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Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state
functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of mo-
tion estimates from the data. These changes cause systematic but spurious correlation structures throughout
the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many
short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are
they adequately countered by, some common functional connectivity processing steps. Two indices of data
quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demon-
strated that should be flexibly implementable across a variety of software platforms. We demonstrate how
application of this technique impacts our own data, modifying previous conclusions about brain develop-
ment. These results suggest the need for greater care in dealing with subject motion, and the need to critically
revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject
movements.

© 2011 Elsevier Inc. All rights reserved.
Introduction

It is well established that head motion is undesirable in fMRI stud-
ies (Friston et al., 1996; Hutton et al., 2002; Jiang et al., 1995;
Johnstone et al., 2006; Oakes et al., 2005; Wu et al., 1997). Blood ox-
ygen level dependent (BOLD) signal acquisition depends upon precise
spatial and temporal placement of magnetic gradients on scales of
millimeters and milliseconds. Movement of the head during scans
not only shifts the position of brain matter in space, it fundamentally
disrupts the establishment of magnetic gradients and subsequent
readout of the BOLD signal. To compensate for these effects, it is com-
mon practice to realign data (here, a part of fMRI preprocessing). Spa-
tial realignment corrects motion-induced shifts in space but does not
correct intensity changes resulting from disruption of the physical
principles underlying MRI. Therefore additional measures are often
taken (here, a part of functional connectivity processing), such as
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ICA decomposition or regression of motion estimates, to remove spu-
rious motion-related signal from the data (Beckmann and Smith,
2005; Erhardt et al., 2010; Fox et al., 2009; Robinson et al., 2009a;
Weissenbacher et al., 2009). In this paper, we demonstrate that at
least some of these approaches to motion correction do not fully re-
move motion-related signal from the data. Critically, we also find
that the inclusion of motion-contaminated data introduces colored
noise into the study of functional brain organization via resting
state functional connectivity MRI (rs-fcMRI).

Subject movement is oftenmeasuredwith summary statistics based
upon head realignment parameters. Since subjects move during scans,
it is standard practice to estimate the position of the head in space at
each volume of the data and to realign all volumes using rigid body
transforms. In a rigid body transform, head position is described at
each timepoint by six parameters (translational displacements along
X, Y, and Z axes and rotational displacements of pitch, yaw, and roll).
These realignment parameters can be condensed into a single summary
statistic, such as root mean squared head position change (RMS move-
ment). Summary statistics are often used to describe subject motion
and to make decisions about cohort formation or matching. When
forming cohorts, scans with summary statistics above some threshold
(e.g., RMS movement over half a voxel's width) are considered essen-
tially unusable, and these scans are discarded from the analysis. When
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multiple cohorts are compared, motionmatching is often accomplished
using means or t-tests of summary statistics between cohorts.

Summary statistics of motion are quite useful, but they do not al-
ways distinguish between qualitatively different types of subjectmove-
ment. Consider two subjects: Subject A who is perfectly still but moves
suddenly once to arrive at a very different head position, and Subject B
who has frequent small to moderate movements about the original
head position. It is possible for these two subjects to have similar, or
even identical, RMS movement estimates, despite the substantial qual-
itative differences in how they moved. Since head displacement
disrupts the spin history assumptions upon which BOLD signal estab-
lishment and readout depend, all other things being equal, Subject A
will have data of acceptable quality throughout the scan except during
and immediately after head motion, whereas the data of Subject B will
be somewhat compromised throughout much of the scan. In an effort
to counter such effects, head realignment estimates or other indices of
movement are often regressed from data (for example, within GLMs
for task fMRI, or during functional connectivity processing for rs-
fcMRI). Here, we demonstrate that clear artifacts remain in the data
even after such regressions, and that these artifacts have systematic ef-
fects upon rs-fcMRI correlations.

Following a regression-based approach to motion correction (Fox
et al., 2009), this report begins by demonstrating a correspondence
between head displacement and large-amplitude changes in rs-
fcMRI BOLD signal. These changes are evident in single rs-fcMRI time-
courses, and occur throughout the brain and across subjects. Based
upon the suspicious co-occurrence of head movement and changes
in rs-fcMRI signal, two indices of data quality that operate on a
frame-by-frame basis to flag suspect frames of MR data are proposed.
In four cohorts, removal of flagged frames produces structured
changes in patterns of correlation, such that some short-distance cor-
relations are weakened, and some medium- to long-distance correla-
tions are strengthened. Some similar effects related to motion in
functional connectivity data have recently been described (Van Dijk
et al., 2011). Control analyses demonstrate that the artifact does not
arise from (and is not adequately countered by) regressions per-
formed during functional connectivity processing, nor is it simply a
product of frame removal from data. We conclude by demonstrating
how this artifact has impacted our own data and how removing the
artifact modifies our previous conclusions.

One of the principal attractions of rs-fcMRI is that theminimal burden
upon subjects allows investigators to explore populations (especially pe-
diatric and clinical) that are typically difficult to study. The present re-
sults indicate that systematic but spurious rs-fcMRI correlation
structures are induced by subject motion in ways that are not always
detected or dealt with in common approaches to rs-fcMRI analysis.
These effects can obscure patterns of functional connectivity within sin-
gle cohorts and create spurious differences between cohorts. This charac-
terization suggests the need to critically revisit previous work that may
not have adequately controlled for frame-by-frame head displacement,
and the need for greater care when dealing with subject movement.

Before moving to the data we wish to clarify the intent of this
paper. Although this paper suggests a method to dampen or remove
the influences of movement on rs-fcMRI analyses, this paper is
intended to be descriptive rather than proscriptive. Also note that
the basis for the artifactual effects described herein is not specific to
Table 1
The four cohorts presented in this report. Within each cohort studied, the number of subject
shown. Additionally, the RMS movement estimates are shown for unscrubbed and scrubbe

Number of subjects Sex (M/F) Age in yea
mean (sd)

Cohort 1: 3 T children 22 11/11 8.5 (1)
Cohort 2: 3 T adolescents 29 22/7 12.1 (1.1)
Cohort 3: 3 T adults 26 4/22 23.5 (1.4)
Cohort 4: 1.5 T children 42 19/23 8.8 (0.7)
rs-fcMRI, but is a general feature of fMRI, and should also be present
in diffusion imaging or task fMRI studies. The approach described in
this paper may be adapted to these modalities.

Methods

Subjects

Subjects were recruited from theWashington University in St. Louis
campus and the surrounding community. Individuals were excluded if
there was a history of metal implants or other contraindications to the
MRI environment, or a history of developmental delay, neurological or
psychiatric illness, including the use of psychotropic medications. All
subjects were native English speakers. All adult subjects gave informed
consent, and all children gave assent with parental consent, in accor-
dance with the guidelines and approval of the Washington University
Human Studies Committee. Subjects were compensated for their
participation.

