pathway.

5.1. Lesion methodology

The random noise added to the input layer was
generated with a Gaussian distribution having a mean
of 0 and a variable standard deviation. On average, no
noise was added to an input unit’s activation; however,
the standard deviation of the Gaussian influenced the
range of the noise added, with distributions with larger
standard deviations having the potential to add more
noise than distributions with smaller standard devia-
tions. There were four levels of lesions in Simulation 2.
The noise added to the input units’ activations had a
standard deviation of 0.1, 0.2, 0.35, or 0.5. Larger
standard deviations add more variability to units’ acti-
vation and, therefore, reduce the reliability of the infor-
mation that a unit represents. Adding noise with a
larger standard deviation acts as a larger lesion of the
network.

A single trained network was tested with all lesion
levels. This network had a 10/4 hidden unit configura-
tion and learned the ‘what’ and ‘where’ tasks to similar
levels (the difference between performance on these two
tasks did not differ significantly). Ten different random
noise lesions were generated at each of the four levels of
noise. For each input pattern, a different random noise
lesion was generated. The network was tested on 360
random noise lesions for each of the four amounts of
noise. Testing involved presenting the network with a
noisy input pattern and comparing the networks’ out-
put to the correct output. The SSE was computed, and
the results reported are the average SSE across the 360
different random lesions for the four levels of noise.

5.2. Results and discussion

The SSE across each random noise lesion was com-
puted separately for the two tasks. The average lesioned
performance appears in Fig. 5. The best-fitting line for
the ‘what’ and ‘where’ tasks is also shown in Fig. 5.
There are three patterns apparent in these data. First,
as the lesion increases (i.e. as more noise is added to the
input level), the SSE increases. Second, the ‘what’ error
is greater than the ‘where’ error for all but the smallest
lesion level. Third, the ‘what’ error increases more
rapidly than does the ‘where’ error.

The three patterns that appear in Fig. 5 were exam-
ined by analyzing the SSE with a two-factor analysis of
variance (ANOVA), with lesion amount (0.1, 0.2, 0.35,
and 0.5) and task (‘what’ vs ‘where’) as factors. The
increase in SSE differed among the four lesion

amounts, supported by a main effect for lesion amount,
F(3, 36)=327.0, P�0.0001. The SSE was greater for
the ‘what’ task than for the ‘where’ task (SSE of 15.66
and 7.37, respectively), F(1, 36)=350.6, P�0.0001.
Finally, lesions increased SSE more rapidly for the
‘what’ task than for the ‘where’ task as indicated by the
interaction between lesion amount and task, F(3, 36)=
55.67, P�0.0001.

These lesion results indicate that ‘what’ and ‘where’
are influenced unequally by a lesion to an earlier com-
mon processing level. Specifically, Gaussian noise le-
sions proved more detrimental to the identification task
than to the localization task. Not only did the ‘what’
task show more error than the ‘where’ task for all
lesion sizes, but as the lesion size increased, the ‘what’
error increased more rapidly than did the ‘where’ error.

Why does the model perform ‘what’ more poorly
than ‘where’ when lesioned? An analysis of the signal-
to-noise ratio of the ‘what’ and ‘where’ tasks may
provide an answer. When lesioned, the signal of an
individual pattern (i.e. ‘what’ the pattern is and where it
is located) becomes degraded and less reliable. But, the
location of an object can be more readily discerned in
the presence of noise than can the identity of the object.
Thus, if the ‘what’ and ‘where’ pathways are faced with
input that contains the same amount of noise, the
‘what’ task will be hindered more than the ‘where’ task.

