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Abstract 

Recent statistical regularities have been demonstrated to influence visual search across a wide 

variety of learning mechanisms and search features. To function in the guidance of real-world 

search, however, such learning must be contingent on the context in which the search occurs and 

the object that is the target of search. The former has been studied extensively under the rubric of 

Contextual Cuing. Here, we examined, for the first time, Categorical Cuing: The role of object 

categories in structuring the acquisition of statistical regularities subsequently used to guide 

visual search. After an exposure session in which participants viewed six exemplars with the 

same general color in each of 40 different real-world categories, they completed a categorical 

search task, in which they searched for any member of a category based on a label cue. Targets 

that matched recent within-category regularities were found faster than targets that did not 

(Experiment 1). Such categorical cuing was also found to span multiple recent colors within a 

category (Experiment 2). It was observed to influence both the guidance of search to the target 

object (Experiment 3) and the basic operation of assigning single exemplars to categories 

(Experiment 4). Finally, the rapid acquisition of category-specific regularities was also quickly 

modified, with the benefit rapidly decreasing during the search session as participants were 

exposed equally to the two possible colors in each category. The results demonstrate that object 

categories organize the acquisition of perceptual regularities and that this learning exerts strong 

control over the instantiation of the category representation as a template for visual search. 
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How is our attention oriented to behaviorally relevant stimuli in the world? Traditional theories 

of visual attention held that attention is guided by two dichotomous mechanisms (Egeth & 

Yantis, 1997). First, attention is attracted to physically salient stimuli and events, such as a 

uniquely colored item against a relatively uniform background (Theeuwes, 1992) or an object 

that creates a unique onset transient (Hollingworth, Simons, & Franconeri, 2010; Yantis & 

Jonides, 1984). Second, attention is guided by observer goals (Desimone & Duncan, 1995; Folk, 

Remington, & Johnston, 1992; Wolfe, 1994). It is possible, for example, to strategically limit 

attention and gaze to those items that match a particular feature value (Williams, 1967; Zelinsky, 

1996). In the last 20 years, however, it has become increasingly evident that there are several 

additional forms of guidance that do not fit conveniently within this structure (Awh, Belopolsky, 

& Theeuwes, 2012), classified as effects of learning and history that influence the guidance of 

attention in a manner that is largely independent of stimulus salience and observer goals. These 

include inter-trial effects, in which recently relevant feature values and locations tend to attract 

attention and gaze (Kristjansson, Wang, & Nakayama, 2002; Li & Theeuwes, 2020; Talcott & 

Gaspelin, 2020), reward learning, in which stimuli previously associated with reward continue 

to recruit attention (Anderson, Laurent, & Yantis, 2011; Hickey, Chelazzi, & Theeuwes, 2010), 

learned distractor rejection, in which features and locations consistently associated with 

distraction become less distracting with experience (Gaspelin, Leonard, & Luck, 2015; Stilwell, 

Bahle, & Vecera, 2019; Wang & Theeuwes, 2018), and a group of spatial learning phenomena, 

in which learned associations between spatial contexts and target locations reliably guide 

attention (Chun & Jiang, 1998; Geng & Behrmann, 2005; Jiang, Swallow, Rosenbaum, & 

Herzig, 2013).      

 These effects of learning and history demonstrate that the human visual system is 
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sensitive to recent statistical regularities predicting the properties (appearance, location) that are 

likely to be associated with task-relevant objects. However, to support real-world visual search, it 

is not enough to learn the statistical regularities of search targets in general, since the guidance 

of attention to targets is strongly contingent on (at least) two forms of structure. The first is the 

type and identity of the context in which the search occurs; the relevant statistical regularities are 

those within a particular contextual type (e.g., kitchens) or exemplar (Grandma’s kitchen). For 

example, learning the locations associated with reward in a kitchen does not strongly generalize 

to rewarded locations on a freeway or in a church. The second form of structural organization is 

the type and identity of the object that is the target of search; the relevant statistical regularities 

are those associated with a particular object type (e.g., cars) or particular object exemplar (e.g., 

my car). Learning the recent statistics of the appearance of cars does not necessarily predict the 

appearance of the search target when one is looking for a bucket or for a cat (to choose just two 

examples).  

 In the literature on attention guidance by learning and history, there has been 

considerable work on the structural effects of search context, with research examining context 

specificity both in the learning of target location (e.g., Brockmole, Castelhano, & Henderson, 

2006; Chun & Jiang, 1998) and, to a lesser extent, in the learning of target appearance 

(Anderson, 2015; Chun & Jiang, 1999). In fact, work on context-specific learning of statistical 

regularities have been broadly collected under the term Contextual Cueing (for a recent review, 

see Sisk, Remington, & Jiang, 2019). Moreover, contextual cuing occurs both when the context 

is defined by consistent spatial information and when the context is defined by consistent identity 

information (Goujon, Didierjean, & Marmeche, 2009; Makovski, 2016; but see Makovski, 

2018). Thus, it is well established that scene context structures statistical learning for the purpose 
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of visual search. 

 However, there has been little or no investigation into the structural effects of target 

object category on statistical learning in visual search. Existing work on the statistical learning of 

visual categories has tended to focus, instead, on the learning of transition probabilities among 

categories, such as learning that birds tend to follow apples in sequences of images or that forest 

scenes tend to follow kitchen scenes (Brady & Oliva, 2008; Otsuka, Nishiyama, & Kawaguchi, 

2014; Otsuka, Nishiyama, Nakahara, & Kawaguchi, 2013). Such work probes category-to-

category associations, rather than role of categories in structuring the acquisition of perceptual 

regularities, and this existing work does not directly apply to visual search processes.  

Thus, in the present study, we conducted an initial investigation into Categorical Cuing: 

the role of object categories in organizing the learning of statistical regularities for the purpose of 

guiding visual search. Given that this is a broad topic, we made several decisions to focus the 

scope of investigation. First, we examined how statistical learning is organized by existing 

category structure rather than examining the formation of new object categories. For categorical 

cuing to be functional in real-world search, it would need to operate through modification of 

already well-established category representations, as it is rarely the case that we search for 

unfamiliar object types. To this end, we investigated how the recent statistical properties of 

exemplars from a category influence search for any member of that category. Note that the main 

categorization literature provides little direction in understanding this type of learning. Studies 

that have investigated well-established categories have tended to do so independently of new 

learning (e.g., work in the tradition of Rosch, 1975), and studies that have examined category 

learning have tended to do so for novel categories (e.g., work in the tradition of Medin & 

Schaffer, 1978). Thus, in addition to probing mechanisms of search guidance, the present study 
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has the potential to inform understanding of a key type of category learning: dynamic 

modification of existing real-world category representations. Second, we probed the effects of 

categorical regularities acquired initially in a task that did not involve visual search (rather than 

through repeated visual search, as is typical in the visual search literature), since our real-world 

exposure to object statistics does not always come in the course of visual search.  Finally, we 

focused on the learning of one specific surface feature property, color, rather than other possible 

object features, such as shape or location, since color is a strong cue controlling the guidance of 

attention during visual search (Alexander, Nahvi, & Zelinsky, 2019; Beck, Hollingworth, & 

Luck, 2012; Williams, 1967; Zelinsky, 1996).    