Datasets and data collection

This study utilized multiple datasets, divided into 4 cohorts (see
Table 1).

The data for the first 3 cohorts (N=77)were acquired on a Siemens
MAGNETOM Tim Trio 3.0 T Scanner with a Siemens 12 channel Head
Matrix Coil (Erlangen, Germany). A T1-weighted sagittal MP-RAGE
structural image was obtained (TE=3.06 ms, TR-partition=2.4 s,
TI=1000 ms, flip angle=8°, 176 slices with 1×1×1 mm voxels). A
T2-weighted turbo spin echo structural image (TE=84ms, TR=6.8 s,
32 slices with 2×1×4 mm voxels) in the same anatomical plane as
the BOLD images was also obtained to improve alignment to an atlas.
Functional images were obtained using a BOLD contrast sensitive gradi-
ent echo echo-planar sequence (TE=27ms, flip angle=90°, in-plane
resolution=4×4 mm; volume TR=2.5 s). Whole brain coverage for
the functional data was obtained using 32 contiguous interleaved
4 mm axial slices.

The data for the fourth cohort (N=42) were acquired on a Siemens
1.5 Tesla MAGNETOM Vision MRI scanner (Erlangen, Germany). Struc-
tural images were obtained using a sagittal magnetization-prepared
rapid gradient echo (MP-RAGE) three-dimensional T1-weighted se-
quence (TE=4 ms, TR=9.7 ms, TI=300 ms, flip angle=12°, 128
slices with 1.25×1×1 mm voxels). Functional images were obtained
using an asymmetric gradient echo echo-planar sequence sensitive to
blood oxygen level- dependent (BOLD) contrast (T2* evolution
time=50ms, flip angle=90°, in-plane resolution 3.75×3.75 mm; vol-
ume TR=2.5 s). Magnetization steady state was assumed after 10 s.
Whole brain coverage for the functional data was obtained using 16
contiguous interleaved 8 mm axial slices, acquired parallel to the
plane transecting the anterior and posterior commissure (AC-PC plane).

fMRI preprocessing

Figure S1 provides a complete overview of the workflow for data
analysis. Functional images underwent standard fMRI preprocessing
to reduce artifacts (Shulman et al., 2010). These steps included: (i) re-
moval of a central spike caused by MR signal offset (in 1.5 T data
s, sex distribution, digital age in years, and percent of data cut by motion scrubbing are
d datasets.

rs % data cut
mean (sd)

Unscrubbed RMS motion
in mm mean (sd)

Scrubbed RMS motion
in mm mean (sd)

26 (14) 0.51 (0.29) 0.41 (0.23)
16 (14) 0.38 (0.24) 0.33 (0.21)
12 (6) 0.38 (0.16) 0.35 (0.14)
58 (20) 0.70 (0.31) 0.58 (0.20)
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only), (ii) correction of odd versus even slice intensity differences at-
tributable to interleaved acquisition without gaps (temporal realign-
ment using sinc interpolation of all slices to the temporal midpoint of
the first slice, accounting for differences in the acquisition time of
each individual slice), (iii) correction for head movement within
and across runs and (iv) within run intensity normalization to a
whole brain mode value of 1000. Of note, mode 1000 normalization
defines 100% signal at every voxel identically as the modal value
across all voxels throughout the entire scan. BOLD values are pre-
sented in mode 1000 scale, where 10 units=1% signal change (see
Figures). Atlas transformation of the functional data was computed
for each individual via the MP-RAGE scan. Each run was then
resampled in atlas space on an isotropic 3 mm grid combining move-
ment correction and atlas transformation in a single interpolation
(Shulman et al., 2010).

Head realignment estimate calculations

Headmotion estimation involved a series of rigid body transforms,
Ti, where i indexes frame (volume) and Ti spatially registers frame i to
a selected reference frame. Each transform was computed by mini-
mizing the registration error,

εi ¼ sIi T x
→

� �� �
−I0 x

→
� �� �2

;

where I x
→

� �
is image intensity at locus x→, angle brackets denote the

spatial average over the brain, subscript 0 denotes the reference
frame (here, taken as the run midpoint) and s is scalar factor that
compensates for small changes in mean signal intensity. Each trans-
form can be expressed as a combination of rotation and displacement
components. Thus,

Ti ¼ Ri ḋi
0 1

� �
;

where Ri is a 3×3 rotation matrix and d ̇i is a 3 × 1 column vector of
displacements. Ri can be factored into three elementary rotations
about each of the three axes. Thus, Ri=Ri∝RiβRiγ, where

Ri∝ ¼
1 1 0
0 cos ∝i − sin αi
0 sin αi cos ∝i

2
4

3
5;Riβ ¼

cos βi 0 sin βi
0 1 0

− sin βi 0 cos βi

2
4

3
5; and

Riγ ¼
cos γi − sin γi 0
sin γi cos γi 0
0 0 1

2
4

3
5

Thus, each rigid body transform is defined by six parameters.

Framewise displacement (FD) calculations

Differentiating head realignment parameters across frames yields
a six dimensional timeseries that represents instantaneous head mo-
tion. To express instantaneous head motion as a scalar quantity we
used the empirical formula, FDi=|Δdix|+|Δdiy|+|Δdiz|+|Δαi|+
|Δβi|+|Δγi|, where Δdix=d(i−1)x−dix, and similarly for the other
rigid body parameters [dix diy diz αi βi γi]. Rotational displacements
were converted from degrees to millimeters by calculating displace-
ment on the surface of a sphere of radius 50 mm, which is approxi-
mately the mean distance from the cerebral cortex to the center of
the head.

Functional connectivity (rs-fcMRI) processing

For rs-fcMRI analyses, standard additional functional connectivity
processing steps were utilized to reduce spurious variance unlikely to
reflect neuronal activity (Fox et al., 2005, 2006, 2009). These steps
included: (i) spatial smoothing (6 mm full width at half maximum),
(ii) a temporal band-pass filter (0.009 Hzb fb0.08 Hz), and (iii) a
multiple regression of nuisance variables from the BOLD data. Nui-
sance regressions included ventricular signal averaged from ventricu-
lar regions of interest (ROIs), white matter signal averaged from
white matter ROIs, whole brain signal averaged across the whole
brain, six head realignment parameters obtained by rigid body head
motion correction, and the derivatives of each of these signals.
Where indicated in the text, data were reprocessed identically using
only the indicated nuisance regressors (e.g. no motion regressors
means that the 12 motion-related regressors were not included, no
whole brain regression means that the two whole-brain-related re-
gressors were withheld, etc.).