The noise tolerance difference between the identifica-
tion and localization tasks also explains the faster ini-
tial learning of the ‘where’ task compared to the ‘what’
task. At the outset of training, the weight values are

Fig. 5. Results from Simulation 2. This graph shows a lesioned
network’s performance following the addition of Gaussian noise to
the units in the Input layer. The addition of noise causes the network
to produce more errors, as indicated by the increase in SSE. Most
important, the addition of noise causes more errors for the ‘what’
task than for the ‘where’ task.
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random, and these random weight values produce acti-
vation patterns that are random. As training pro-
gresses, however, the weights begin to change to reduce
the SSE term. As the weights change, the patterns of
activation across both pathways still contain noise.
Because the spatial location of an object is preserved
more under noise than is the identity of that object, the
error produced by the ‘where’ task will be smaller than
that produced by the ‘what’ task. Thus, early weight
changes are more likely to favor the ‘what’ pathway,
allowing the localization task to be learned more
rapidly than the identification task. This interpretation
explains the ‘what’ and ‘where’ differences by appealing
to the input stimuli on which the network is trained.
No reference need be made to the specific learning
algorithm or network configuration. Indeed, in Simula-
tion 1 the same training pattern was observed for all
network configurations, including the 12/2 configura-
tion, in which the ‘where’ task was performed more
poorly overall than the ‘what’ task. ‘Where’ is an easier
task computationally than is ‘what’ because localizing
an object requires less information than identifying that
object. As a consequence, when a system is lesioned,
‘where’ performance is better than ‘what’ performance.

The results from Simulation 2 are consistent with the
pathway information account of visual form agnosia.
Although the present simulations are simple in nature,
the lesioned model’s performance bears a striking re-
semblance to the behavior of patients with visual form
agnosia. Like patients JW and DF discussed in Section
1, the network shows poorer identification performance
than visuomotor/visuospatial performance following an
early-level lesion.

Although Simulation 2 supports the pathway infor-
mation account, additional evidence is required to ar-
gue convincingly that ‘what’ and ‘where’ task
differences may lie at the heart of the dissociation
observed in visual form agnosia. One prediction of the
pathway information account that stems from Simula-
tions 1 and 2 is that equating the difficulty of ‘what’
and ‘where’ tasks should abolish the dissociation be-
tween ‘what’ and ‘where’ performance following an
early-level lesion. I test this prediction in Simulation 3
by reducing the difficulty of the ‘what’ task. Specifi-
cally, in Simulation 3 the network is required to learn
the identification of fewer patterns than in the previous
simulations but the same number of locations. Here,
the network was trained to classify three shapes instead
of the six shapes. These objects could appear in six
locations, as in the previous simulations. The number
of hidden units to perform the ‘what’ and ‘where’ tasks
was now identical, providing a degree of equivalence.
The pathway information account makes two predic-
tions in Simulation 3: (1) that learning the ‘what’ and
‘where’ tasks should be roughly equivalent; and (2) that
following an early-level lesion the impairment of ‘what’

and ‘where’ performance should be roughly equivalent.
These predictions can be understood in terms of linear
separability. When a large corpus of objects is used to
train the model, as in Simulation 2, the ‘what’ task is
nonlinearly separable and, consequently, computation-
ally more difficult than the ‘where’ task. Reducing the
number of objects that the network must learn allows
this task to become linearly separable, because the
objects now have less overlap. The objects in the re-
duced corpus are more orthogonal to one another than
the objects in the full corpus used in Simulation 2. The
reduced overlap among the shapes should allow the
‘what’ task to be learned more quickly with a fewer
number of hidden units. The critical issue is whether the
reduced overlap in the ‘what’ task also will allow the
model to perform this task in the face of damage.

6. Simulation 3: equating ‘what’ and ‘where’
performance

6.1. Simulation methodology

The training and testing procedures were identical to
those described for Simulation 2, with two exceptions.
First, the number of patterns the network learned to
identify was reduced from six to three. The networks in
Simulation 3 learned to recognize patterns two, three,
and four are shown in Fig. 3. Second, the number of
‘what’ hidden units was reduced to 4, a number that
allowed the ‘what’ pathway to recognize the three pat-
terns and that allowed the hidden units to be equated
between the ‘what’ and ‘where’ pathways. The training
performance of this 4/4 network configuration was
tested across ten different networks, with each network
beginning training with a different random weight
configuration.

The lesion methodology was similar to that used in
Simulation 2. However, instead of testing a range of
lesion magnitudes, only the largest lesion was tested
(0.5 Gaussian noise added to the activation values of
the input patterns) because the post-lesion performance
in Simulation 2 was largest for this lesion.