The structure of the general approach is illustrated in Figure 1. Each experiment began 

with an exposure session in which participants completed a simple categorization task. They 

were shown six exemplars from each of 40 categories (20 artifact, 20 natural) for 2 s and 

categorized each object as “artifact” or “natural”. The exemplars from a given category always 

appeared in the same general color (e.g., each backpack was a novel black exemplar, and each 

bunch of grapes was a novel red exemplar). After completing the exposure session, participants 

performed a categorical visual search task (Yang & Zelinsky, 2009) for new exemplars from the 

same categories. Because their search target on each trial was cued with a category label, such as 

“backpack”, participants were required to retrieve from memory a representation of category 

appearance (Solomon & Barsalou, 2004) to guide attention. Such retrieval of category 

information to guide search is known to be sensitive to category structure (Maxfield, Stadler, & 

Zelinsky, 2014). We leveraged this property of categorical search to probe whether the guidance 

of attention is sensitive to the category-specific statistics of recently exposed exemplars. The 

target object from the cued category either matched the color of recent exemplars from that  
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Figure 1. Overview of method and design of Experiment 1. Participants first completed an Exposure Session, in which 
they viewed 6 exemplars in each of 40 different categories (20 artifact and 20 natural) for 2 s. They categorized each 
object as “artifact” or “natural”. Exemplars from a category had the same general color. Participants then completed a 
Visual Search Session. On each trial, they first saw a word describing the target category for 800 ms, followed by a 1 s 
delay and a search array of eight objects. They searched for the object that matched the category label and reported 
the orientation of a superimposed letter “F”. The target object in the search array either matched or mismatched the 
general color of exemplars from that category presented during the exposure session. Note that the images in this 
figure are not drawn to scale: objects in the exposure and visual search sessions were displayed at the same size.
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category (e.g., black backpack, red grapes) or mismatched (e.g., brown backpack, green grapes), 

and search time provided a measure of the extent to which recent, category-specific statistics 

biased the instantiation of the search template. Participants performed four blocks of search, 

searching for each category twice in each block (once in the Match and once in the Mismatch 

condition). This allowed us to then examine the potential reduction of the category bias as 

participants were exposed equally to the two possible colors over the course of multiple searches. 

In Experiment 1, we implemented the basic method as illustrated in Figure 1. The 

primary dependent measure of search efficiency was manual reaction time (RT) as a function of 

within-category color match. In Experiment 2, we tested participants’ ability to learn a more 

complex distribution of statistical regularities by including multiple colors per category in the 

exposure phase. In Experiment 3, to ensure that the effect of color match was influencing the 

guidance of attention to the target object (instead of post-selection operations), gaze position was 

monitored, and the primary dependent measure was elapsed time until fixation of the target 

object. In Experiment 4, we tested whether a match effect would still arise in a simple 

categorization task that eliminated the need for visual search. In the second session, participants 

first saw the category label, followed by a single exemplar that was or was not a category 

member. Categorization RT for color-matching and mismatching category members was the 

primary dependent measure.  

Experiment 1 

Method 

 Participants. Participants in all four experiments were recruited from the University of 

Iowa community, were between 18 and 30 years of age, and received course credit for their 
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participation. All participants reported normal or corrected-to-normal vision. Each participant 

completed only one of the experiments. All human subjects’ procedures were approved by the 

University of Iowa Institutional Review Board. 

The present experiments were not based on an existing effect that could support an a 

priori power analysis. Thus, we used a relatively large sample of 40 in Experiment 1 to ensure 

sufficient power to detect a medium sized effect. For the type of within-subjects contrast of 

interest here, a sample of 40 has 80% power to detect an effect of η𝑝𝑝2 = .18. Five participants 

were replaced because accuracy in the search task fell below an a priori criterion of 85% correct. 

Of the final 40 participants, 27 were female. 

Apparatus. Stimuli were presented on an LED monitor (resolution: 1280 x 960 pixels) 

with a refresh rate of 100 Hz. View distance was 77 cm, maintained by a forehead rest. Manual 

responses were collected with a USB button box. The experiment was controlled by E-prime 

software (Schneider, Eschmann, & Zuccolotto, 2002).  

Stimuli. There were 40 common categories in the experiment: 20 artifact and 20 natural 

(see the Appendix for a complete list of categories). Most categories were defined at the basic 

level (e.g., “bear”); a few were defined at the subordinate level (e.g., “running shoe”). Within 

each category, there were 20 exemplar photographs. These were gathered from a variety of 

sources, including existing object databases and internet searches. Ten of the exemplars appeared 

in one general color, and 10 appeared in a different general color. For example, in the “car” 

category, 10 cars were blue, and 10 were red (see the Appendix for a complete list of the two 

colors for each category). The colors for each category were chosen so that there was always a 

high degree of variability in the particular colors a participant viewed in the exposure session, 

ensuring that any observed color effects on search were driven by color consistency within a 
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category rather than color consistency across all exposed items.  

For each participant, one of the two colors in each of the forty categories was randomly 

chosen for the exposure session. Six of the exemplars in the chosen color appeared in the six 

blocks of the exposure session (e.g., a participant would see six different blue cars in the 

exposure session). The remaining four exemplars in the chosen color appeared in the Match 

condition of the search session, one in each of the four blocks of search. Thus, participants 

always searched for a novel exemplar; they never searched for an exemplar that they had viewed 

in the exposure session. Four exemplars from the other color in each category were selected 

randomly to appear in the Mismatch condition in the four blocks of visual search. The sequence 

of presented exemplars in each category was determined randomly for each participant.  

For both phases of the experiment, object stimuli subtended 3.08° by 3.08°, presented 

against a white background with a central, black fixation disk. In the exposure session, each trial 

contained one object image presented centrally. In the search session, the eight objects were 

presented on a virtual circle around central fixation with a radius of 7.40° visual angle. The 

location of the first object was selected randomly within a range of 1° to 45°. The remaining 

objects were each offset by 45° around the virtual circle. Every search display contained one 

member of the cued category (i.e., all trials were target-present trials). The distractor objects on 

each trial were chosen from a set of 150 distractor images. Each distractor image came from a 

different category (75 artifact, 75 natural) that did not overlap with the 40 experimental 

categories. Each array had four artifacts and four natural objects. For example, if the target was 

an artifact, there were three artifact distractors (chosen randomly without replacement) and four 

natural object distractors (also chosen randomly without replacement). The assignment of objects 

to locations was determined randomly, and thus target location was chosen randomly. A small, 



11 
 

black letter “F” on a white background (Arial font, subtending 0.25° X 0.41°) was superimposed 

centrally on each array object, with the orientation of the “F” (facing left or facing right) selected 

randomly. The cue that appeared before each search array was a word presented in Arial font 

describing the category of the target object (e.g., “backpack”). 

Procedure. After arriving for the experiment session, participants were informed that 

they would participate in two separate experiments. They were given instructions for the first 

experiment, which was the exposure phase. The trial began with a centrally presented “Press 

Button” screen that remained visible until the participant pressed a pacing button. After a 400-ms 

delay, an object image was displayed for 2 s (equating the exposure duration for all stimuli). 

