Novelty is not always the best policy: Inhibition of return and facilitation of return
as a function of visual task

Michael D. Dodd
University of Nebraska – Lincoln

Stefan Van der Stigchel
Utrecht University

Andrew Hollingworth
University of Iowa

In Press – Psychological Science

Address correspondence to:
Michael D. Dodd
238 Burnett Hall
Department of Psychology, University of Nebraska-Lincoln
Lincoln, NE, 68588
Tel. (402) 472-00547
mdodd2@psych.unl.edu
Abstract

We report a study that examined whether inhibition of return (IOR) is specific to visual search or a general characteristic of visual behavior. Participants were shown a series of scenes and were asked to either a) search each scene for a target, b) memorize each scene, c) rate how pleasant each scene was, or d) free-view each scene. An examination of saccadic reaction times to probes appearing at previously fixated or novel location provided evidence of IOR influencing search: participants were slower to look at probes at previously fixated locations relative to novel locations. For the other three conditions, however, the opposite pattern of results was observed: participants were faster to detect targets at previously fixated locations relative to novel locations, a facilitation of return effect that has not been reported previously. These results demonstrate that IOR is a search-specific strategy and not a general characteristic of visual attention.
Novelty is not always the best policy: Inhibition of return and facilitation of return
as a function of visual task

To successfully navigate our visual world, we must efficiently direct attention to important features in the environment while simultaneously ignoring unimportant or distracting stimuli. One process that is thought to facilitate the selection of visual information is inhibition of return (IOR), in which attention is slower or less likely to be returned to recently inspected locations than to be directed to novel locations. Since the initial discovery of IOR by Posner and Cohen (1984), researchers have posited that the purpose of IOR is to maximize the efficiency of visual search for an object by ensuring that attention is not returned to previously examined locations. Initial evidence that IOR influences search behavior was provided by Klein (1988; see also Müller & von Mühlénen, 2000; Takeda & Yagi, 2000), who found that the detection of a probe stimulus was impaired at locations that had been attended in a serial search task.

Klein and MacInnes (1999) provided further evidence of a role for IOR in search using Where’s Waldo displays. During search, participants had to make a saccade to a target probe appearing at a previously fixated or novel location. Saccadic reaction times (SRTs) to probes at one-back and two-back locations were slowed relative to probes at novel locations, indicative of IOR. These results are consistent with memory-based models of IOR, in which previously attended locations are tagged and held in memory so that attention does not return to these locations.

Further evidence that IOR both a) influences search, and b) involves a memory component, has been provided by studies investigating whether IOR occurs at several sequentially cued locations (Danziger, Kingstone, & Snyder, 1998; Dodd, Castel, & Pratt,
IOR, task set

2003; Dodd & Pratt, 2007; Snyder & Kingstone, 2000; Tipper, Weaver, & Watson). For example, Snyder and Kingstone (2000) used a display of eight peripheral placeholders and six sequential cues on each trial, observing IOR for the five most recently cued locations. This finding is consistent with the idea that IOR can influence search by biasing attention away from several sequentially attended locations, while at the same time suggesting that the system has a limited capacity, with only a subset of locations held in memory at any given time.

While there is ample evidence to suggest that IOR influences search behavior, IOR is often discussed as though it is a general characteristic of attention (such that attention is always thought to be slower to return to recently inspected locations independent of task set), despite little systematic investigation of this issue. That Posner and Cohen observe an effect of IOR on target detection in a non-search task would seem consistent with this idea, but it is important to note that target detection tasks are search-like in that the overall goal is to shift attention to find a target in a display. It is not surprising, therefore, that IOR influences target detection.