6.2. Results and discussion

6.2.1. Training performance
The training performance of the ten networks is

shown in Fig. 6. To determine if equating the difficulty
of the ‘what’ and ‘where’ tasks allowed the unlesioned
network to learn the two tasks at similar rates, I
computed the two measures of learning rate used in
Simulation 1. For each of the ten networks, I calculated
the average SSE across the first 40 training epochs for
each task. Across the initial learning, these networks
showed larger error terms for the ‘where’ task than for
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Fig. 6. Average training performance from ten networks tested in
Simulation 3. These networks learned ‘what’ and ‘where’ tasks that
required the same numbers of hidden units along each pathway.
Equating the two tasks reduces the learning differences between the
‘what’ and ‘where’ tasks.

6.2.2. Lesioned performance
As in Simulation 2, the ‘what’ and ‘where’ SSE terms

were computed across ten noise lesions for each of the
input patterns in one network. There was a small,
nonsignificant difference between the error terms, with
a marginally larger error associated with the ‘what’ task
than with the ‘where’ task (11.96 vs 9.97, respectively),
t(9)=2.05, P�0.05. In addition, this difference in the
4/4 network configuration was significantly smaller
than the difference observed in Simulation 2 (10/4
configuration) for the same magnitude of lesion,
t(18)=9.42, P�0.0001. This latter result indicates that
reducing the difficulty of the ‘what’ task relative to the
‘where’ task produces a corresponding reduction in the
network’s post-lesion performance. Stated simply, when
the overall difficulty of the ‘what’ and ‘where’ tasks is
similar, the post-lesion performance of the two tasks is
similar. Thus, the relative difficulty of the two tasks
corresponds directly to the magnitude of the dissocia-
tion in performance following a lesion to a shared
input, consistent with a task difficulty account of the
‘what–where’ dissociation observed in visual form
agnosia.

Qualitatively similar results were obtained by lesion-
ing other 4/4 network configurations following training.
Some of these networks demonstrated a significant
difference between ‘what’ and ‘where’ performance fol-
lowing a lesion with larger error on the ‘what’ task than
on the ‘where’ task. However, the difference between
the two tasks was always smaller in the 4/4 configura-
tion than in the 10/4 configuration, again indicating
that reducing the relative difficulty of the two tasks
reduces the magnitude of the dissociation following a
lesion to the shared input to the two pathways.

Overall, the results of Simulation 3 are consistent
with the pathway information account of the ‘what–
how’ dissociation in visual form agnosia. When the
‘what’ and ‘where’ tasks are equated with one another
in the split-pathway model, both tasks are learned at
similar rates. By reducing the number of patterns that
the network is required to identify, 4 ‘what’ hidden
units can be used to perform the ‘what’ task. Four
hidden units also are required along the where pathway
in order to correctly distinguish six different locations.

More important, following a lesion to the inputs to
the ‘what’ and ‘where’ pathways, networks that have
learned comparable ‘what’ and ‘where’ tasks show little,
if any, difference in performance on the two tasks. The
early-level lesion disrupts the network’s performance
compared to an unlesioned network, but the disruption
is similar for the ‘what’ and ‘where’ tasks. Thus, visual
form agnosic patients may show impaired visual shape
perception and relatively preserved visuomotor function
because damage to an input to both of these processes
has been disrupted. The consequence of this damaged
input process is poorer performance for ‘what’ tasks
than for ‘where’ or ‘how’ tasks.

the ‘what’ task (5.02 ‘what’ error and 6.89 ‘where’
error). This difference was statistically significant,
t(9)=11.41, P�0.0001, and it demonstrates a reversal
of the training data from the 10/4 network configura-
tion (see Simulation 1).