Participants pressed the left button if the object was from a naturally occurring category or the 

right button if the object was from an artifact category. Speed was not stressed in the instructions 

except that the response should be made within the 2-s presentation duration. The participants 

received “Incorrect!” feedback in red font for 2 s if they made an incorrect categorization or did 

not respond within 2 s. Participants completed six blocks of 40 trials. Within each block, they 

saw one exemplar from each of the 40 categories, randomly intermixed. They were required to 

take a short break between blocks. 

 After completing the exposure phase, participants received instructions for the second 

experiment, which was the search phase. Each trial again began with a centrally presented “Press 

Button” screen. Once the participant pressed a pacing button, there was a 400 ms delay, followed 

by the category cue label presented centrally for 800 ms. After cue offset, there was a 1000-ms 

blank delay before the presentation of the search display, which remained visible until response. 

Participants searched for the object matching the category label and reported the orientation of 

the “F” superimposed upon it, using the right button to report a right-facing “F” (i.e., standard) 
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and the left button to report a left-facing “F” (i.e., mirror-reversed). Participants were instructed 

to make this response as quickly and as accurately as possible. Incorrect responses were followed 

by “Incorrect!” feedback in red, Arial font for 2 seconds. Participants completed four blocks of 

80 trials. Within each block, they searched for each category twice, once with a matching color 

exemplar (i.e., an exemplar with the same general color as the exemplars from that category 

viewed in the exposure session) and once with a mismatching color exemplar (i.e., an exemplar 

with the color not viewed in the exposure session for that category). Within a block, trials were 

randomly intermixed. Participants were required to take a short break between blocks. 

The entire experiment lasted approximately 40 minutes. There was a gap of 

approximately 5 minutes between the end of the exposure session and the first trial of the search 

session.  

Data Processing. In the exposure session, categorization accuracy did not reliably differ 

as a function of object type (artifact/natural), with mean accuracy of 98.2% for artifacts and 

97.8% for natural objects. Mean search accuracy in the main session was 94.6% correct. There 

was no reliable effect of Match condition, no reliable effect of Block, and no reliable interaction. 

Incorrect search trials were eliminated from the RT analyses. In addition, for correct trials, RTs 

more than 2.5 SD from the participant’s mean in each condition were eliminated. The pattern of 

results was not influenced by RT trimming in any experiment in this study. A total of 8.3% of 

trials was eliminated from the RT analyses. 

Results and Discussion 

 The primary analysis concerned the speed of visual search when the target exemplar 

either matched the color of exemplars in that category from the exposure session (Match 
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condition) or did not match that color (Mismatch condition). In addition, we examined how the 

match effect changed over multiple blocks of search, in which participants saw exemplars in 

both possible colors from a category equally often. Finally, we conducted these analyses 

separately for the artifact category items and for the natural category items.   

The mean RT data were entered into a 2 (Match, Mismatch) X 4 (Block) repeated-

measures ANOVA. The results are reported in Figure 2A. First, there was a main effect of 

Match. Mean search RT was reliably shorter in Match condition (1152 ms) than in the Mismatch 

condition (1241 ms), F(1,39) = 61.3, p < .001, adj ƞ𝑝𝑝2  = .601.1 Second, the main effect of Block 

was not reliable, F(3,117) = 0.55, p = .649, adj ƞ𝑝𝑝2  = -.011. Finally, there was a reliable 

interaction between these factors, F(3,117) = 4.81, p = .003, adj ƞ𝑝𝑝2  = .087, indicating a reduction 

in the match effect as block number increased. Planned contrasts were consistent with this 

pattern. There was a reliable match effect in Block 1, F(1,39) = 45.1, p < .001, adj ƞ𝑝𝑝2  = .525, 

Block 2, F(1,39) = 24.0, p < .001, adj ƞ𝑝𝑝2  = .365, and Block 3, F(1,39) = 15.3, p < .001, adj ƞ𝑝𝑝2  = 

.264, but the effect only reached trend level in Block 4, F(1,39) = 3.96, p = .054, adj ƞ𝑝𝑝2  = .069. 

In sum, visual search was strongly influenced by the recent color statistics of natural categories, 

and this effect then diminished with repeated exposure to both colors within a category.  

One possible concern with the color manipulation is that color differences were 

sometimes correlated with subordinate category differences within the set of natural categories. 

For example, bears with a black color were drawn from the black bear species, and bears with a 

brown color were drawn from the brown bear and grizzly bear species. Thus, participants may 

have instantiated subordinate category representations for some categories rather than encoding  

 
1 We report adjusted η𝑝𝑝2 , which removes the positive bias inherent in standard η𝑝𝑝2  (Mordkoff, 2019). 
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the statistics of color directly, and they may have been more likely to populate the search 

template with a particular subordinate category representation depending on exposure conditions. 

In addition, subordinate category covariation among features (e.g., additional morphological 

regularities in the category of grizzly bears, such as head shape or posture) could plausibly have 

influenced performance for some natural categories. Such concerns do not extend to the artifact 

categories, however, as we purposefully chose arbitrary color differences for artifacts. To assess 

the effects of category type, we added artifact/natural as a factor in the ANOVA. Artifact/Natural 

did not produce a main effect, nor did it interact with the other factors. Moreover, the same 

pattern of statistical significance as in the main analysis was observed when the analysis was 

limited to artifact categories, with a reliable effect of Match, F(1,39) = 36.5, p < .001, adj ƞ𝑝𝑝2  = 

.470, no reliable effect of Block, F(3,117) = 0.49, p = .687, adj ƞ𝑝𝑝2  = -.013, and a reliable 

interaction, F(3,117) = 2.87, p = .039, adj ƞ𝑝𝑝2  = .045. The same pattern was also observed for 

natural categories, with a reliable effect of Match, F(1,39) = 45.3, p < .001, adj ƞ𝑝𝑝2  = .525, no 

reliable effect of Block, F(3,117) = 0.96, p = .417, adj ƞ𝑝𝑝2  = -.001, and a trend-level interaction, 

F(3,117) = 2.66, p = .052, adj ƞ𝑝𝑝2  = .040. The results are plotted separately for artifact and natural 

categories in Figure 2B and 2C.  

A second possible concern is that the match effect could have been generated by general 

color priming from the overall set of items viewed in the exposure session rather than from 

within-category regularities. This is unlikely, as the exposed colors varied widely and often had 

opposite values in hue or lightness (see Appendix). In addition, the match effect (lower RT in the 

Match than in the Mismatch condition) was numerically observed for 38 (18 artifact, 20 natural) 

of the 40 category items. Thus, we can be confident that the match effect was caused by the 

learning of within-category color regularities, observed broadly across the set of categories.  
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 To summarize the results, participants were initially much faster to respond to the search 

target when its color matched the color of recently exposed exemplars. Specifically, in Block 1 

of search, when participants had recently viewed six exemplars in one color from each category, 

they were, on average, 134 ms faster to respond to the search target in the Match condition than 

in the Mismatch condition. These category-specific biases developed despite exposure to a wide 

range of individual colors across a large set of 40 categories. Moreover, the biases were rapidly 

modified by the properties of exemplars in the search session, diminishing substantially over the 

course of four blocks of search in which both colors in a category appeared equally often. 