DVARS calculations

DVARS (D referring to temporal derivative of timecourses, VARS
referring to RMS variance over voxels) indexes the rate of change of
BOLD signal across the entire brain at each frame of data. To calculate
DVARS, the volumetric timeseries is differentiated (by backwards dif-
ferences) and RMS signal change is calculated over the whole brain.
DVARS is thus a measure of how much the intensity of a brain
image changes in comparison to the previous timepoint (as opposed
to the global signal, which is the average value of a brain image at a
timepoint). The global measure of signal change is

DVARS ΔIð Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔIi x
→

� �h i2� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii x

→
� �

−Ii−1 x
→

� �h i2� �s

where, as before, Ii x
	 


is image intensity at locus x on frame i and
angle brackets denote the spatial average over the whole brain. A
computationally important detail is to note that this spatial average
should count only voxels that, during acquisition, were within the
field of view at all times, i.e., completely sampled voxels. DVARS
was first described and applied in (Smyser et al., 2010). In this report,
DVARSwas calculated upon final functional connectivity images. Note
that DVARS could, in principle, be calculated at other points of the
processing stream (e.g., prior to functional connectivity processing).

ROI definition

All timecourses and correlations presented in this paper were
drawn from a set of 264 regions of interest (ROIs) that were defined
with our lab (Dosenbach et al., 2010; Power et al., in press). These
ROIs were defined through several meta-analyses of task fMRI data,
and with the fc-Mapping technique (Cohen et al., 2008; Nelson et
al., 2010) applied to rs-fcMRI data (no subjects in the present study
were used to define ROIs). All ROIs are modeled as 10 mm diameter
spheres centered upon ROI coordinates.

Correlation calculations and graph formation

Following standard techniques, correlations were calculated as the
Pearson product moment between the timecourses extracted from
pairs of ROIs. The 264×264 correlationmatrix averaged across a cohort
defines a weighted network (nodes=ROIs, edges=correlation coeffi-
cients), and community detection algorithms (Infomap (Fortunato,
2010; Rosvall and Bergstrom, 2008)) were applied to the graph to de-
tect sub-networks within the brain-wide network. To avoid effects of
smoothing and reslicing, only correlations between ROIs separated by
more than 20mmwere considered. Networks were analyzed at a vari-
ety of thresholds, and a representative analysis performed at 10% edge
density is presented in Fig. 10. Normalizedmutual information is amea-
sure of shared information between probability distributions, and is a
standard measure of the similarity of community assignments in
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networks (Newman, 2010). Values of 1 indicate that two sets of assign-
ments are identical (knowledge of one distribution gives full informa-
tion about the other distribution), whereas values of 0 indicate that an
observer gains no information about one distribution from the other.

Computations and visualizations

MRI images were processed using in-house software. Network calcu-
lations were performed using MATLAB (2007a, The Mathworks, Natick,
MA). Brain surface visualizations were created using Caret software
and the PALS surface (Van Essen, 2005; Van Essen et al., 2001).

Results

Single timecourses in a single subject demonstrate a relationship
between head motion and changes in the BOLD signal, even after data
realignment and regression of realignment estimates and their deriva-
tives from the data. Fig. 1A shows rs-fcMRI timecourses at 3 left occipital
regions of interest (ROIs) in a single subject. These data are from a single
childwith RMSmovement of 0.50 mm(processed data are 3 mm isotro-
pic voxels derived from 3.75×3.75×4 mm acquisition voxels). The
extent of movement in this scan would be considered low (i.e., of high
quality) by many investigators. The timecourses are all quite similar,
and there are several major peaks and troughs in the data. Fig. 1B dis-
plays the six head realignment estimates for this subject. Fig. 1C shows
the absolute values of the differentials of the timecourses, identifying
the periods in which the rs-fcMRI signal was most rapidly changing.
These periods correspond to the peaks and troughs of Fig. 1A, and
Fig. 1D compresses the six realignment parameters into a single index
of framewise displacement (FD) by summing the absolute values of
the differentials of the six parameters. There is evident correspondence
between plots in Figs. 1C and D. As Figure S2 shows, such relationships
between timecourses and head displacement are not unique to occipital
Fig. 1. Frame-by-frame changes in rs-fcMRI signal are related to frame-by-frame changes in
single subject. Each ROI is a 10 mm diameter sphere centered on the coordinates listed at t
where in the brain). (B) The six parameters calculated for frame-by-frame realignment of
line) displacements of the head from a fixed position in space. Rotational displacements w
the timecourses in (A). (D) The framewise displacement (FD) of head position, calculated
(B). Note the correspondence of high values in (C) and (D) indicating that large changes in BO
is 0.50 mm, which is well within traditionally acceptable limits of subject motion (e.g. 1.5 m
are shown on a PALS fiducial surface (Van Essen, 2005).
cortex, and canbe seen throughout the brain. The pattern is quite similar
across ROIs, but there are differences in the sensitivity of particular time-
courses to particularmovements,whichmight result from theproximity
of ROIs to gray/white matter or gray matter/CSF interfaces in particular
directions.

A general relationship between head motion and changes in BOLD
signal across the brain can be seen in every subject examined in this
paper (N=119 in four cohorts). A brain-wide collection of 264 ROIs
based upon meta-analytic fMRI data and resting state functional con-
nectivity data (independent of the present data) (Power et al., in
press) was used to produce rs-fcMRI timecourses in each subject (see
Methods, Table S1 for coordinates, Figure S3 for locations on a brain sur-
face). Fig. 2A plots the absolute values of the derivatives of the 264 time-
courses as a function of framewise displacement for the same subject
shown in Fig. 1. A loess curve using a quadratic fit over the adjacent
5000 data points is shown in black. The data are scattered, but there is
an unmistakable trend for frames with high movement to be frames
with large changes in many timecourses. Fig. 2B plots such loess curves
for all 22 children in Cohort 1, demonstrating that this trend is a general
feature of the data, and is not particular to any subject. As the inset
shows, there is a strong relationship of motion and rs-fcMRI signal
change down to a framewise displacement of 0, suggesting that any
and all movement tends to increase the amplitude of rs-fcMRI signal
changes.