Second, to characterize further the learning in the 4/4
network configuration, I computed, as in Simulation 1,
a simple linear regression across the first 20 training
epochs for each task. Recall that the slope of the
regression equations measures the learning rate for each
of the two tasks, with larger negative slopes indicating
faster learning than smaller negative slopes. The slopes
of the ten regression equations were compared between
the ‘what’ and ‘where’ tasks. The average slope for the
‘what’ task was −0.56; for the ‘where’ task the average
slope was −0.64. The difference in average slopes was
significant between the two tasks as indicated by a
Wilcoxon signed rank test, P�0.03. Thus, although
there was less error associated with the ‘what’ task than
with the ‘where’ task during the initial learning, the
‘where’ task was learned slightly faster than the ‘what’
task. In summary, the training results are equivocal: On
the one hand, one measure of learning, the SSE across
the first 40 epochs, suggests that the ‘what’ task is easier
than the ‘where’ task. On the other hand, the other
measure of learning, the slope of the learning curve,
suggests that the ‘where’ task is learned more rapidly
than the ‘what’ task. Thus, unlike in Simulation 1, there
is little evidence from Simulation 3 that indicates a
distinct learning advantage for the ‘where’ task over the
‘what’ task. The two tasks appear to be approximately
equivalent to one another in terms of the networks’
performance.
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The results from the previous three simulations sug-
gest that the transformations performed by the ‘what’
and ‘where’ pathways and the linear/nonlinear separa-
bility of the two tasks may explain the perception and
action dissociation in visual form agnosia. However,
one valid criticism of the foregoing simulations is that
the ‘where’ task is very crude and is not representative
of the tasks that neuropsychological patients perform.
Patients with visual form agnosia not only localize
objects, they also calibrate their thumb and forefinger
appropriately in picking up objects, indicating that
some size processing is preserved (see Ref. [19]). These
patients also grasp the positions on objects that allow
for the most stable grasp [21].

In the final simulation, I examine whether a dissocia-
tion between the ‘what’ and ‘where’ tasks can be ob-
tained if the model is trained on a more realistic ‘where’
task. In Simulation 4, the split-pathway model is given
the ‘what’ task from the previous simulations and a
‘where’ task that requires both localization and depth
information. The model is presented with the standard
object-in-a-location input and a parallel depth input.
The depth input represents the depth plane of the
object (a crude ‘near,’ ‘intermediate,’ or ‘far’ distance).
The depth input projects to the Where Output units, as
shown in Fig. 7A. The ‘where’ task is to conjoin the
object’s location and depth plane. That is, the model
must learn about two ‘where’ components. There are
now 18 Where Output units, one for each of the six
locations by three distance combinations.

The depth input in Simulation 4 would allow the
model to provide a motor system with information that
could be used to take the retinal extent of the object
into account when computing a grasp aperture. Because
the objects’ retinal size does not change (all objects are
a 3×3 pattern; see Fig. 3), the depth input would allow
the ‘where’ pathway to know if the object was relatively
small or relatively large, which could, in turn, guide
grip scaling. There is neurophysiological evidence that
neurons in parietal lobe areas are depth selective and
represent stimuli in terms of egocentric distance (e.g.
Refs. [42,43]), which makes a depth input to the ‘where’
pathway a plausible refinement to the model. If the
results of Simulation 4 replicate those of the previous
simulations, then the pathway information account
may explain the behavior of visual form agnosics who
are tested with more complex action tasks.

7. Simulation 4: an extended ‘where’ task

7.1. Simulation methodology

The training and testing procedures were identical to
those described for Simulation 2, with one exception: a
Depth Input layer was added; this layer projected di-

rectly to the Where Output units. There were three
units in the Depth Input layer, and each unit repre-
sented a different distance that the object was from the
model. As described above, for the ‘where’ task the
model was trained to combine correctly the object’s
location and its distance. There were 18 Where Output
units, one for each location-by-depth conjunction. The
‘what’ task was to identify the object irrespective of its
position or distance. There were 6 What Output units,
as in Simulations 1 and 2.

The lesion methodology was similar to that used in
Simulation 2. Importantly, both the standard object-in-
a-location input (Fig. 3) and the depth input were
lesioned by adding random Gaussian noise to the acti-
vation values of the input patterns. The Depth Input
layer was lesioned because to prevent giving the ‘where’

Fig. 7. (A) Network architecture; and (B) training results from
Simulation 4. Training results are averaged across ten networks each
having a different random weight configuration before training. The
training results are shown only for the first 40 epochs to highlight the
differences between the ‘what’ and ‘where’ tasks. The networks’
performance reached asymptote after the first 40 epochs shown.
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pathway an unfair advantage: If the Depth Input layer
went unlesioned, the ‘where’ pathway would receive
some intact inputs. The lesion amounts were those used
in Simulation 2.