Together, the results suggest that category-specific statistics are acquired simultaneously 

across a wide range of real-world categories, and that these statistics exert strong control over the 

specific instantiation of the category representation as a template for visual search. More 

generally, the results indicate that although real-world category representations may be relatively 

stable over longer time scales, the functional expression of the category representation at any 

specific time is likely to be significantly influenced by the statistics of recently viewed 

exemplars. 

Experiment 2 

 In Experiment 1, exposed exemplars from a category shared a single color. However, 

real-world statistical regularities will almost always be more complex than the predominance of 

a single feature value, and consistencies among exemplars will likely change as a function of 

context, time of day, and so forth. In Experiment 2, we tested whether category-specific learning 

can span multiple exposed colors in each category, as it would need to in order to support real-

world guidance of visual search. The method of Experiment 2 was the same as in Experiment 1, 

except participants saw exemplars with two different colors in each category during the exposure 
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session (e.g., black backpacks and brown backpacks). In the search session, target objects 

following the category cue either appeared in one of the exposed colors (Match condition) or in a 

third color (e.g., yellow backpacks) that had not been presented during the exposure session 

(Mismatch condition).  

Participants. The observed effect size for the main effect of Match in Experiment 1 was 

adj ƞ𝑝𝑝2  = .601, indicating that an N of 7 would be necessary to achieve 80% power. Given that we 

expected the match effects to be reduced with multiple exposed colors in each category, we used 

a substantially larger N of 24. One participant was replaced for failing to achieve 85% accuracy. 

Of the final 24 participants, 17 were female. 

Apparatus. The apparatus was the same as in Experiment 1. 

Stimuli and Procedure. The stimuli and procedure were the same as in Experiment 1 

with the following exceptions. Some changes to the categories were necessary to ensure that 

three plausible colors were available for each. There were a total of 36 categories: 18 artifact and 

18 natural. For each category, there were 27 exemplar images, nine in each of the three colors. A 

full list of the categories and the three colors associated with each can be found in the Appendix. 

For each participant, colors were randomly assigned to conditions using the same method as in 

Experiment 1. 

In the exposure session, participants completed six blocks of 72 trials. Each block 

presented one exemplar from each of the 36 categories in each of the two colors. In the search 

phase, participants completed three blocks of 108 trials. In each block, they searched for each 

category three times, twice in the Match condition (with each of the exposed colors appearing 

once) and once in the Mismatch condition. The entire experiment lasted approximately 50 
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minutes. 

Data Processing. In the exposure session, mean categorization accuracy 

(artifiact/natural) was reliably higher for artifacts (98.7% correct) than for natural objects 

(98.0%),  t(23) = 2.17, p = .040, adj ƞ𝑝𝑝2  = .134, though accuracy was clearly very high for both 

object types. Mean search accuracy in the main session was 95.9% correct. There was no reliable 

effect of Match condition, no reliable effect of Block, and no reliable interaction. Incorrect 

search trials were eliminated from the RT analyses. In addition, for correct trials, RTs more than 

2.5 SD from the participant’s mean in each condition were eliminated. A total of 6.7% of trials 

was eliminated from the RT analyses. 

Results and Discussion 

The mean RT data were entered into a 2 (Match, Mismatch) X 3 (Block) repeated-

measures ANOVA. The results are reported in Figure 3. First, there was a main effect of Match. 

Mean search RT was reliably shorter in Match condition (1185 ms) than in the Mismatch 

condition (1220 ms), F(1,23) = 10.2, p = .004, adj ƞ𝑝𝑝2  = .276. The was no main effect of Block, 

F(2,46) = 0.27, p = .767, adj ƞ𝑝𝑝2  = -.031, nor an interaction between these factors, F(2,46) = 1.16, 

p = .32, adj ƞ𝑝𝑝2  = .007. The magnitude of the match effect did not reliably differ for artifacts and 

natural objects, F(1,23) = 4.03, p = .057, adj ƞ𝑝𝑝2  = .112, and there was no interaction between 

artifact/natural and Block, F(2,46) = 0.194, p = .825, adj ƞ𝑝𝑝2  = -.035. The match effect was 

observed numerically for 28 (13 artifact, 15 natural) of the 36 category items. 

In sum, the match effect was observed despite recent exposure to two different colors 

within each category. Unlike Experiment 1, there was no evidence that the magnitude of the 

guidance effect diminished over the course of three blocks of search. This was plausibly caused  



Figure 3. Experiment 2 results. Mean search RT as a function of Match condition and Search Block. Error bars are 
condition-specific, within-subject 95% confidence intervals (Morey, 2008).
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by the fact that matching-color exemplars appeared twice as often in the search blocks as novel 

color exemplars and that there were only three blocks of search (instead of four, as in 

Experiment 1). 

Experiment 3 

 In Experiments 1 and 2, inferences were drawn from manual RT. It can be difficult from 

end-of-trial measures such as RT to identify when during the search process a manipulation is 

exerting influence. Recent statistical regularities could have influenced the guidance of attention 

to the target; they could also have influenced the time required to confirm the identity of the 

target once it had been attended. To ensure that a substantial proportion of the effect on manual 

RT was due to guidance processes per se, we replicated the main features of Experiment 1 but 

monitored participants’ gaze position throughout each search trial. If the effect derives, to a 

significant degree, from guidance processes, we should observe more rapid oculomotor orienting 

to target objects on Match trials compared with Mismatch trials.  

Method 

Participants. As discussed above, the effect size in Experiment 1 indicated that an N of 7 

would be necessary to achieve 80% power. As a conservative approach, we used an N of 16. Of 

the 16 participants, 12 were female.    

Apparatus. The apparatus was identical to Experiment 1, except participants’ right eye 

position was monitored during the search phase using an SR Research EyeLink 1000 eye tracker 

sampling at 1000 Hz. 

  Stimuli and Procedure. The stimuli and procedure were identical to Experiment 1 with 

the following exceptions. At the beginning of the search phase, participants were instructed that 
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their gaze position would be monitored, and the eye tracker was calibrated. The eye tracker was 

re-calibrated between search blocks and as needed throughout the search session if the 

participant’s gaze position deviated by more than approximately 0.75º from the central fixation 

disk. Each trial of search was initiated by the experimenter, who pushed a silent button upon 

visual confirmation that the participant was maintaining central fixation. The target “F” stimuli, 

which were the same as in Experiment 1, were sufficiently small that we expected the target 

object to be fixated before response on the large majority of trials. 

Data Processing. Saccades were defined by a combined velocity (30º/s) and acceleration 

(8000º/s2) threshold. Fixation position data were analyzed with respect to a region of interest 

defined around the target object. The region was rectangular and extended approximately 0.3º 

beyond the edges of the target objects. An entry into the target region was defined as one or more 

consecutive fixations within that region. 