In the present study, we examined whether IOR is specific to visual search tasks or is a general property of visual behavior. Although a mechanism that biases attention to novel locations would clearly be advantageous to search, it is less clear that such a mechanism would be useful for other common visual tasks. IOR might be useful if an individual is trying to memorize a scene, as increasing the number of areas sampled may help to create a more complete representation of that scene. However, if one is trying to remember the details of a few prominent objects in a scene, the creation of a memory representation may be facilitated by returning to the locations of prominent objects (e.g.,
Henderson, Weeks, & Hollingworth, 1999). Similarly, if one is comparing two objects in a scene, a series of fixations between the two objects might be necessary. Such rapid alternations between objects would be impaired by an IOR mechanism. A similar argument can be made for pleasantness judgments. Given that many common visual tasks may be impaired by an IOR mechanism, it is important to determine whether IOR is limited to visual search (and potentially other tasks that would benefit from a novelty bias) or whether IOR extends to all types of visual tasks, consistent with the assumption that IOR is a general property of visual attention. To this end, in the present study we had participants view a set of scenes under four tasks condition (search, memorize, pleasantness rating, or free-view) while monitoring their eye movements. If IOR is a general property of attention, then we should observe IOR in all four conditions even though task performance in the memory, pleasantness rating, and free-view conditions would not necessarily benefit from a novelty bias. If, however, IOR is a process specialized for visual search, then we would only expect to find evidence of the effect in the search condition.

Though numerous researchers have suggested that memory and as such, IOR, influences search, it is worth noting that this view is not without its critics. While the aforementioned research is indicative of a role of IOR/memory in search, other researchers have suggested that the role of IOR/memory in search is limited (e.g., Gilchrist & Harvey, 2000) or nonexistent (Horowitz & Wolfe, 1998, 2001, 2003). Part of the difficulty in measuring IOR in search, however, is that there is no agreed upon method of doing so. Consequently, in the present research, we use multiple measures to investigate the influence of IOR on performance. Our critical measure was SRTs to
probes appearing at previously fixated locations relative to novel locations. Our expectation was that participants would be slower to look at probes appearing at previously fixated locations. To obtain converging evidence of the presence/absence of IOR, we also examine the number of refixations individuals make during each trial, as well as the amount of time between refixations.

Method

Participants: Forty-eight undergraduate students from the University of British Columbia and the University of Nebraska-Lincoln underwent individual 30-minute sessions, receiving course credit as remuneration for participating in the study. Twelve of the students participated in each task condition. All had normal or corrected-to-normal vision and were naïve about the purpose of the experiment.

Apparatus: The eye was an SR Research Ltd. EyeLink II system, with high spatial resolution and a sampling rate of 500 Hz. For all participants, the dominant eye was monitored for use in subsequent analyses. Saccade movement onset was detected when acceleration (8000°/s²) and velocity (30°/s) thresholds were reached with saccades of 0.5° of visual angle or greater, and movement offset was detected when velocity fell below 30°/s and remained so for 10 consecutive samples.

Stimulus displays were presented on two monitors, one for the participant and the other for the experimenter (allowing for real-time feedback and recalibration when necessary). The average error in the computation of gaze position was less than 0.5°.

A 9-point calibration procedure was performed at the beginning of the experiment, followed by a 9-point calibration accuracy test. Calibration was repeated if
any point was in error by more than 1° or if the average error for all points was greater than 0.5°.

The experiment, programmed in Visual C++, was individually conducted on a Pentium IV PC with a Dell monitor in a testing room equipped with soft lighting and sound-attenuation. Participants were seated approximately 44 cm from the computer screen, and made responses using both eye movements and the keyboard in front of them.

For all subjects, the experiment consisted of the presentation of 68 computer generated natural scenes depicting common environments (e.g., rooms and locales). The scenes were adapted from a set used by Hollingworth (2007). A few examples of the scenes we used can be found on Figure 1. Each scene had a small letter N or Z embedded in the picture for the purpose of the search task (described below). At the beginning of each trial, a fixation point appeared in the middle of the screen and participants were instructed to look directly at the fixation point and press the spacebar to initiate each trial. Each scene was displayed for eight seconds, during which participants engaged in a primary task, described below. On 36 of the 68 trials, a probe (a green circle, 71.9 cd/m², 1.0°) appeared at approximately the six-second point. The probe occupied either a novel location that had not been previously fixated (18 trials), or the location of a previous fixation (18 trials). When the probe occupied a previously fixated location, it appeared at either a 2-back location (two fixations previously), 4-back location (four fixations previously), or 6-back location (six fixations previously). We did not use a 1-back probe given the mixed findings regarding 1-back probes in Klein & MacInnes (1999). Moreover, 1-back probes always appear in a location that requires a saccade in a direction opposite to the immediately preceding saccade, making
it unclear whether longer SRT to 1-back probes reflects IOR or simply a low-level
occulomotor compatibility effect.