7.2. Results and discussion

7.2.1. Training performance
The training performance of the ten networks is

shown in Fig. 7B. To assess the learning of the two
tasks, I computed the two measures of learning rate
used in Simulation 1. For each of the ten networks, I
calculated the average SSE across the first 40 training
epochs for each task. Across the initial learning, these
networks showed no difference in the error terms for
the ‘where’ task and the ‘what’ task (4.09 ‘what’ error
and 3.99 ‘where’ error), t(9)�1, n.s. However, the
learning rate, measured by the slope of a linear regres-
sion across the first 20 training epochs, did differ be-
tween the two tasks. The networks learned the ‘where’
task faster than the ‘what’ task. The average slope for
the ‘what’ task was −0.95; for the ‘where’ task the
average slope was −1.03. This difference between the
slopes was significant as indicated by a Wilcoxon signed
rank test, P�0.01. The added complexity of the
‘where’ task minimally altered the networks’ learning.
The ‘where’ task is learned faster than the ‘what’ task,
although the two tasks’ error terms converge rapidly
within the first 40 training epochs. The two tasks are
learned equally well by the end of 300 training epochs,
as the ‘what’ and ‘where’ error terms do not differ in
the final 50 epochs of training, t(9)�1, n.s.

7.2.2. Lesioned performance
The ‘what’ and ‘where’ SSE terms were computed

across ten noise lesions for each of the four lesion levels
used in Simulation 2. As is evident in Fig. 8, the ‘what’
task is affected more by the lesions than the ‘where’
task, despite the ‘where’ task requiring a more complex
output. The data depicted in Fig. 8 were analyzed with
a two-factor ANOVA, with lesion amount and task as
factors. There was a main effect for lesion amount, F(3,
36)=940.43, P�0.0001, indicating that the increases
in SSE differed among the four lesion amounts. There
also was a main effect for task, F(1, 36)=1429.56,
P�0.0001, with greater error in the ‘what’ task than in
the ‘where’ task (SSE of 9.08 and 2.47 for ‘what’ and
‘where,’ respectively). Finally, there was a statistically
significant interaction between lesion amount and task,
F(3, 36)=231.38, P�0.0001. This significant interac-
tion indicates that the ‘what’ error showed larger in-
creases than did the ‘where’ error across these four
lesion levels.

The results of Simulation 4 replicate the results of
Simulation 2, but use a ‘where’ task that more closely
approximates the actions that patients with visual form

Fig. 8. Lesion results from Simulation 4. The addition of noise
disrupts performance more for the ‘what’ task than for the ‘where’
task, despite the ‘where’ task learning a conjunction of spatial loca-
tion and retinal disparity inputs.

agnosia are asked to perform. When lesioned, the
model was better able to localize and perceive the
distance and size of objects than to recognize the ob-
jects’ identities. As suggested by the previous simula-
tions, ‘where’ tasks, even those that require a
conjunction of location and depth, may be computa-
tionally easier (i.e. more linearly separable) than ‘what’
tasks, and thus may provide an explanation of the
dissociation between perception and action in visual
form agnosia. Of course, the dorsal pathway is involved
in processing many different types of visual and motor
information (e.g. orientation; see Ref. [43]), and future
simulations could focus on exploring increasingly com-
plex ‘where’ tasks.