In the exposure session, categorization accuracy did not reliably differ as a function of 

object type (artifact/natural), with mean accuracy of 98.8% for artifacts and 98.0% for natural 

objects. Mean search accuracy in the main session was 97.9% correct. There was no reliable 

effect of Match condition, no reliable effect of Block, and no reliable interaction. Trials were 

removed from the analyses of search efficiency if the participant did not fixate the target before 

response, if the response was incorrect, or, for the remaining trials, if RT was more than 2.5 SD 

from the participant’s condition mean. A total of 7.3% of trials was eliminated from the search 

efficiency analyses. 

Results and Discussion 

Each trial was parsed into two periods based on the eye tracking record (Malcolm & 

Henderson, 2009; Zelinsky & Sheinberg, 1997). The first, termed search time, was defined as the 
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time from onset of the search array to the beginning of the first fixation on the target region for 

the entry that immediately preceded the response. The second, termed decision time, was defined 

as the time from the end of the search time period to the manual response. On 4.7% of trials, the 

participant’s gaze entered the target region, exited the target region, and then re-entered later, 

followed by the response. These trials were included in the search time analysis, and the search 

time measure for these trials was the time from array onset to the beginning of the last entry into 

the target region. However, these 4.7% of trials were removed from the decision times analysis, 

as it is possible that decision processes spanned these multiple entries. The sum of the two 

periods on a trial is RT. Search time will generally (though not necessarily exclusively) reflect 

processes involved in directing attention to the target (Hollingworth & Bahle, 2020). Decision 

time will generally (though not necessarily exclusively) reflect processes involved in confirming 

that the fixated object matches the target category, discriminating “F” orientation, and executing 

the manual response. If recent category-specific statistics influence the formation of the template 

that guides visual search, then we should observe a match effect on the search time measure.  

Search Time. Mean search time results are presented in Figure 4A. The data were entered 

into a 2 (Match, Mismatch) X 4 (Block) repeated-measures ANOVA. First, there was a main 

effect of Match, F(1,15) = 16.8, p = .001, adj ƞ𝑝𝑝2  = .497, with shorter mean search time in the 

Match condition (614 ms) than in the Mismatch condition (678 ms). There was no effect of 

Block, F(3,45) = 0.51, p = .680, adj ƞ𝑝𝑝2  = -.032. Finally, there was a trend-level interaction 

between these two factors, F(3,45) = 2.43, p = .078, adj ƞ𝑝𝑝2  = .082, consistent with a reduction in 

the size of the match effect across blocks. Planned follow-up tests indicated that the color-match 

effect was statistically reliable in both Block 1, F(1,15) = 7.69, p = .014, adj ƞ𝑝𝑝2  = .295, and 

Block 2, F(1,15) = 26.1, p < .001, adj ƞ𝑝𝑝2  = .611, but not in Block 3, F(1,15) = 3.65, p = .075, adj  
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Figure 4. Experiment 3 results. Panel A displays mean search time (elapsed time until the first fixation of the target 
preceding the response) as a function of Match condition and Search Block. Panel B displays mean decision time 
(time from target fixation until response), and Panel C displays mean manual RT. Error bars are condition-specific, 
within-subject 95% confidence intervals (Morey, 2008).
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ƞ𝑝𝑝2  = .142, or Block 4, F(1,15) = 0.189, p = .670, adj ƞ𝑝𝑝2  = -.053. The magnitude of the match 

effect did not reliably differ for artifacts and natural objects, F(1,15) = 1.64, p = .220, adj ƞ𝑝𝑝2  = 

.039, and there was no interaction between artifact/natural and Block, F(3,45) = 1.20, p = .320, 

adj ƞ𝑝𝑝2  = .012. The match effect was observed numerically for 32 (15 artifact, 17 natural) of the 

40 category items. 

Thus, after being exposed to exemplars with a consistent color within a category, 

participants were faster to orient their attention to the target when it matched that color compared 

with when it did not, and this effect was observed consistently across the 40 categories. 

Decision Time. The decision time data are presented in Figure 4B. There no main effect 

of Match, F(1,15) = 2.91, p = .109, adj ƞ𝑝𝑝2  = .107, although the numerical trend was toward 

shorter mean decision time in the Match condition (591 ms) than in the Mismatch condition (604 

ms). There was also no effect of Block, F(3,45) = 0.76, p = .524, adj ƞ𝑝𝑝2  = -.015, and no 

interaction, F(3,45) = 0.19, p = .905, adj ƞ𝑝𝑝2  = -.053. 

Manual RT. To compare the Experiment 3 results directly with those from Experiment 1, 

we also analyzed mean manual RT (Figure 4C). There was a reliable main effect of Match, 

F(1,15) = 22.0, p < .001, adj ƞ𝑝𝑝2  = .567, with shorter mean RT in the Match condition (1201 ms) 

than in the Mismatch condition (1276 ms); there was no effect of Block, F(3,45) = 0.71, p = 

.549, adj ƞ𝑝𝑝2  = -.018; and there was a trend level interaction between these two factors, F(3,45) = 

2.32, p = .088, adj ƞ𝑝𝑝2  = .076, consistent with a reduction in the size of the match effect across 

blocks. Thus, the RT results from Experiment 3 replicated those of Experiment 1.  

In sum, when RT was decomposed via the eyetracking record into search time and 

decision time measures, the bulk of the match effect was observed on search time, suggesting 
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that the primary influence was on the guidance of attention to the target. The results are 

consistent with our conclusion that recent statistical regularities influence the instantiation of the 

category-specific template guiding search. 

Experiment 4 

 In Experiment 3, the search time measure primarily reflected the guidance of attention to 

the target. Such guidance processes were likely to be based both on low-level visual similarity 

between template and target and on partial or full categorization of the target object before 

foveation. To isolate categorization processes, in Experiment 4 we eliminated the visual search 

component. After completing the same exposure phase as in Experiment 1, participants 

performed a simple categorization task. They were first shown a category label, then a single 

object exemplar at the center of the screen. The object was either a member of the category 

(Same condition) or not (Different condition). When the object matched the category label, its 

color either matched or mismatched the general color of the exemplars in the exposure phase. 

Faster and/or more accurate categorization in the Match compared with the Mismatch condition 

would indicate that the basic processes involved in assigning objects to categories were 

influenced by the statistical properties of recently viewed exemplars. 

Method 

 Participants. As discussed above, the RT data from Experiment 1 suggested that an N of 

7 would be sufficient for 80% power to observe a match effect. However, given that we 

eliminated the visual search component in Experiment 4 potentially altering the processes 

contributing to the match effect, we used a substantially larger N of 24 participants. Of the 24 

participants, 20 were female.  
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Procedure. The exposure phase was identical to Experiment 1. For the categorization 

phase, participants first saw a category label (e.g., “backpack”) for 800 ms, followed by a 1000-

ms blank period, after which one object was presented at central fixation. On Same trials (50% of 

all trials), the object was a member of the category (always a novel exemplar). On Different 

trials, it was an object drawn randomly from the set of 150 distractors used in the search task of 

Experiment 1.  Participants pressed the left response button if the object was from the cued 

category and the right response button if it was from a different category. They were instructed 

to make this response as quickly and as accurately as possible. 