Fixations were monitored in real-time by the computer program to determine
where the probe would appear. Participants were instructed that in addition to their
primary task, they should look at the probe the moment they detected it.

There were four task-set conditions that were manipulated between subject
groups. Participants in the search condition were told that the letter N or Z was present in
each picture and that they were to search for the letter. At the end of each trial,
participants made a keypress response to indicate whether an N or Z had been present.
The letter was very small and well camouflaged and could not be detected unless fixated.
This ensured that participants in the other conditions were unlikely to detect the letter
while viewing the scene. In addition, the inconspicuous target ensured that participants
searching for the entire 8 seconds. If the target had been easy to detect, early detection
might have altered eye movement behavior. The majority of participants reported that
they rarely, if ever, found the target; they typically searched for the entire eight seconds
during which the scene was visible.

The remaining participants took part in either the memory, pleasantness-rating, or
free-view conditions. In the memory condition, participants were asked to memorize
each scene to prepare for a memory test at the end of the session (memory was not
actually tested). In the pleasantness rating condition, participants were asked to decide
how much they liked each picture on a scale from 1 to 7 (1 = do not like the picture at all,
7 = like the picture very much) and responded via a key-press at the end of each trial.
Finally, in the free-view condition, participants were given no specific instruction and simply told to view each picture as they chose.

Results and Discussion

Saccadic reaction times to probes as a function of probe location and task set are presented in Table 1, IOR values are also reported Table 1. The average number of fixations and refixations per trial, and the average elapsed time between refixations, are reported in Table 2.

If IOR is a general characteristic of visual behavior, we would expect SRTs to be slower to probes appearing at previously fixated locations relative to previously unfixated locations, and this pattern should be observed in all task conditions. Moreover, we would expect little difference in the number of refixations and time between refixations as a function of task condition.

Saccadic Reaction Times: The most direct test of whether IOR influenced visual behavior in our various tasks comes from the probe detection task. On more than 50% of probe trials, the first eye movement made after the appearance of the probe was made to the probe. On a smaller proportion of trials participants made one additional eye movement before looking at the probe, and on a few trials, participants made more than one additional eye movement before looking at the probe or failed to look at the probe at all. In the analyses reported below, we included only those trials on which participants immediately look at the probe when it appeared. We also performed analyses that included trials on which one additional eye movement was made before probe fixation (accounting for more than 90% of all probe trials), and the results were unchanged. Critically, there were no differences among the task conditions in the number of trials on
which the probe was immediately fixated, fixated after one additional eye movement, or not fixated at all.

To determine whether SRTs were influenced by probe location and task set we performed a mixed analysis of variance (ANOVA) with probe location as a within subjects factor and task set as a between subjects factor. There was a marginal effect of task-set, $F(3, 44)=2.37$, $p_{rep}=.83$, $\eta_p^2 =.14$. Critically, there was a strong interaction between probe location and task-set, $F(9, 132) = 4.17$, $p_{rep} = .99$, $\eta_p^2 =.22$. As can be seen in Table 1, and as confirmed by planned comparisons, there was strong evidence of IOR in the search task. Participants were significantly faster to saccade to a probe at a previously unfixated location than to a probe at a 2-back, $t(11) = -2.38$, $p_{rep}=.95$, or 4-back location, $t(11) = -3.67$, $p_{rep}=.95$. This trend did not continue to the 6-back location, but this is not surprising given evidence that IOR influences only the last five attended/fixated locations in search and search-like tasks (e.g., Snyder & Kingstone, 2000). The magnitude of IOR was larger for the 4-back location relative to the 2-back location, but not significantly so.