8. General discussion

Patients with visual form agnosia show an interesting
neuropsychological dissociation: they can act upon and
localize visually presented shapes without being able to
visually perceive those shapes. Several theoretical ac-
counts have been proposed to explain this ‘what–how’
dissociation in these patients. I presented a third expla-
nation of the dissociation, the pathway information
account, and tested that explanation with neural net-
work simulations. In four simulations, processing dif-
ferences between the ‘what’ and ‘where’ pathways can
allow a single lesion to a common input to disrupt
differentially the performance of these two pathways.
One does not need to hypothesize separate perception
and action modules that are damaged selectively. In-
stead, a lesion to the common input to the pathways
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impairs object identification (‘what’) more than it im-
pairs spatial localization (‘where’). The different perfor-
mance of the two pathways is caused by the
complexities of the ‘what’ and ‘where’ tasks and the
information required by each pathway. Because ‘what’
is computationally more challenging than ‘where’, the
what task is learned slower and is learned with higher
error rates initially than the ‘where’ task. When the two
tasks are equated with one another, the network no
longer produces the dissociation observed in visual
form agnosics. These results support the pathway infor-
mation account of the ‘what–how’ dissociation in vi-
sual form agnosia. There are several issues arising from
the pathway information account and the present simu-
lations that warrant discussion.

The most specific issues for discussion pertain to
theoretical explanations of visual form agnosia. Al-
though the present simulations potentially explain the
‘what–how’ dissociation observed in some of these
patients, several caveats are in order. As I discussed
earlier, my pathway information account is not in-
tended to replace other accounts, such as the accounts
discussed by Goodale and coworkers. My pathway
information account can be viewed as providing a
computational mechanism for the transformation ac-
count that is discussed by Goodale and Milner [20,29].
The split-pathway model I have used also relies on the
input–output transformations to create two different
pathways. My pathway information account provides a
computational mechanism that allows perception and
action to be dissociated without the need to hypothesize
a ‘disconnection’ between modules or ‘spared inputs’ to
one module. Thus, the pathway information account
offers a new perspective on the ‘what–how’ dissocia-
tion, but a perspective that is consistent with the trans-
formation account.

One potential difficulty that was raised by a reviewer
was the apparent circularity of the arguments I have
made: the ‘what’ and ‘where’ are dissociable because
the information required for each task is different, and
we know the information must be different because the
processed underlying two tasks are dissociable. How-
ever, I have tried to define ‘task difficulty’ in more
objective, noncircular terms by appealing to the overlap
among representations (i.e. linear and nonlinear separa-
bility). The ‘what’ and ‘where’ tasks differ not because
performance on these two tasks is dissociable, but
because of the statistical structure of the model’s world.
In the model’s limited world, objects have more overlap
with one another, making object identification a nonlin-
early separable task. Spatial locations overlap less,
making gross localization a linearly separable task. The
statistical structure of the world influences the model’s
internal representations through the training process.
The internal representations are influenced differently
by damage to a common input, which appears as a
dissociation between perception and action.

Another apparent shortcoming of the present simula-
tions suggested by a reviewer is that the results are
trivial because the two tasks differ in complexity; it is
no surprise that the damaged model performs better on
the less-complex task. However, the same reasoning
could be applied to the studies with visual form ag-
nosics. These patients may show better performance on
visuomotor tasks than on recognition tasks simply be-
cause the recognition tasks are computationally more
demanding. Object recognition often is measured using
seemingly simple same–different matching tasks in
which patients report whether two stimuli are physically
identical. It is tempting to speculate that recognition is
computationally easy because of the apparent simplicity
of same–different matching in neurologically normal
subjects. However, one cannot assess the ease or
difficulty of a task reliably by using intuition. A same–
different matching task requires invariant object repre-
sentations, so that two stimuli that differ in location or
size can be matched against one another. Invariant
object recognition is a computationally demanding
task, which indicates that same–different matching,
although apparently easy, may involve difficult compu-
tations, such as forming invariant object
representations.

In the present simulations, I have not simulated the
specific behavior of individual patients. There is a
tightrope between generality and specificity in model-
ing. I have opted for a more general approach, al-
though this approach can be criticized because the
details of individual studies are lost. The strength of a
general approach, however, is that it can explain a
range of behaviors across a range of patients. For
example, some patients with visual form agnosia show
preserved spatial attention [48] and some preserved
perception of spatial relations [34]. The general split-
pathway model would suggest that action, spatial rela-
tion perception, and some forms of spatial attention
may require dorsal-stream processes, which, in the
model, can remain relatively intact following damage.
Developing a specific model of a particular task or
patient might cause one to miss the commonalties
among some processes.