There were two categorization blocks of 160 trials each. In each block, participant saw 

the label for each of the 40 categories four times: twice in the Same condition and twice in the 

Different condition. For trials in the Same condition, one trial was in the Match condition and 

one was in the Mismatch condition. Trials from the different conditions were randomly 

intermixed. 

Results and Discussion 

In the exposure session, accuracy on the artifact/natural task did not reliably differ as a 

function of object type, with mean accuracy of 98.7% for artifacts and 98.2% for natural objects. 

The key results came from categorization accuracy and RT in the main session, as follows. 

Categorization Accuracy. Overall categorization accuracy was 96.3% correct. Mean 

accuracy was reliably higher for the Different condition (96.9%) than for the Same condition 

(95.7%), F(1,23) = 4.59, p = .043, adj ƞ𝑝𝑝2  = .130. The mean accuracy data from the Same 

condition were entered in a 2 (Match, Mismatch) X 2 (Block) repeated-measures ANOVA. 

There was no main effect of Match, F(1,23) = .038, p = .846, adj ƞ𝑝𝑝2  = -.042, with 95.5% correct 

in the Match condition and 95.3% correct in the Mismatch condition. There was a reliable main 
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effect of Block, F(1,23) = 10.1, p = .004, adj ƞ𝑝𝑝2  =.274, with mean accuracy increasing from 

Block 1 (94.2%) to Block 2 (96.6%). The two factors did not interact, F(1,23) = ,182, p = .674, 

adj ƞ𝑝𝑝2  = -.035. 

Categorization RT. The RT analysis was limited to correct trials. In addition, trials with 

RTs more than 2.5 SD from the participant’s mean in each condition were removed from 

analysis (1.5% of correct trials). The results are presented in Figure 5. The Same condition data 

were entered into a 2 (Match, Mismatch) X 2 (Block) repeated-measures ANOVA. First, there 

was a main effect of Match, F(1,23) = 5.66, p = .026, adj ƞ𝑝𝑝2  = .162. There was no effect of 

Block, F(1,23) = .512, p = .481, adj ƞ𝑝𝑝2  = -.021, but there was a trend-level interaction between 

these two factors, F(1,23) = 4.03, p = .057, adj ƞ𝑝𝑝2  = .112. Planned contrasts indicated that the 

match effect was statistically reliable in Block 1, t(23) = 3.65, p =.001, adj ƞ𝑝𝑝2  = .339, but not in 

Block 2, t(23) = 0.68, p =.498, adj ƞ𝑝𝑝2  = -.014. The magnitude of the match effect did not reliably 

differ for artifacts and natural objects, F(1,23) = .771, p = .389, adj ƞ𝑝𝑝2  = -.010, and there was no 

interaction between artifact/natural Block, F(1,23) = .738, p = .399, adj ƞ𝑝𝑝2  = -.011. The Block 1 

match effect was observed numerically for 34 (16 artifact, 18 natural) of the 40 category items.2 

In sum, participants were initially faster to categorize items that matched the color of 

exemplars from that category in the exposure session. Thus, recent category-specific statistical 

regularities influence basic processes involved in assigning exemplars to categories. Similar to 

the effect on visual search in Experiments 1 and 3, color biases were substantially reduced across 

blocks of categorization as participants were equally exposed to items of both colors within a  

 
2 Categorization RT for “different” trials were not of theoretical interest, since there was no systematic relationship between the 
cued category and the to-be-categorized object. Mean correct RT was 538 ms following an artifact cue label and 552 ms 
following a natural object cue label.   



Figure 5. Experiment 4 results. Mean categorization RT for same-category items as a function of Match condition and 
Block. Error bars are condition-specific, within-subject 95% confidence intervals (Morey, 2008).
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category. 

General Discussion 

 The results of the present study demonstrate that the influence of statistical regularities on 

visual search is structured by the category of the target object. Participants were exposed to a 

wide range of exemplars of different colors, with color consistency maintained only at the 

within-category level. When searching for an exemplar of one of those categories based on a 

category label cue, the guidance of visual search was strongly influenced by within-category 

color regularities, with substantially faster search for exemplars that matched the color of 

recently viewed exemplars in that category. This basic categorical cuing effect was observed 

even when within-category color variation was introduced during the exposure session 

(Experiment 2). The bulk of the effect during search was on the process of orienting attention 

and gaze to the target object (Experiment 3). However, even when the task did not require visual 

search (Experiment 4), regularities among recent exemplars from a category influenced basic 

categorization efficiency, illustrating that visual search guidance and visual categorization are 

similarly sensitive to recent statistical regularities. 

This work identifies a novel form of structure in the literature on learning and history in 

visual search. Just as statistical learning is structured by scene context, statistical learning is 

structured by target object category. Category-structured statistical learning may be a particularly 

robust form of learning, as demonstrated by the following results. First, participants 

simultaneously learned feature regularities across a very large number of structural units 

(categories). Specifically, they acquired information about the colors of exemplars from 40 

different real-world object categories, and in Experiment 2, they learned two colors in each of 36 

object categories. This raises the possibility that, under real-world conditions, people track 
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perceptual statistics across all encountered object categories. This is plausible given evidence of 

extremely large memory capacity for the perceptual details of real-world objects (Brady, Konkle, 

Alvarez, & Oliva, 2008; Hollingworth, 2004). Second, statistical regularities were acquired 

relatively efficiently. The basic categorical cuing effect was established after six exposures. It 

was then substantially reduced across just a few exposures to an even distribution of the two 

colors during the search blocks. Thus, the “acquisition window” over which recent category-

specific statistics influence search may be quite narrow. Finally, category-specific statistical 

learning generalized across two substantially different tasks. The exposure task involved 

superordinate-level categorization of single objects; the search task involved visual search 

through 8-item object arrays and report of a superimposed letter. This type of robust 

generalization across stimulus and task differences is quite rare in the literature on learning and 

visual search (and in the literature on statistical learning more generally). For example, 

contextual cuing and related effects tend to be strongly stimulus and viewpoint specific 

(Brockmole & Henderson, 2006a; Chua & Chun, 2003), and generalization tends to be limited to 

structurally similar visual search tasks (Jiang, Swallow, Won, Cistera, & Rosenbaum, 2015). 

Together, these properties suggest that categorical cuing is likely to be a robust and pervasive 

form of structured learning. 

The two major structural factors highlighted thus far have been the scene/spatial context 

in which the search occurs and the type of object that is the target of search. However, there are 

likely to be additional dimensions that have yet to be (or have been only minimally) studied, 

such as task and temporal context. In the former case, there is initial evidence that the learning of 

spatial regularities is quite strongly task specific, with poor generalization even to other, quite 

similar search tasks (Jiang et al., 2015). Temporal structure has not been studied to our 
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knowledge, but there are likely to be regularities in the properties of real-world search targets 

that become relevant at, for example, different times of day. In addition, there is a distinction in 

the type of guidance that can be implemented from observed regularities: the learning of target 

location regularities can support the spatial guidance of attention, and the learning of surface-

feature regularities can support feature-based guidance of attention. The combination of these 

multiple factors and the type of learning (spatial, featural) creates a potentially elaborate 

structure for the acquisition of target regularities, much of which has received little or no 

attention from researchers. 