Although there was strong evidence of IOR in the search task, the reverse pattern of results was observed for the other tasks. Participants were significantly faster to look at a probe at a previously fixated location relative to a previously unfixated location. Planned comparisons revealed that participants were always faster to look at 2-back probes relative to novel probes for all other task sets (all $p_{rep}>.90$), and faster to look at 4-back probes than novel probes for the pleasantness and free view tasks (all $p_{rep}>.90$). Only the pleasantness task set elicited faster SRTs to 6-back probes relative to novel probes ($p_{rep}=.95$).
One concern when interpreting the SRT data for the different task sets is that participants in the search task tended to look over a greater spatial area of the scene than participants in the other three task conditions. Perhaps participants were slower to detect probes in the 2-back and 4-back locations relative to unfixated locations because the probe was further from the current gaze position in the search task than in the other tasks. To address this issue, we calculated the average distance between the probe location and the position of the eye when the probe appeared (Table 3). A mixed ANOVA on the mean distance values, with probe location as a within subjects factor and task set as a between subjects factor, elicited an unsurprising main effect of probe location, F(3, 132)=21.90, p<.001, ηp²=.33. There were no other significant main effects or interactions (F(9,132) < 1 for the critical interaction between probe location and task set). Thus, the distance between probe position and eye location did not vary as a function of task and could not have caused the differences in IOR among task conditions.

Though the SRT data suggest that IOR is search specific, one alternate explanation needs to be ruled out. It has been demonstrated that the bottom-up saliency of objects in a scene can influence saccades (Parkhurst, Law, & Niebur, 2002; Peters, Iyer, Itti, & Koch, 2005). It may be that participants were more likely to fixate salient scene regions during memory/pleasantness-rating/free-view relative to search, causing probes at previously fixated locations to appear at relatively salient locations in these tasks. To examine this possibility, we used Saliency Toolbox 2.0 (Walther & Koch, 2006) to determine the most salient regions in each of our scenes. Then, for all probes in all conditions, we calculated the saliency of the probe location, as well as the proportion of trials on which the probe appeared in a salient region. A mixed ANOVA was
conducted on the average probe saliency values, with probe location as a between-subjects factor and task set as a within-subjects factor. There was a main effect of probe location, F(3,132)=2.85, all p_{rep}=.93, \eta^2_p=.06, as average probe saliency was greater at the 6-back location relative to all other locations (consistent with salient locations being fixated earlier than non-salient locations, Parkhurst et al., 2002; all p_{rep}>.95), but average saliency did not differ among the other three locations. Critically, the interaction between probe location and task set was not significant, F(9,132)=1.23, p_{rep}=.65. An analogous ANOVA was also performed on the proportion data to determine whether probes were more likely to occur in salient regions as a function of probe location and task set, but no significant main effects or interactions were observed (all Fs<1), ruling out low-level saliency as a cause of the differences among task conditions.

Consequently, the SRT results are clear: IOR was observed for the search task but was not observed for any of the non-search tasks. Moreover, for the non-search tasks, there was actually an advantage for probes at previously fixated locations compared with unfixated locations, a facilitation of return effect that is the reverse of what would be expected if IOR was a general characteristic of visual behavior.

Fixation and Refixation data: A careful examination of Table 2 reveals differences in both the number of fixations, the number of refixations, and the amount of time between refixations, as a function of task set. One-way ANOVAs confirmed an influence of task set on each of these variables (F(3,44)=9.6, p_{rep}=.98, F(3,44)=7.44, p_{rep}=.96, and F(3,44)=5.767, p_{rep}=.95 for fixations, refixations, and time between refixations, respectively), with planned comparisons demonstrating that participants made more fixations in the search condition than in any of the other conditions (all p_{rep}>.95), fewer
refixations in the search condition than in any of the other conditions (all $p_{preps}>.95$), and more time between refixations in the search condition than in any of the other conditions (all $p_{preps}>.95$). Interestingly, participants took, on average, three seconds between refixations in the search condition, which is also the typically observed temporal limit of IOR (though see Dodd & Pratt, 2007; Tipper, Grison, & Kessler, 2003, and Wilson, Castel, & Pratt, 2007 for evidence of a longer lasting inhibitory effect). Consistent with the probe SRT data, participants were less likely to refixate objects in the search task than in the non-search tasks, suggesting that inhibition of return observed during search does not necessarily extend to non-search tasks.