An advantage of a general computational approach
is that it can make connections with other data. For
example, what is the consequence of the neural damage
in visual form agnosia? That is, what do these patients
‘see’, and how do object recognition deficits follow?
Some theories of visual form agnosia have stated ex-
plicitly that these patients perceive the world as if
looking through a ‘peppery mask’ [8,9]. Presumably this
peppery mask acts to add noise to the visual image. On
the surface, the noise lesion used in my simulations
appears consistent with the peppery-mask hypothesis of
visual form agnosia. However, adding masking noise to
a visual image does not explain all of the degraded
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performance observed in these patients. For example,
some visual form agnosics fail to attend to objects (i.e.
they have disrupted object-based attention; [48]). Ve-
cera and Gilds [49,50] demonstrated that random mask-
ing noise did not abolish object-based visual attention
in neurologically normal observers, a result inconsistent
with the peppery-mask hypothesis. How can my use of
a random noise lesion be reconciled with the evidence
against the peppery-mask hypothesis?

One must consider the locus of the noise. In the
lesioned model, the noise added to the Input layer is
not equivalent to random masking noise present in an
image. The Input layer in the model is taken as an early
cortical level of processing; noise added to this layer of
the model therefore corresponds to noise in the early
stages of the cortical visual system. In contrast, the
masking noise used in tests of the peppery-mask ac-
count of visual form agnosia is added to the image
viewed by a subject (i.e. noise is superimposed on a
visual image); noise added to an image is noise in the
external environment. In visual form agnosics, ‘noise’
would correspond to noisy visual features (e.g. edges)
and perceptual groups because the cortical visual areas
that correspond to the Input layer in the model repre-
sent features and perform perceptual grouping (e.g.
Refs. [26,39,52]). Visual form agnosics may see features
flickering in and out of view, and they appear unable to
organize these features in accordance with gestalt
grouping principles. Consistent with the idea of noisy
features and groups, Vecera and Gilds [50] simulated
visual form agnosia in neurologically normal subjects
by removing visual features important for performing
perceptual organization. Although adding masking
noise to an image may not explain the visual experi-
ences of visual form agnosics, adding feature and
grouping noise might.

The present simulations can be linked to other neu-
ropsychological syndromes in two ways. First, there is a
double dissociation between ‘what’ and ‘how’ that must
be explained by the network. Second, there are other
neuropsychological dissociations that can be explained
with different pathway or task information require-
ments in a neural network model. I discuss these issues
in turn.

Visual form agnosics show only a single dissociation
between ‘what’ and ‘how’ performance. Patients with
optic ataxia exhibit the opposite pattern of behavior by
demonstrating impaired visuomotor behavior with in-
tact visual shape perception. How do the present simu-
lations explain this double dissociation and the
performance of patients with optic ataxia? The split-
pathway model explains the performance of optic
ataxics by hypothesizing damage that is confined to the
dorsal (‘where/how’) processing stream. Consistent with
this prediction, the object ataxic patient tested by
Goodale et al. [21] had large bilateral lesions to her

occipitoparietal areas. Lesioning the ‘where’ pathway in
the model (e.g. the Where Hidden layer or the Where
Output layer) would produce a pattern opposite to the
results of Simulation 2 — that is, poor ‘where’ perfor-
mance compared to ‘what’ performance.3 The presence
of a double dissociation between ‘what’ and ‘how’ does
not appear problematic for the model or for the path-
way information account of visual form agnosics.