An issue that has arisen in the literature on statistical learning and search guidance is 

whether or not the effects are based on implicit memory (Chun & Jiang, 1998; Vadillo, 

Konstantinidis, & Shanks, 2015). This could be applied in two different ways to the present 

study. First, we can ask whether participants were aware of the color consistencies during the 

exposure session. If so, we can then ask whether they used this knowledge to guide search 

strategically in the search session. On the first of these questions, we do not see this as critical for 

drawing inferences from the present study. In the literature on contextual cuing, guidance effects 

are observed for repeated target locations in real-world scenes when participants are aware of the 

contingencies (e.g., Brockmole & Henderson, 2006b), and similar effects are observed for 

abstract stimulus arrays under conditions where awareness is much more limited (e.g., Chun & 

Jiang, 1998). It may be of interest to test awareness of regularities in future studies, but here we 

are concerned with the guidance effect itself. On the second question, we think it is unlikely that 

participants guided attention strategically based on statistical regularities observed in the 

exposure session, or, at least, it is unlikely that they persisted in such a strategy. In Experiments 

1 and 3, using the standard method, reliable effects of match were observed in both Blocks 2 and 
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3. Block 2 started after 80 Block 1 trials, in which the search target was equally likely to match 

or mismatch the exposed color (and Block 3 after 160 trials). Yet, for Experiment 1, 31 of the 40 

participants showed a match effect in Block 2 and 34 of 40 in Block 3. In Experiment 3, 13 of 16 

showed a match effect on search time for Block 2 and 12 of 16 for Block 3. If participants were 

aware of within-category color distributions, it unlikely that they would persist in strategic search 

for exposed colors despite such a large number of trials disconfirming the utility of that strategy. 

This also reduces the possibility that the effects were driven by local priming based on color 

repetition within a category. 

The present data also highlight the fact that, to understand visual search processes, we 

must understand how search templates are formed from long-term memory (LTM) 

representations, and particularly from representations of real-world categories. When research on 

visual search began, it was primarily a tool for understanding fundamental aspects of vision and 

attention (e.g., what constitutes a feature in vision and how are features integrated?). Visual 

search is now treated as an important human behavior to be studied in its own right: how do 

people find the objects they need in complex scenes? In the earlier tradition, the process of 

forming a search template was not of central interest. Paradigms were designed so that the target 

of search remained the same across an entire experiment or was visually presented immediately 

before each search trial commenced (very frequently both). In contrast, real-world search 

behavior is characterized by frequently changing targets, and there is no helpful experimenter to 

hold up a picture of, say, a pen, immediately before you search for one. Instead, information to 

form the search template must be retrieved from LTM, and this will occur dynamically as task 

goals change and different objects become relevant (Land & Hayhoe, 2001). 

The LTM information used to form the template could either concern a specific target 
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exemplar (when only a favorite blue pen will do) or the target category (when any pen will do). 

Such template representations formed from LTM will never provide a perfect match to the visual 

properties of the object in the scene (Castelhano, Pollatsek, & Cave, 2008; Malcolm & 

Henderson, 2009; Vickery, King, & Jiang, 2005; Wolfe, Horowitz, Kenner, Hyle, & Vasan, 

2004), particularly as the template representation is likely to draw from multiple encounters with 

an exemplar (in the case of exemplar-specific search) and from multiple different exemplars in a 

category (in the case of categorical search). This latter form of search (Yang & Zelinsky, 2009) 

is extremely common in real-world behavior and also provides a key test bed for examining how 

long-term knowledge is translated into a visual search template, since extensive research on the 

structure of categorical knowledge can inform models of template formation, and evidence from 

categorical search tasks can, in turn, inform our understanding of real-world category 

representations and categorization mechanisms. Foundational work on categorical search has 

been conducted by Zelinsky and colleagues, who demonstrated that, despite the necessary 

imprecision of categorical search templates (relative to the target object as it appears in the 

scene), attention can be efficiently guided to category members (Yang & Zelinsky, 2009), and 

this guidance is graded by target typicality (Maxfield, Stalder, & Zelinsky, 2014), drawing a 

direct link between template guidance and the known properties of category structure (e.g., 

Rosch, Mervis, Gray, Johnson, & Boyesbraem, 1976). Moreover, evidence from categorical 

search has been used to infer the visual differences that are functional in defining real-world 

categories (Yu, Maxfield, & Zelinsky, 2016).  

In the present study, we demonstrated that categorical search templates, rather than 

always reflecting typical values within a category established over extensive experience, can be 

strongly biased to instantiate visual properties of recently viewed exemplars. In addition, the 
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effects observed in the cued visual search task generalized to a cued visual categorization task 

(Experiment 4), in which participants saw a category label cue and then responded to indicate 

whether a photograph of a single exemplar was a member of that category or not. In both cases, 

participants had time to generate a representation of the category before the appearance of the 

visual stimuli, creating a template for search guidance, in the search task, or for comparison with 

the test stimulus, in the simple categorization task. This is in an inductive use of the category, as 

participants generated a prediction about the future appearance of category members based on a 

general category cue. Note that this differs from the typical use of category information in the 

literature on categories and concepts, in which participants first view a stimulus item and then 

decide in which of several categories it belongs (a stimulus categorization task). In the search 

task, we can be confident that the inductive use of the category was functional in generating the 

match effect, since match had a large effect on the guidance of gaze to the target (requiring a 

predictive template) and a much smaller effect on the confirmation of the target category once 

the object had been fixated. Thus, statistical regularities among recently viewed exemplars in a 

category appear to have a substantial influence on predictions about the appearance of future 

exemplars.  

Exemplar effects have been observed in the standard categorization literature, but under 

substantially different circumstances than implemented here. They are characteristically found in 

learning paradigms (Allen & Brooks, 1991; Medin & Schaffer, 1978; Regehr & Brooks, 1993; 

Thibaut & Gelaes, 2006), in which participants categorize a small set of highly controlled, novel 

stimuli, presented numerous times over the course of the experiment, into a relatively small 

number of categories. More closely related to the present method, exemplar effects have been 

observed in the specialized domain of medical diagnosis, in which similarity to previously 
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viewed individual cases exerted a strong effect on the categorization of subsequent cases 

(Brooks, Norman, & Allen, 1991). These studies employed standard stimulus categorization 

tasks. As discussed above, the present exemplar effects were observed in the inductive use of the 

category, suggesting that exemplar effects generalize across visual categorization and category-

based induction (see discussion in Murphy, 2002). In addition, the exemplar effects observed 

here were for common, everyday objects belonging to a relatively large number of categories 

that should have been highly familiar to all participants. Specifically, exemplar effects were 

found in a domain where they might be least expected: overlearned real-world categories. 

Although our knowledge and application of real-world categories seems stable, the functional 

expression of the category may be instead quite variable, depending on the statistics of recently 

viewed exemplars. In sum, the current results indicate that exemplar effects are likely to be 

pervasive across a range of categorization tasks, exposure conditions, and category types. 