It is now clear that across subjects, periods of head movement tend
to contain rs-fcMRI data inwhichBOLD signal is rapidly and substantial-
ly changing. Neural activity representing movement planning and exe-
cution is surely present at such times, but the signal changes observed
during movement do not correspond to the neuroanatomical patterns
onewould predict formotor-relatedneural activity. For example, as Fig-
ure S4 shows, during head motion, signal changes are not confined to
primary motor, pre-motor, or supplementary motor regions, but are in-
stead found throughout the entire brain. Moreover, the amplitude of
head position even after motion regression. (A) rs-fcMRI timecourses from 3 ROIs in a
he right, which are all left occipital locations (see Figure S2 for further examples else-
the subject's data, which indicate the translational (solid line) and rotational (dotted
ere calculated at a 50 mm radius. (C) The absolute values of the differential of each of
as the sum of the absolute values of the differential of the realignment estimates in
LD signal co-occur with large changes in head position. RMSmovement for this subject

m RMS movement with 3 mm isotropic voxels). Coordinates are in MNI space, and ROIs



Fig. 2. Frame-by-frame head displacement is related to frame-by-frame changes in rs-fcMRI signal throughout the brain and across subjects. (A) For each frame of data in the same
subject used in Fig. 1, the framewise displacement (FD) of a frame of data is plotted against the absolute values of the differentials of rs-fcMRI timecourses of 264 ROIs (locations
listed and shown in Table S1 and Figure S3). These data are fitted with a loess curve (black line) sampling the nearest 5000 data points. (B) Identically produced loess curves from all
22 subjects in Cohort 1 are plotted against framewise displacement. There is a clear trend for larger frame-by-frame head displacement to co-occur with larger changes in rs-fcMRI
signal. The inset magnifies the plot between framewise displacements of 0 and 1, demonstrating that this relationship exists even for very small movements.
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these signal excursions are often very large—far greater than the signal
changes produced by typical motor tasks (e.g., button-pushing or
speaking). It is therefore unlikely that these signal changes reflect
motor-related neural activity to any great extent. Instead, it is far
more likely that movement disrupts magnetic gradient establishment
or BOLD signal readout (Hutton et al., 2002), that many slices or entire
volumes of data have been contaminatedwith artifact during periods of
movement, and that this contamination has not been completely re-
moved by fMRI preprocessing and functional connectivity processing.
In fMRI studies, such noise in single subjects is dampened through
trial averaging. This averaging is impossible in rs-fcMRI studies, which
depend upon covariance estimated in long timecourses. If large-
amplitude changes contaminate rs-fcMRI timecourses, they will alter
patterns of covariance according to their prevalence, magnitude, and
spatial distribution, and could lead to distorted estimates of rs-fcMRI
correlation between brain regions.

Given the presence ofmotion-related artifact in the data, howmight
one detect and/or minimize its impact? All functional connectivity pro-
cessing streams involve some method of “artifact removal” that is
aimed to reduce such artifacts. One approach to removing or minimiz-
ingmotion-related effects has been to use head realignment parameters
or other motion estimates as nuisance regressors, and to attempt to re-
gress movement effects from the data (e.g., (Fox et al., 2005, 2006,
2009; Weissenbacher et al., 2009)). However, the data presented thus
far have already undergone such a procedure, and subsequent figures
will show how regression neither causes the effects shown here, nor
is it capable of completely removing the effects shown here. This may
be because there is not a strong, simple, linear relationship between
movement estimates and changes in the BOLD signal throughout the
brain, or because the regressions used here were not tailored to every
voxel's displacement. Another approach is to use covariance-based ap-
proaches such as component analysis (e.g. ICA, implemented in soft-
ware packages such as MELODIC or GIFT) to identify and remove
“artifactual” components in the data (e.g., (Beckmann and Smith,
2004; Erhardt et al., 2010; Robinson et al., 2009a)). Although some arti-
factual signals (e.g. “ringing”) are easily identified and removed using
such procedures, other artifactual signals may be more ambiguous,
and decisions about retaining or discarding such components are some-
what subjective. Since regressions do not fully remove motion-related
signal, and because component removal entails subjective decisions
about what constitutes artifact, we adopt a different approach, de-
scribed below.

Head motion tends to occur sporadically in cooperative subjects.
Thus, motion-induced signal changes tend to behave as burst noise.
Rather than attempting to parse “true” from “artifactual” signal within
all frames, we propose to identify and entirely eliminate frames of sus-
pect quality from our rs-fcMRI analyses to detect and characterize
motion-related artifact. Previous studies that have examined the con-
catenation of discontinuous rs-fcMRI data have found no deleterious ef-
fects upon functional connectivity (Fair et al., 2007; Van Dijk et al.,
2010), and similar “temporal masking” approaches have been used in
other rs-fcMRI studies (e.g. (Barnes et al., 2011; Fransson et al., 2007;
Jones et al., 2010; Kennedy and Courchesne, 2008; Smyser et al., 2010,
2011)) and in task fMRI (e.g., (Birn et al., 2004)). Generally, we propose
two indices of data quality that can be used to flag frames of suspect
quality, creating temporal masks of the data. These temporal masks
can be augmented and combined in various ways to produce a final
temporal mask, which specifies frames to ignore when performing cal-
culations upon the data (similar approaches using frame elimination or
weighting could be implemented in AFNI or SPM's ArtRepair). We refer
to this process as “scrubbing”.

Specifically, we begin our procedure after functional connectivity
processing has finished, because bandpassing, often an integral part of
functional connectivity processing, cannot be performed properly
upon temporally discontinuous data. The first framewise data quality
index is framewise displacement (e.g., Fig. 1D), calculated as the sum
of the absolute values of the derivatives of the six realignment parame-
ters. Framewise displacement thusmeasures howmuch the head chan-
ged position from one frame to the next. Figs. 3A and D show framewise
displacement values for two subjects (see Figure S5 for further exam-
ples). The second framewise data quality index is called DVARS, which
is calculated in each volume as the RMS of the derivatives of the time-
courses of all within-brain voxels. DVARS thus measures how much
image intensity has changed from one frame to the next. This measure
was conceived of as a logical extension of the trends shown in Figs. 1
and 2, where epochs of head movement coincide with epochs of high-
amplitude BOLD signal changes. Such plots are shown in Fig. 3B and E
for two subjects (see also Figure S5). Note that the plots of framewise
displacement and DVARS are similar but not identical. In particular, fra-
mewise displacement measures tend to be temporally focused (sharp

image of Fig.�2


Fig. 3. Two framewise indices of data quality, and a method for flagging frames of suspect quality. (A) The framewise displacement (FD) of head position, calculated as the sum of
the absolute values of the 6 translational and rotational realignment parameters (see Figs. 1C, D). (B) The DVARS measure, calculated as the RMS of the differential of all timecourses
of all voxels within a spatial brain mask at each frame. (C) Two temporal masks, indicating frames of suspect quality in red. Here, the upper row indicates frames that were flagged
as having FD over 0.5 (see the dotted red line in (A)), and the bottom row indicates frames that were flagged as having DVARS over 5 (dotted red line in (B)). These temporal masks
are quite similar, but not identical, just as the plots in (A) and (B) are quite similar, but not identical. (A-C) show data for the same subject examined in Fig. 1 (RMS move-
ment=0.50 mm), and (D–F) show data from another subject, whose RMS movement is 0.82 mm. Here, thresholds are chosen to simply identify the most egregiously suspect
frames.
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peaks) in contrast to the broader peaks of the DVARS measure. Addi-
tionally, the signal-to-noise ratio is larger for framewise displacement
than for DVARS (Figures S5, S6). For moderate to large movements,
both indices identify very similar portions of the data (big peaks occur
at nearly identical timepoints). If one also wishes to identify small
movements, framewise displacement may be more sensitive due to
the lower “floor” in the signal (see Figures S5, S6). Note that framewise
displacement arises from realignment parameters calculated in fMRI
preprocessing steps, whereas the DVARS measure reflects image inten-
sity, which (if no realignment parameters are regressed) has no explicit
relation to the movement measures other than the alignment process
itself. It is presently unclear whether one index captures data quality
better than the other, but the ease of producing either measure and
the similarity of frame indexing that each measure produces render
the issue moot in operational terms when only large movements are
sought. After studying the plots of dozens of healthy adults, values of
0.5 for framewise displacement and 0.5% ΔBOLD for DVARS were cho-
sen to represent values well above the norm found in still subjects
(see Figure S5 for examples of still subjects).

