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A new theory of search and visual attention is presented. Results support neither a distinction be-
tween serial and parallel search nor between search for features and conjunctions. For all search
materials, instead, difficulty increases with increased similarity of targets to nontargets and de-
creasedsimilarity between nontargets, producing a continuum of search efficiency. A parallel stage
of perceptual grouping and description is followed by competitive interaction between inputs, guid-
ing selective access to awareness and action. An input gains weight to the extent that it matches
an internal description of that information needed in current behavior (hence the effect of target-
nontarget similarity). Perceptual grouping encourages input weights to change together (allowing
"spreading suppression" of similar nontargets). The theory accounts for harmful effects of nontar-
gets resembling any possible target, the importance of local nontarget grouping, and many other
findings.

The Efficiency of Visual Selection

It is common knowledge that we can pay attention (at any
one time) to only a small amount of the information present in
a visual scene. Experimentally, it is easy to confirm that people
can take up and report only a small amount of the information
contained in a brief visual display (Helmholtz, cited in Warren
& Warren, 1968). Such a limitation imposes a strong require-
ment for selection: Ideally, we should confine attention to that
information needed to guide current behavior, and again it is
easy to confirm that people can use many different selection
criteria (location, color, movement, etc.) to choose which infor-
mation to see in a briefly glimpsed scene (e.g., Helmholtz, cited
in Warren & Warren, 1968; von Wright, 1970). This article
deals with the efficiency of selection.

In visual search experiments, subjects are asked to detect par-
ticular target stimuli presented among irrelevant nontargets.
Results depend on the combination of targets and nontargets
used. With some combinations, the number of nontargets in a
display has little if any effect. Obviously, they are rejected with-
out access to those rate-limiting stages of processing responsible
for our limited ability to pay attention to several stimuli at once.
The experience is that attention is drawn directly to the target,
implying an efficient prior rejection of nontargets (Duncan,
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1980b, 1985; Hoffman, 1978; Shiffrin & Schneider, 1977). In
other cases, increasing the number of nontargets substantially
increases the time taken to find the target. The experience is
that we must pay attention to several nontargets in turn before
the target is "found," implying that the efficiency of nontarget
rejection is reduced. Here, we seek to understand selection in
general by investigating boundary conditions on efficient non-
target rejection in visual search.

Feature Integration Theory

Our point of departure is Treisman's feature integration the-
ory (Treisman & Gelade, 1980; Treisman & Souther, 1985). Ac-
cording to this theory, input from a visual display is processed
in two successive stages. The first stage consists of a set of spatio-
topically organized "maps" of the visual field, each coding the
presence of a particular, elementary stimulus attribute or "fea-
ture." Thus, one map might code where redness occurs, one
where 45°-tilted lines occur, and so on. This stage works in par-
allel across the visual field but is limited in that it produces no
useful information about the conjunction of elementary fea-
tures. Thus, activity in separate maps might show that the field
contains redness, greenness, a diagonal line, and a closed loop,
but it cannot show that the line is red and the loop green. Useful
conjunction information only becomes available with process-
ing at the second stage. Attention is focused on a particular area
of the field. Outputs from those maps with activity in this par-
ticular area are then combined to produce the percept of a
whole object (e.g., a green loop). If features are to be accurately
conjoined, attention must be focused serially on one object after
another. It is this serial process that is responsible for our lim-
ited ability to see a whole scene at a glance.

The difficulty of visual search is thus determined by whether
a target is unique in some elementary feature or only in its con-
junction of features. As an example of feature search, the target
might be a blue shape presented among a mixture of reds and
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greens. Net activity in the blueness map is sufficient to show
whether a target is present, and because activity in this map
develops in parallel across the visual field, there should be little
effect of the number of items present. In conjunction search, on
the other hand, the target might be a red O presented among
mixed blue Os and red Xs. Because display items can only be
classified as targets or nontargets with focused attention, the tar-
get must be found by scanning serially through the display, and
the number of items will have a large effect. Although later we
consider some exceptions, results supporting this distinction
between feature and conjunction search have now been re-
ported many times, using color, form, size and other stimulus
attributes (e.g., Treisman, 1982; Treisman & Gelade, 1980;
Treisman, Sykes, & Gelade, 1977).

Recently, the theory has been modified to allow the possibil-
ity that feature search can be serial when targets and nontargets
are closely similar (Treisman & Gormican, 1988). Suppose that
targets and nontargets differ slightly in color. Then, each nontar-
get might have some tendency to excite the target map, making
it hard to decide whether this map contains enough net activity
to indicate that a target is really present. The more nontargets
are present, furthermore, the smaller will be the proportional
increase in activity produced by a target, and the harder will
be the decision. When this happens, Treisman and Gormican
(1988) suggest that attention is focused serially on one clump
of items after another. The size of the clump is chosen such that,
within one clump, net activity in the target map will reliably
indicate whether a target is present. The more discriminable the
targets and nontargets, the larger can be the clumps. The origi-
nal version of the theory then emerges as a special case. With
high enough discriminability, the whole display can be treated
as a single clump.

Feature integration theory is consistent with a range of psy-
chological phenomena beyond visual search (Treisman & Ge-
lade, 1980; Treisman & Schmidt, 1982; Treisman & Souther,
1985). It is supported by physiological evidence for early analy-
sis of different stimulus attributes in different brain areas
(Maunsell & Newsome, 1987). Results of work with connec-
tionist models of vision also suggest that serial processing may
be a good solution to the problem of correctly integrating an
object's different attributes (Feldman, 1985).