It is important to note that although we found exemplar effects, we do not necessarily 

interpret these data as mediating between competing exemplar (e.g., Medin & Schaffer, 1978; 

Nosofsky, 1987) and prototype (e.g., Minda & Smith, 2001; Rosch, 1975) theories of 

categorization, as they could be plausibly accommodated by either approach. In particular, a 

prototype approach could accommodate the present results by weighting more heavily recently 

observed features in a summary representation or by adding the assumption that similarity to a 

small number of highly accessible exemplars can influence the use of the category in addition to 

that derived from a more stable summary representation (e.g., Allen & Brooks, 1991). What is 

clear is that to account for the present results, both prototype and exemplar theories would need 

to incorporate strong dependence on recently observed properties and/or exemplars.  

Finally, variability in category use based on recently observed properties/exemplars has 
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practical implications for understanding high-stakes visual search tasks, such as those found in 

Radiology and baggage screening. These are often categorical search tasks, in that the observer is 

monitoring for the presence of any target that belongs to a class (e.g., cancerous lesions, 

weapons). Biases created by recently viewed exemplars could have a substantial influence on 

search guidance in these domains. In fact, a phenomenon of this type has been identified in 

Radiology: after detecting a first, benign lesion within an image, sensitivity to additional, 

cancerous lesions is substantially reduced, a phenomenon termed satisfaction of search (e.g., 

Berbaum et al., 1991). One cause of this phenomenon is a bias in perceptual set: Detection of the 

first lesion biases the search template toward visual and categorical properties of that lesion, 

causing readers to preferentially attend to similar image regions and to miss dissimilar, cancerous 

lesions. Indeed, both in Radiology (Mello-Thoms, 2006) and in traditional search tasks (Cain, 

Adamo, & Mitroff, 2013), subsequently detected targets have higher similarity to the first target 

than do subsequently missed targets. The present results raise the possibility that this type of 

suboptimal search could be understood within the broader context of exemplar effects in the 

formation of categorical search templates. 

Conclusion 

Here, we examined how statistical learning of the surface feature properties of real-world 

objects is organized by object category and the effect of this learning on the instantiation of a 

categorical template for visual search. The work identifies a novel and pervasive form of 

structure in the literature on learning and history in visual search. More generally, it suggests that 

common, real-world categories are surprisingly labile, with the functional implementation of the 

category strongly dependent on the properties of recently observed exemplars.  
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Figure Captions 

Figure 1. Overview of method and design of Experiment 1. Participants first completed an 

Exposure Session, in which they viewed 6 exemplars in each of 40 different categories (20 

artifact and 20 natural) for 2 s. They categorized each object as “man made” or “natural”. 

Exemplars from a category had the same general color. Participants then completed a Visual 

Search Session. On each trial, they first saw a word describing the target category for 800 ms, 

followed by a 1 s delay and a search array of eight objects. They searched for the object that 

matched the category label and reported the orientation of a superimposed letter “F”. The target 

object in the search array either matched or mismatched the general color of exemplars from that 

category presented during the exposure session. Note that the images in this figure are not drawn 

to scale: objects in the exposure and visual search sessions were displayed at the same size. 

Figure 2. Experiment 1 results. Panel A displays mean search RT as a function of Match 

condition and Search Block. Panels B and C plot the same data for artifact and natural category 

items separately. Error bars are condition-specific, within-subject 95% confidence intervals 

(Morey, 2008). 

Figure 3. Experiment 2 results. Mean search RT as a function of Match condition and Search 

Block. Error bars are condition-specific, within-subject 95% confidence intervals (Morey, 2008). 

Figure 4. Experiment 3 results. Panel A displays mean search time (elapsed time until the first 

fixation of the target preceding the response) as a function of Match condition and Search Block. 

Panel B displays mean decision time (time from target fixation until response), and Panel C 

displays mean manual RT. Error bars are condition-specific, within-subject 95% confidence 

intervals (Morey, 2008). 
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Figure 5. Experiment 4 results. Mean categorization RT for same-category items as a function of 

Match condition and Block. Error bars are condition-specific, within-subject 95% confidence 

intervals (Morey, 2008). 



Category Type Label Cue Color1 Color2

Artifact Backpack Black Light brown

Artifact Baseball Cap Blue Tan

Artifact Bed Black White

Artifact Camera Blue Purple

Artifact Car Blue Red

Artifact Cooking Pot Black Red

Artifact Dress Blue Yellow

Artifact Hair Brush Blue Red

Artifact Laptop Black Silver

Artifact Leather Chair Black Brown

Artifact Men's Dress Shirt Purple Yellow

Artifact MP3 Player Black Red

Artifact Mug Black Gray

Artifact Pencil Sharpener Blue Red

Artifact Perfume Bottle Green Purple

Artifact Running Shoe Black Blue

Artifact Stapler Blue Green

Artifact Tricycle Yellow Blue

Artifact T-Shirt Yellow Red

Artifact Wrist Watch Black Gold

Natural Apple Light green Red

Natural Bear Black Brown

Natural Beetle Green Black

Natural Bell Pepper Green Red

Natural Butterfly Blue Orange

Natural Cat Black White

Natural Cherries Dark purple Red

Natural Crab Blue-brown Red

Natural Dog Black Brown

Natural Frog Brown Green

Natural Grapes Light green Red

Natural Horse Black Brown

Natural Leaf Green Yellow

Natural Mushroom Brown White

Natural Onions Purple-red Yellow-tan

Natural Pear Red Light yellow

Natural Pile of Beans Black Dark red

Natural Potato Light Brown Puirple-red

Natural Rat Light brown White

Natural Snake Brown Green



Category Type Label Cue Color1 Color2 Color3

Artifact Backpack Black Light brown Yellow

Artifact Baseball Cap Blue Tan Black

Artifact Bed Black White Light brown

Artifact Camera Blue Purple Black

Artifact Car Blue Red White

Artifact Chair Black Brown White

Artifact Cooking Pot Black Red Silver

Artifact Dress Blue Yellow Green

Artifact Dress Shirt Purple Green Blue

Artifact Hairbrush Blue Red Black

Artifact Laptop Black Silver Red

Artifact Mug Black Grey Yellow-green

Artifact Perfume Bottle Green Purple Pink

Artifact Running Shoe Black Blue Red-pink

Artifact Stapler Blue Green Red

Artifact Tricycle Yellow Blue Red

Artifact T-Shirt Red Yellow Grey

Artifact Wrist Watch Black Gold Silver

Natural Apple Light green Red Yellow

Natural Beans Black Dark Red Tan

Natural Bear Black Brown White

Natural Beetle Green Black Red

Natural Bell Pepper Green Red Yellow

Natural Bird Light brown Red Blue

Natural Butterfly Blue Orange White

Natural Cat Black Orange-brown Grey

Natural Dog Black Brown White

Natural Frog Brown Green Red

Natural Grapes Light green Red Dark purple

Natural Horse Black Brown White

Natural Leaf Green Yellow Red

Natural Mushroom Brown White Red

Natural Onions Purple-red Yellow-tan White

Natural Pear Red Light yellow Light green

Natural Rabbit White Black Light brown

Natural Rat Light brown White Black