A temporal mask was generated from each index, marking frames
whose framewise displacement or DVARS exceeded the cutoffs set
above. Figs. 3C and F show the temporal masks generated from each
index in two subjects, and the cutoffs themselves are shown as dotted
lines in the plots above. These temporal masks were augmented by
also marking the frames 1 back and 2 forward from any marked frames
to accommodate temporal smoothing of BOLD data in functional con-
nectivity processing and re-establishment of steady-state spins. Since
reasonable arguments underlie each measure as an index of data qual-
ity, we conservatively chose to use an intersection of the two temporal
masks to generate a final temporalmask. All removed framesmust thus
1) be high-motion frames, and 2) display evidence of widespread and/
or large amplitude changes in BOLD signal. When any operations were
performed upon a subject's data, the temporal mask was applied to
eliminate marked frames from the analysis. Importantly, the current
analysis is designed to identify only the most egregiously suspect
frames of data in order to explore how a relatively small number of
“bad” frames impact the data, rather than to completely excise
movement-related artifact.

Even with this conservative approach to identifying periods of mo-
tion in a relatively still cohort of children, the temporal masks indicated
that approximately 25% of the data fromCohort 1 was severely contam-
inated with motion artifact (Table 1). The subject inclusion criteria for
this study were identical to the traditional criteria employed in our lab-
oratory, with the added requirement that at least 125 frames (~5 min)
of data must remain after scrubbing. No limitations were placed on the
percentage of data that scrubbing could remove as long as this mini-
mum amount of data remained. These inclusion criteriawere employed
because our aim was a) to describe what happened if (any amount of)
motion-contaminated data was removed from a scan and b) to recover
asmuch data from compromised scans as possible. Figure S7 shows the
proportion of data removed from each subject in this study. Important-
ly, periods of motion could be brief or extended: althoughmanymotion
epochs last only one or two TRs, many epochs lasting 5, 10, or even
dozens of TRs were also identified (see Figure S8). The varying extents
of periods of movement suggest that the induced BOLD signal changes
may have varying durations, some of which may be within the low-
frequency window that characterizes rs-fcMRI data.

To test the effects of high-motion frames on rs-fcMRI correlations,
this scrubbing procedure was applied to four cohorts of healthy sub-
jects to produce four unscrubbed and four scrubbed datasets. Within
each cohort (for N subjects), the 264 ROIs described previously were
applied to the scrubbed and the unscrubbed data to produce time-
courses and seed correlation maps. Pearson correlations between
seed timecourses were calculated to produce 264×264×N matrices
of scrubbed and unscrubbed data in each subject. The unscrubbed
matrices were subtracted from the scrubbed matrices to produce Δr
matrices.

The effects of scrubbing high-motion frames from the data are
readily visible on inspection. Figs. 4A and B display seed correlation
maps from a seed in medial parietal cortex (−7 -−55 27) in
unscrubbed (top) and scrubbed (bottom) data from two subjects in
Cohort 1. Scrubbing removed 35% and 39% of the data from these sub-
jects, respectively. The seed ROI is a member of the default mode net-
work, and the correlation maps in scrubbed data demonstrate more
characteristic topography (see the differences in medial prefrontal
cortex, for example) than the maps from unscrubbed data. Prior to
scrubbing, one is struck by the incompleteness of correlations within
the default mode network, whereas after scrubbing, it is clear that the
seed is correlated with the canonical regions of the entire default
mode network. Such changes in correlation patterns can be found in

image of Fig.�3


Fig. 4. Examples of how motion scrubbing impacts rs-fcMRI data. (A, B) Seed correlation maps in unscrubbed and scrubbed data in two subjects using a medial parietal seed (−7
−55 27). Scrubbing removed 35% of the data in (A) and 39% of the data in (B), leaving 265 and 151 frames for analysis, respectively. The red ovals indicate locations where cor-
relations are clearly altered. Seed maps produced from scrubbed data demonstrate much greater resemblance to the canonical default mode network. (C) Changes in the strength of
rs-fcMRI correlations between medial parietal (−7−55 27, red sphere) andmedial prefrontal cortex (−7 50−1, green sphere) across all 22 subjects in Cohort 1. Δr is produced by
subtracting unscrubbed correlation values from scrubbed correlation values. Note that scrubbing increases this long-distance correlation in most subjects, does not substantially
alter it in others, and reduces it in a small number of subjects.
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many subjects. Fig. 4C displays changes in correlation values between
medial parietal and medial prefrontal cortex seeds for the 22 subjects
in Cohort 1 in unscrubbed and scrubbed data. Correlations between
these two ROIs, which are both members of the default mode net-
work, are substantially increased in most subjects. A natural reaction
is to ask whether such changes are significant and to demand direct
comparisons or t-tests before taking these results seriously. As we
will demonstrate shortly, the changes in correlations depend (natu-
rally) upon the amount of data that is removed by scrubbing, which
is in turn dependent upon framewise displacement and DVARS mea-
sures. For a given threshold, greater amounts of movement will pro-
duce greater (and more often significant) changes. Likewise, for a
given amount of movement, more stringent scrubbing settings will
remove more data and produce greater effects.
Euclidean distance between ROIs (mm)
1800

B

-0.2

0.2A)

Fig. 5. Scrubbing high-motion frames from rs-fcMRI data decreases short-distance correlatio
ROIs were applied to scrubbed and unscrubbed data to produce two 264×264×22 correlati
averaged over subjects to produce a difference matrix (Δr). The values of this matrix are plot
from the data substantially decreases short-distance correlations and increases medium- to
of high-motion frames and not frame removal in general, the number of frames and the siz
sized chunks of data and numbers of frames were removed at random from each subject's d
process was repeated 10 times with similar results. Motion scrubbing has a much greater
Linear fits demonstrate a relationship between distance and Δr when motion-targeted scrub
More comprehensive investigations of motion scrubbing reveal
systematic effects throughout the brain. Fig. 5 plots the mean Δr ma-
trix from Cohort 1 against the Euclidean distance between the ROIs
that produced the correlations. Motion scrubbing tends to decrease
many short-range correlations, and to increase many medium- to
long-range correlations. To check that these changes did not arise
simply as a result of removing frames, the temporal masks within
each subject were randomized to remove an identical amount of
data, in identical-sized chunks, but at random. This “random scrub-
bing” was performed 10 times, always with the result shown in
Fig. 5B, which shows no systematic effects of distance upon Δr. The
difference in the amplitudes of Δr effects is highly significant (paired
two-tail t-test, t=251; p=0). A linear fit of Δr in motion scrubbed
data to Euclidean distance has a slope of 4.5×10−4 Δr/mm with an
-0.2