General Discussion

Inhibition of return is often thought of as a general characteristic of visual behavior, despite little to no systematic investigation of this issue. The purpose of this study was to determine whether IOR is observed across a range of visual tasks or whether IOR is limited to visual search tasks, in which a bias toward new objects would be beneficial. In the present experiment, participants viewed images of natural scenes, and we probed for the presence of IOR in four task conditions: visual search, memorization, pleasantness rating, and free-viewing. Surprisingly, although there was ample evidence that IOR influenced visual search, we observed the opposite pattern of results for all other task sets: individuals were much faster to look at previously fixated locations when doing anything other than search. Previously, researchers have used the term “facilitation of return” to describe a speeded response to make a color or orientation discrimination target at a previously attended location, and while that finding is different from the one described here, the spirit is quite similar (e.g. Okubo, Mugishima, & Misawa, 2005; Pratt
IOR, task set 14

& Castel, 2001; Tanaka & Shimojo, 1996). Moreover, Smith and Henderson (2007, in press) have recently revived the term “facilitation of return” in a series of studies investigating IOR and scene perception, reaching similar conclusions to those outlined in the present study.

The present data demonstrate that IOR is strongly dependent on the visual task of the observer, suggesting that IOR could be a strategic attentional set that operates during visual search tasks. When task performance benefits from a bias toward new objects, as in visual search, IOR is engaged. Presumably, IOR would be observed in non-search tasks as well if task performance depended on avoiding previously examined objects and locations (e.g., when counting the number of objects present). In contrast, in tasks that do not depend on a novelty bias, IOR is reversed. These data suggest that the prioritization of previously attended objects is much more flexible than has typically been assumed. Moreover, the consistent observation of facilitation of return in non-search tasks suggests that facilitation of return, and not inhibition of return, is actually the default setting of the visual system, with IOR representing an exception implemented during search. However, further research across a broader array of tasks will be required to draw firm conclusions on this issue.

The immediate question, then, is why individuals are faster to return to previously fixated locations when they are engaging in non-search activities. As previously mentioned, IOR could positively influence memorization and/or pleasantness rating if an increase in the number of areas fixated/sampled leads to a more complete memory representation or better sense of whether a scene is “pleasant.” Instead, the bias to return to previously attended objects could reflect a number of operations. When trying to
create a memory representation of the scene or when determining whether a scene is pleasurable, it could be helpful to return to already viewed locations to 1) determine the spatial relation between items, 2) establish how each item fits into the larger context, 3) encode additional object details, or 4) ensure that initial perceptions and reactions are consistent with overall scene content.

It is less clear, however, why participants were also faster to return to previously fixated locations during the free-view task. Previously, Hooge, Over, van Wezel, and Frens (2005) reported evidence that IOR occurs during free viewing. However, Hooge et al. used a different measure of IOR and only analyzed each eye movement as it related to the movement that preceded it. As discussed above, 1-back probes are difficult to interpret (given the need to reverse the preceding saccade) and produce mixed results (Klein & MacInnes, 1999). Our multiple dependent measures and multiple probe conditions (2-back, 4-back, 6-back) provide a more comprehensive assessment of IOR as a function of task set. However, we cannot know with any certainty how each participant conceptualized the free-view task. We did ask participants during debriefing how they approached the free-view task, but most participants found this difficult to characterize.

That people are generally faster to return to previously fixated locations in non-search tasks would seem to be strong evidence that IOR represents a search specific strategy. Clearly there is an advantage when searching to visit novel locations, but in other tasks where the usefulness of this strategy is less transparent, IOR is not observed. Our findings shed considerable light on IOR and visual behavior in general. IOR is clearly not a general characteristic of visually guided behavior. For tasks other than visual search, we are generally faster to return to previously attended/fixed locations than to
novel locations; the return of attention and gaze to previously fixated locations is facilitated, not inhibited.
References

Footnotes

1 Yarbus (1967) has demonstrated that scanpaths are affected by task set, set on IOR has yet to be determined.
Author Notes

This research was partially supported by Killam and Natural Sciences and Engineering Research Council (NSERC) post-doctoral fellowships to M. Dodd. We would like to thank Kristin Divis and Jim Do for assistance in collecting the data and two anonymous reviews for useful comments on an earlier version of the manuscript. Correspondence regarding this manuscript may be sent to Mike Dodd, The University of Nebraska – Lincoln, Department of Psychology, 238 Burnett Hall, Lincoln, NE, USA, 68588. (mdodd2@psych.unl.edu).
Figure Captions