My present results also are consistent with interpreta-
tions of other neuropsychological syndromes. In many
neuropsychological syndromes, the presence of a disso-
ciation leads to the inference of two modules that have
been disconnected from one another, as in the ventral
disconnection account of visual form agnosia. How-
ever, my simulation results suggest that disconnections
are not always required to explain a neuropsychological
dissociation. Simulations of other neuropsychological
syndromes have lead to the same conclusion. Consider
the case of covert face recognition in prosopagnosia.
Patients with prosopagnosia are unable to perform face
recognition. These patients show an interesting dissoci-
ation between overt (or explicit) face recognition (i.e.
assigning the correct name to a face) and covert face
recognition (i.e. a ‘feeling of knowing’ a face). Covert
face recognition is measured through indirect tasks or
measures, such as performing a simple same versus
different discrimination on two faces. Some have ex-
plained the overt–covert dissociation in prosopagnosia
as the result of a disconnection between an intact face
processing module and the conscious awareness of fa-
cial identity (see Ref. [16] for a review). However, there
is a simpler explanation for the dissociation observed in
these patients: Covert recognition tasks may be more
sensitive than overt recognition tasks in detecting the
residual functioning of a partially damaged face recog-
nition system. As a consequence, when the face recogni-
tion system is partially damaged, overt recognition fails
but covert recognition is relatively intact. Farah and
coworkers [16] addressed this account of prosopagnosia
by lesioning a neural network model that named repre-
sentations of faces. Damage to the face layers in this
model produced an overt–covert dissociation. This
model did not require a disconnection between intact
face processing and conscious awareness of faces to
obtain this dissociation.

3 I have confirmed this result by removing 50% of the connections
between the ‘where’ hidden units and the ‘where’ output units.
Following the lesion, I compared performance on the ‘what’ and
‘where’ tasks. A lesion along the ‘where’ pathway causes greater
impairment to the ‘where’ task than to the ‘what’ task. Eight lesions
to the Where Hidden layer result in an average SSE of 32.37 for the
‘where’ task and 0.059 for the ‘what’ task, which differed significantly
from one another, t(7)=14.91, P�0.0001. Thus, a lesion confined to
the ‘where’ pathway exhibits performance similar to patients with
optic ataxia — poorer ‘where-how’ performance than ‘what’ perfor-
mance.
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The pathway information account I have developed
for visual form agnosia is similar to the task-sensitivity
account that explains the overt–covert dissociation in
prosopagnosia. The ‘where’ pathway, like a covert face
recognition task, can tolerate degraded information
that arises following a lesion. The ‘what’ pathway and
an overt face recognition task cannot tolerate the de-
graded information. The result is a difference in ‘what–
where’ performance in visual form agnosics and a
difference in overt–covert recognition in proso-
pagnosics. Thus, the same computational principle (less
degradation of performance for some tasks/pathways)
can be used to explain dissociations observed in differ-
ent neuropsychological syndromes.

The present simulation results also may have implica-
tions for animal models of extrastriate processing fol-
lowing lesions to primary visual cortex (V1). Single
units in the dorsal ‘where–how’ visual pathway remain
responsive following either permanent or reversible
damage to V1, but single units in the ventral ‘what’
pathway are less likely to remain responsive (see Refs.
[7,45] for reviews). These neurophysiological results
could be due to a preserved pathway from subcortical
areas to the dorsal stream, as hypothesized by the
spared input account that I discussed in Section 1.
However, the pathway information account is consis-
tent with the neurophysiological data: following early-
level damage, response properties of ventral stream
neurons are disrupted more than dorsal stream neurons
because of the computational requirements of the two
pathways and the learning that occurs in each pathway.
Indeed, the reason that my model fails object identifica-
tion is because units in the ‘what’ pathway are less
tolerant of noise than units in the ‘where’ pathway, and
these tolerance differences are due to the input–output
transformations and receptive field characteristics ac-
quired by the two pathways.

Finally, the pathway information account has impli-
cations for understanding the visual environments in
which we function. One reason that identification may
be more difficult than localization is because there is
greater variability within the shape category than
within the space category. Also, the shape category is
likely larger than the space category — there are more
potential objects than there are locations, and new
objects can be created. These observations are often
used by object recognition theorists to emphasize the
difficulty of object recognition (e.g. Ref. [5]). Conse-
quently, object recognition may be a computationally
more difficult, nonlinearly separable task and localiza-
tion a computationally easier, linearly separable task.
These intuitive differences between the shape and space
categories appear to have important consequences for
the representations in the visual system, from the divi-
sion of processing into two relatively separate pathways
to the pattern of behavior following neurological
damage.
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