0.2

Euclidean distance between ROIs (mm)
1800

)

ns and augments long-distance correlations. (A) Within the 22 subjects of Cohort 1, 264
on matrices. The unscrubbed matrix was subtracted from the scrubbed matrix and then
ted as a function of the Euclidean distance between ROIs. Scrubbing high-motion frames
long-distance correlations. (B) To demonstrate that these effects arise from the removal
e of contiguous chunks of removed data were calculated for each subject, and identical
ata. Difference matrices were calculated as in (A), and data are presented after (A). This
impact upon Δr values than random scrubbing (paired two-tail t-test: t=305; p=0).
bing is performed (r2=0.18), but not when random scrubbing is performed (r2=0.03).
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r2 of 0.18, whereas a fit to random scrubbing data has a much shal-
lower slope of 0.74×10−4 Δr/mm with an r2 of 0.03, explaining al-
most no variance in the data.

The spatial distribution of these changes is shown in Fig. 6, which
plots changes in correlation on a brain. Blue vectors decrease with
scrubbing, red vectors increase with scrubbing, and black spheres
identify ROI locations. As indexed by absolute value of the change,
the top 0.5%, 1%, and 2% of Δr are shown. Short blue vectors pepper
the cortex, and long red lines connect distant ROIs. Fig. 7 plots Δr in
terms of the projection of pairwise correlations onto the X, Y, and Z
axes of the brain. Here, again, the dependence of Δr upon distance
is clear. Additionally, these plots show that lateral relationships
(along the X axis) tend to be decreased by scrubbing, whereas vertical
or anterior–posterior relationships tend to be increased by scrubbing.
This set of observations is consonant with the effects shown in Figure
S4, in which head motion produced symmetric effects about the X
axis, but produced strong BOLD signal changes of opposite sign in
the anterior–posterior and dorsal–ventral directions. Changes in
pitch (e.g., head nodding) are a predominant form of motion in
many scans, and could produce such effects.

Similar results are found in three additional cohorts (Cohorts 2–4).
Figs. 8A, D, and G all show the trend for scrubbing to decrease short-
distance correlations and to augment medium- to long-distance cor-
relations. It is clear that the effect is strongest in children, intermedi-
ate in adolescents, and weakest in adults. The magnitude of the Δr
effect is significantly different between cohorts (one-factor ANOVA,
main effect of cohort: p=0; post-hoc two-sample two-tail t-tests
demonstrate that 55.3% of child-adult, 8.5% of child-adolescent, and
2.1% of adolescent-adult comparisons of Δr were significant beyond
pb0.05, FDR corrected), and is related to how much data was
scrubbed from the dataset, which in turn is related to the amount of
movement the cohorts possessed (see Table 1). Although the effects
are weaker in adolescents and adults, they are certainly present, as
the plots of motion scrubbing and random scrubbing in Figure S9
make clear. The brain surfaces in Fig. 8 present the spatial distribution
of the top 2% of Δr changes in each cohort. No particular spatial pat-
terning is clear across cohorts, other than the tendency for blue vec-
tors to be shorter than the red vectors.
Fig. 6. The spatial distribution of scrubbing effects upon correlations. The top 0.5% (A) and
vectors represent correlations that decrease with scrubbing, and red vectors are correlatio
most red vectors are medium- to long-range. The locations of the 264 ROIs are shown as s
2005), and cerebellar ROIs are shown without a cerebellar surface.
A question of particular interest to the neuroimaging community
is whether these findings generalize beyond particular scanners, in-
stitutions, study populations, and acquisition sequences. The datasets
reported in this paper represent a single institution, two scanners
with two field strengths and two acquisition sequences, and three
age ranges (see Methods). Scrubbing methods have also been applied
to several datasets other than the ones reported here, and the effects
are present in every dataset from every site examined thus far (at
present, four sites). This represents data acquired in several scanners
(Philips and Siemens) at multiple field strengths (1.5 T and 3 T) using
multiple acquisition sequences. The effects do not appear to be partic-
ular to any study population (they are present in clinical adult co-
horts, in neonatal cohorts, etc.). As such, this artifact appears to be a
general feature of functional connectivity MRI. It is probable that par-
ticular aspects of acquisition (e.g. gradient sequence, spatial or tem-
poral resolution, etc.) may render data more or less sensitive to
motion-related effects, though we are unable to offer any specific ob-
servations or recommendations at this point. It is worth noting that
framewise displacement estimates should be relatively uniform
across sites, scanners, and sequences, but that the DVARs measure
may vary across these parameters, since it indexes changes in signal
intensity.

A related question is whether this artifact is produced and/or coun-
tered by particular aspects of data processing. For any analysis it is
standard practice to realign fMRI data across scans. After fMRI prepro-
cessing, a variety of functional connectivity processing strategies may
be used to form rs-fcMRI data. These approaches typically include spa-
tial blurring, temporal bandpassing, and some version of “artifact re-
moval”, whether by regression of nuisance variables or component
removal or other methods. The data presented in this paper follows a
functional connectivity processing stream that uses a multiple regres-
sion of nuisance variables as a method to reduce noise and artifact in
functional connectivity data (Fox et al., 2009). Typical regressors in-
clude signals fromwhitematter, ventricles, and thewhole brain, the de-
rivatives of those 3 signals, the 6 head realignment estimates, and the
derivatives of each of those estimates (18 regressors total). An impor-
tant concern is that motion-related artifacts might actually have been
introduced to the data in the regression process. Fig. 9 plots Δr against
1% (B), and 2% (C) of Δr changes, as indexed by the absolute value of the change. Blue
ns that increase with scrubbing. Most blue vectors are short- to medium-range, while
mall black spheres. Data are shown on a transparent PALS fiducial surface (Van Essen,



Fig. 7. Scrubbing produces direction- and distance-dependent changes in correlations. For Cohort 1, the top 1%, 3%, and 10% of changes in correlation are plotted as a function of the
projection of each pairwise correlation vector onto the X, Y, and Z axes of Tailarach space. Here, X is the lateral axis, Y is the anterior–posterior axis, and Z is the vertical axis. In
addition to the dependence of Δr upon distance, it appears that strongly lateral correlations tend to be mainly weakened by scrubbing, whereas more vertical or anterior–posterior
correlations tend to be strengthened by scrubbing.
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Euclidean distance for Cohort 1 beginning with the standard functional
connectivity processing stream, then progressively removing elements
of the regression, and finally removing the regression altogether (so
that the data have only been realigned, registered, blurred, and band-
passed). In each case the artifact is present, excluding these regressions
as a source of this effect. This indicates that the motion-related depen-
dence of correlation strength upon distance is either inherent in the
data (presumably, due to motion), or that it is produced by the widely
used processes of data realignment, blurring, or bandpassing. In terms
of countering the motion-induced correlations, the regressions in this
processing stream have a partial but incomplete effect: the spread of
the histogram of Δr values is clearly reduced by the regressions, but
the artifact persists through all aspects of functional connectivity pro-
cessing. It is possible that other approaches to functional connectivity
processing (e.g., ICA) may fare better in removing this motion-related
artifact, and we encourage users of other approaches to test their data
for similar effects.