Figure 1: An example of the computer-generated natural scenes that were used as stimuli in the present study.
Figure 1
Table 1:

Saccadic RTs (in ms) and standard deviations (in brackets next to each RT) to probes as a function of probe location (novel, 2-back, 4-back, 6-back) and task set (search, memorization, pleasantness rating, free view) as well as the magnitude of inhibition of return (determined by subtracting SRT to detect targets at previously fixated locations from SRT to detect probes at novel locations)—negative values are indicative of IOR whereas positive values are indicative of facilitation in returning to previously fixated locations.

<table>
<thead>
<tr>
<th>Probe Location</th>
<th>Novel</th>
<th>2-back</th>
<th>4-back</th>
<th>6-back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOR</td>
<td>254 (45)</td>
<td>324 (64)</td>
<td>336 (60)</td>
<td>256 (60)</td>
</tr>
<tr>
<td>IOR</td>
<td>-70</td>
<td>-82</td>
<td>-82</td>
<td>0</td>
</tr>
<tr>
<td>Memory</td>
<td>293 (50)</td>
<td>261 (78)</td>
<td>280 (84)</td>
<td>289 (56)</td>
</tr>
<tr>
<td>IOR</td>
<td>32</td>
<td>13</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Pleasantness</td>
<td>291 (34)</td>
<td>231 (32)</td>
<td>231 (44)</td>
<td>223 (49)</td>
</tr>
<tr>
<td>IOR</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>Free View</td>
<td>292 (64)</td>
<td>249 (38)</td>
<td>260 (44)</td>
<td>296 (69)</td>
</tr>
<tr>
<td>IOR</td>
<td>43</td>
<td>32</td>
<td>-4</td>
<td></td>
</tr>
</tbody>
</table>
Table 2:

Mean number of fixations per scene, mean number of refixations per scene, and mean amount of time between refixations (in ms) as a function of task set (search, memorization, pleasantness rating, free view). Standard deviations for each value are presented in brackets.

<table>
<thead>
<tr>
<th>Task</th>
<th>Fixations</th>
<th>Refixations</th>
<th>Time between refixations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>26.82 (2.5)</td>
<td>3.37 (.6)</td>
<td>2973 (403)</td>
</tr>
<tr>
<td>Memory</td>
<td>23.53 (3.23)</td>
<td>4.57 (1.2)</td>
<td>2552 (156)</td>
</tr>
<tr>
<td>Pleasantness</td>
<td>23.66 (2.3)</td>
<td>5.57 (1.6)</td>
<td>2766 (282)</td>
</tr>
<tr>
<td>Free View</td>
<td>20.92 (2.7)</td>
<td>4.22 (.98)</td>
<td>2584 (219)</td>
</tr>
</tbody>
</table>
Table 3:

Mean distance (in visual degrees) of the eye from the probe at the exact moment that the probe appears as a function of probe location (novel, 2-back, 4-back, 6-back) and task set (search, memorization, pleasantness rating, free view). Standard deviations appear in brackets next to each mean value.

<table>
<thead>
<tr>
<th>Probe Location</th>
<th>Novel</th>
<th>2-back</th>
<th>4-back</th>
<th>6-back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td>IOR</td>
<td>8.50 (1.2)</td>
<td>6.42 (1.9)</td>
<td>7.73 (2.7)</td>
</tr>
<tr>
<td>Memory</td>
<td>IOR</td>
<td>8.64 (.75)</td>
<td>5.93 (1.7)</td>
<td>7.85 (1.0)</td>
</tr>
<tr>
<td>Pleasantness</td>
<td>IOR</td>
<td>8.21 (1.0)</td>
<td>4.80 (2.0)</td>
<td>7.17 (2.5)</td>
</tr>
<tr>
<td>Free View</td>
<td>IOR</td>
<td>8.95 (1.1)</td>
<td>6.74 (2.4)</td>
<td>8.31 (1.9)</td>
</tr>
</tbody>
</table>