We now demonstrate how scrubbing can alter fundamental conclu-
sions about patterns of functional connectivity. Across typical develop-
ment, several groups, including our own, have reported a reorganization
of functional connectivity, such that short-distance correlations tend to
decrease with age, whereas long-distance relationships between func-
tionally related brain regions tend to increase with age (for a review of
the developmental literature, see (Power et al., 2010)). This pattern is, un-
fortunately, also what one would predict from a motion-related artifact
(Table 1). Fig. 10 presents the community assignments of child and
adult datasets (Cohorts 1 and 3, see Table 1) before and after scrubbing.
Here, colors in each panel indicate sub-networks within the brain-wide
network of 264 ROIs. Scrubbing produced little change in the community
structure of adult functional networks, but it produced substantial
changes in the child functional networks. What began as largely local,
non-distributed communities in children (e.g. the orange community in
children) became distributed modules with closer resemblance to adult
modules (e.g. the yellow or red modules) upon scrubbing. This reflects a
fundamental reorganization of the child network into a more adult-like
distributed architecture that includes intact default and fronto-parietal
sub-networks. These changes in network architecture can be quantified
by normalized mutual information, which indicates that community as-
signments between children and adults before scrubbing (NMI=0.56)
become more similar after scrubbing (NMI=0.70). This increase is not
seen upon random scrubbing (over 10 repetitions, NMI=0.58±0.01).
Another way to quantify this set of observations is to note that scrubbing
reduces the number of significant differences in pairwise correlations be-
tween children and adults by over 30% (from608 to 401, pb0.05 FDR cor-
rected, two-tail two-sample t-test). These findings suggest that at least
some of the developmental differences previously reported can be
accounted for by motion-related artifact.

These analyses employed the standard scrubbing regime used
throughout this manuscript, and are intended as proof-of-principle
that even a modest amount of data removal can alter patterns of func-
tional connectivity. A more definitive and comprehensive investiga-
tion of developmental functional connectivity is in preparation,
utilizing more stringent scrubbing criteria (see Figure S10 for an ex-
ample of how scrubbing affects statistical power). Additionally, we
are exploring the incorporation of temporal masks in the multiple re-
gression stage, since large-amplitude motion-related changes are
likely to decrease the beta weights of regressors, which could differ-
entially impact subject data across development.

Discussion

We have demonstrated that small movements produce colored
noise in rs-fcMRI networks. Evidence for this artifact was first observed
in timecourses, where movement of the head visibly coincided with
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Fig. 8. Similar effects of scrubbing are found in 3 additional cohorts. (A–C): Cohort 2, (D–F): Cohort 3, (G-I): Cohort 4. (A) The Δr values plotted against the Euclidean distance be-
tween ROIs. (B, C) Dorsal and lateral views of the top 1% of Δr changes, indexed by the absolute value of the change. Blue vectors represent correlations that decrease with scrub-
bing, and red vectors are correlations that increase with scrubbing. (D–F) and (G–I) are after (A–C) in different cohorts. The trend for scrubbing to augment long-distance
correlations and to decrease short-distance correlations is present in each cohort (A, D, G), but the precise distribution of maximal change in correlation varies between cohorts.
The magnitude of scrubbing effects reflects the average RMS movement of the cohort, and by extension the amount of data that is removed in the scrubbing process (see
Table 1). An ANOVA comparing the magnitude of Δr across all cohorts was significant for a main effect of cohort (p=0), and post-hoc two-sample two-tail t-tests demonstrated
that 55.3% of child–adult, 8.5% of child–adolescent, and 2.1% of adolescent-adult comparisons of Δrwere significant beyond pb0.05, FDR corrected (children are Cohort 1 for these t-
tests).
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large changes in the rs-fcMRI signal. This relationshipwas found in ROIs
throughout the brain, and in all subjects studied. To explore the effects
of this motion-containing data on rs-fcMRI analyses, two semi-
independent indices of data quality were proposed that operate on a
frame-by-frame basis to flag frames of suspect quality. In four indepen-
dent cohorts, removal of frameswith high values on each index reduced
many short-distance rs-fcMRI correlations and increased many long-
distance rs-fcMRI correlations. This effectwas not due to frame removal,
and the artifact did not arise from regressions in functional connectivity
processing. On-line scanner corrections for head motion also did not
ameliorate this effect (Thesen et al., 2000) (data not shown).

The presence of this artifact has substantial implications. All subjects
analyzed in this article are healthy control subjects and would meet in-
clusion criteria for analysis in most MRI laboratories. The motion-
induced artifacts occur with movements on the order of a few tenths
of a millimeter or less (subjects for this study were selected with our
former standard inclusion criterion—RMS movement under 1.5 mm).
Within single cohorts, motion scrubbing can substantially alter seed
correlation maps, and commonly studied rs-fcMRI correlations such as
those between medial prefrontal and medial parietal cortex are
among the correlations that are affected by this artifact. A clear implica-
tion is that many rs-fcMRI results (both negative and positive) in clini-
cal populations and across the lifespan may need to be critically
revisited. In our own developmental data, some of our previous con-
clusions must be modified, though definitive analyses are not yet
complete.
The analyses presented in this paper were crafted to demonstrate
the effects of small movements upon rs-fcMRI correlations, not to
completely remove motion-induced artifact from the data. An impor-
tant topic for further study will be how such artifacts should be dealt
with. There are two fundamental approaches to artifact removal: ex-
cision of entire contaminated frames of data, and parsing “artifactual”
from “real” signal within frames. If one adopts the former approach,
the news is both encouraging and discouraging. The discouraging
news is that, as Fig. 2 shows, any and all movement tends to increase
changes in BOLD signal, which suggests that there is no threshold
below which movement creates no artifactual changes in signal.
However, as the still subjects in Figure S5 demonstrate, there does ap-
pear to be a floor in framewise displacement and DVARS values, and if
one wished to excise motion-contaminated signal as thoroughly as
possible, thresholds close to those floors would seem appropriate. Ad-
ditionally, unions of the flagged frames from framewise displacement
and DVARS, rather than intersections, could be used to generate more
liberal temporal masks. If the latter approach is favored, several pos-
sibilities exist. Linear regression of head realignment estimates
showed some utility in reducing the effects of motion-related artifact
on rs-fcMRI correlations (see Fig. 9). We currently perform these re-
gressions using single parameters applied over the entire brain. How-
ever, one could craft voxel-specific regressors that more precisely
account for the direction and amplitude of displacement at every
voxel in the brain. Such regressions may prove more effective than
the current, blunter regressions. Alternatively, covariance-based
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Fig. 9.Motion-induced colored noise does not arise from standard regressions in functional connectivity processing. Each row presents analyses performed on Cohort 1 using func-
tional connectivity data processing streams that differed only in the nuisance variables included in the multiple regression performed as the final step of functional connectivity
processing. Each row plots the changes in correlation produced by motion scrubbing as a function of distance between ROIs, and also shows a histogram of these correlations. Nui-
sance variables in the top row included movement estimates at each frame (the 6 head realignment parameters and their temporal derivatives), as well as whole-brain signal and
its derivative, white matter signal and its derivative, and ventricular signal and its derivative. Progressive analyses removed regressors (including derivatives) as indicated, and the
bottom panels use no regression at all. Motion regression does not produce (or completely eliminate) the artifact in question, though it does produce a modest reduction in the
changes in correlation produced by motion scrubbing.

2152 J.D. Power et al. / NeuroImage 59 (2012) 2142–2154
methods may prove to be effective in countering such artifacts (e.g.,
(Beckmann and Smith, 2004; Erhardt et al., 2010; Robinson et al.,
2009a)). We hope that groups with functional connectivity proces-
sing strategies that differ from the one used in this report will exam-
ine their data to see whether motion-induced correlations reside in
their analyses.

A variety of artifacts are present in fMRI data, including susceptibility
artifact, cardiac artifact, respiratory artifact, etc. It is useful to distinguish
between static vs. dynamic artifacts. Susceptibility inhomogeneity leads
to image distortions and signal voids that are especially problematic in
particular brain regions, such as orbitofrontal cortex and temporal cor-
tex above the petrous bone (Ojemann et al., 1997; Robinson et al.,
2009b; Simmons et al., 2009). Susceptibility artifacts shift in space ap-
proximately with the rest of the brain as the head moves, and their ef-
fects should be mitigated by conventional realignment procedures.
However, head movement can alter magnetization gradients in the Z-
direction, resulting in head position-dependent image warping and sig-
nal dropout. Head motion could thus potentially interact with artifacts
of all types in spatially inhomogeneous ways. It is therefore important
to note that no consistent spatial patterning over the brain was evident
in our data (Figs. 6 and 8). Since our collection of ROIs only sparsely pop-
ulates the ventral surface of the brain, it is possible that future
investigations may reveal that ventral regions are particularly sensitive
to motion-induced changes in correlations. Recently, temporal SNR has
been used tomeasure the quality of functional connectivity data in rela-
tion to headmotion (VanDijk et al., 2011). Similar approachesmay shed
light on specific spatial locations of interest for the motion-related
changes in correlationwe describe here. Other avenues for future inqui-
ry will include determining whether particular acquisition sequences
are less susceptible to this artifact, or whether particular processing
choices (e.g., voxel size, region size and placement, smoothing, etc.) ren-
der analyses less susceptible to this artifact.

How does a systematic artifact arise from head movement? Figure
S4 demonstrates that a single movement can produce changes in
BOLD signal throughout the brain in a regionally specific manner,
such that one portion of the brain displays increased signal, whereas
other portions display decreased signal. This effect introduces an ele-
ment of anti-correlation between such different portions, and causes
the timecourses of nearby voxels within a portion to resemble one
another more closely, providing a natural explanation for the in-
creased short-distance and decreased long-distance correlations
seen when high-motion frames are retained. In our experience, the
predominant head motion is a change in pitch (e.g., head nodding).
This motion, which is symmetric about the X (lateral) axis, could

image of Fig.�9


Fig. 10. The modular organization of brain-wide networks is fundamentally altered by head motion. Top and bottom rows depict data from children and adults, respectively. Left
and right columns depict unscrubbed and scrubbed data, respectively. Each panel shows the sub-network (community) organization within the appropriate dataset of a network
composed of the 264 ROIs studied in this report. Colors indicate sub-networks, and are independent in each panel, though congruent colors have been chosen across panels for ease
of visual comparison. Only right hemispheres are shown, but results are generally symmetric across hemispheres. The numbers between panels indicate the normalized mutual
information of community assignments between panels, a standard measure of how similar two sets of community assignments are (values of 1 indicate identical assignments).
Scrubbing adult data produced little change in community assignments (NMI=0.94), whereas scrubbing child data produced substantial changes in community assignments
(NMI=0.69). Moreover, though network organization in children and adults was initially quite dissimilar (NMI=0.56), it became more similar with scrubbing (NMI=0.70).
This increase in similarity is not observed with random scrubbing (NMI=0.58±0.01 over 10 repetitions of random scrubbing in children and adults). The reorganization of func-
tional network in children can be seen in the large contiguous patches of color (e.g. orange) in unscrubbed data, which become parts of distributed communities in scrubbed data
(see red circles for an example). All graphs are thresholded at 10% edge density (r>0.16, 0.15, 0.15, and 0.15 clockwise from upper left). For ease of visualization, nodes in com-
munities with fewer than 4 members are colored white, and thus white nodes are explicitly not a single community.
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lead to artifactual signal changes of opposite sign in the anterior and
posterior parts of the head, and in dorsal and ventral parts of the head
(a clear example of this is shown in Figure S4). The data of Fig. 7 are in
accord with such an interpretation, because the greatest increases in
correlation upon scrubbing are predominantly in relationships orient-
ed in anterior–posterior and dorsal–ventral directions, whereas
laterally-oriented correlations tend to decrease upon scrubbing. Also
note that head movements tend to produce large amplitude changes
in BOLD signal. Since correlation calculations are based upon differ-
ences of individual measures from means, these large displacements
in BOLD signal carry substantial weight in such computations.

In conclusion, subject head motion-induced artifacts contribute sub-
stantially to the rs-fcMRI signal, and produce systematic but spurious
patterns in correlation. This effect is present in healthy control subjects,
and is likely to be larger in developing, aging, or clinical populations
that, as groups, have more movement of all forms. Optimal handling of
rs-fcMRI data will need to take into account the consequence of motion
artifact that is only incompletely addressed with standard realignment
and motion regression analysis strategies.

Supplementary materials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.10.018.
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