Overview

Like feature integration theory, the present work deals with
how search efficiency is determined by the nature of relevant
(target) and irrelevant (nontarget) stimulus materials. Although
other variables such as practice are important in search
(Schneider & Shiffrin, 1977), stimulus factors are our main con-
cern here.

We begin with an assessment of feature integration theory—
in particular, its account of letter search. A series of four experi-
ments shows very large variations in search efficiency across
stimulus materials, variations that are inconsistent with feature
integration theory whatever the postulate concerning elemen-
tary features of simple shapes. We then present a new account,
different from feature integration theory in several important
respects. First, the dichotomy between serial and parallel search

has no real place in our account, which is based on a continuum
of search efficiency. Second, our approach is based not on a
distinction between different stimulus attributes, but more ab-
stractly on stimulus relations (similarities) that in principle can
be specified for any attribute. Thus, we argue that very similar
stimulus principles control search difficulty whatever the search
materials, from simple color patches to complex feature con-
junctions. In particular, search efficiency decreases with (a) in-
creasing similarity between targets and nontargets (which we
call T-N similarity), and (b) decreasing similarity between non-
targets themselves (N-N similarity), the two interacting to scale
one another's effects. We try to show that these principles are
consistent both with the body of the search literature and with
the apparent contrast between feature and conjunction search
itself. We go on to develop a theory of how, in search and other
tasks, attention is directed to behaviorally relevant information
in the visual field. This theory deals with similarities between
possible targets and nontargets in search, with local effects of
similarity within a display, and with a variety of other findings
holding across a range of different search materials.

Feature Integration Theory and Letter Search

Prior Evidence

Feature integration theory has been applied to letter search
by considering the conjunction of a shape's parts. There have
been many visual search experiments using simple shapes such
as letters and digits. In some tasks there is very little effect of the
number of nontargets in a display—for example, search for a C
among 4s (Egeth, Jonides, & Wall, 1972) or for a T or F among
Os (Shiffrin & Gardner, 1972)—whereas in other tasks the
effect is substantial (Kleiss & Lane, 1986). Does the difference
depend on whether targets possess some unique (shape) feature?
Despite some positive findings, the literature as a whole is rather
puzzling.

In fact, feature integration theory has been applied to letter
search in two ways. The first, called by Duncan (1987) the case
of within-object conjunctions, deals with the spatial arrange-
ment of strokes within a letter. According to several accounts,
the elementary features of letters include lines of particular
length and orientation, intersections (line crossings), line termi-
nators, and a few other features (e.g., Bergen & Julesz, 1983;
Treisman & Paterson, 1984; Treisman & Souther, 1985). Sup-
pose then that two letters share exactly the same features,
differing only in their spatial arrangement. Obvious candidates
are pairs like L and T, which contain different arrangements of
the same strokes. Individual feature maps will not be able to
separate these letters; only when the outputs of different maps
are put together with serial attention will the distinction be
made. Correspondingly, Beck and Ambler (1973) reported a
large effect of display size in search for an L among nontarget
Ts, contrasting with a much smaller effect when the target (a
tilted T) had strokes of a unique orientation. Similar results
were reported by Bergen and Julesz (1983), contrasting search
for a T or a + (with its unique intersection) among nontar-
get Ls.

The second case concerns across-abject conjunctions. Here,
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the target can be formed by recombining strokes from different
nontargets (e.g., search for R among Ps and Qs); again, the tar-
get is unique only in its conjunction of strokes. Treisman and
Gelade (1980) and Duncan (1979) found large effects of display
size in such tasks. If the target had a unique stroke (e.g., R
among Ps and Bs), on the other hand, the effect of display size
was rather smaller.

Of course, the interpretation of such results in terms of fea-
ture integration theory depends on assumptions concerning
what elementary letter features are coded at the first, parallel
processing stage. To deal with within-object conjunctions, for
example, the theory must assume that the position of strokes
within a letter is not coded. We shall consider such issues later.
For the moment, we may refer to these stimuli as stroke con-
junctions rather than feature conjunctions.

Other results complicate the picture. Consider first the case
of within-object conjunctions. Humphreys, Riddoch, and
Quinlan (1985) studied search for an inverted T among upright
Ts. Despite the resemblance of this to the within-object con-
junction tasks of Beck and Ambler (1973) and Bergen and
Julesz (1983), there was little effect of display size, search times
increasing by only 3-ms/item when arrays had a regular spatial
arrangement. What can we say about these apparently conflict-
ing results? A first point to note is the difficulty of comparing
effects across experiments. For various reasons, even unlimited-
capacity parallel models predict some drop in performance
with increasing display size (Duncan, 1980a; Eriksen & Spen-
cer, 1969). In reaction time (RT) studies, effects up to 5- or 6-
ms/item are comparable with those usually given by feature
search (Treisman & Souther, 1985), at least when the target is
present. Effects as great as 20- to 30-ms/item are typical of con-
junction search. Beck and Ambler (1973) and Bergen and Julesz
(1983), however, measured accuracy rather than RT in studies
with limited exposure duration. Little is known about the scale
of display size effects in such experiments. Second, Humphreys,
Quinlan, and Riddoch (in press) showed that a crucial variable
in these studies is letter size or, more accurately, the ratio of
size to retinal eccentricity. Using the same task as before, they
obtained display size effects of 14- and 2-ms/item, respectively,
for size/eccentricity ratios of 1/6 and 1/3. These ratios may be
compared with about 1/8 for Beck and Ambler (1973) and up
to 1/9 for Bergen and Julesz (1983). It seems likely that the re-
sults of these authors' investigations were in part dependent on
their use of relatively small letters.

Questions may also be raised over Treisman and Gelade's
(1980) study of across-object conjunctions. The smallest effects
of display size (4- and 7-ms/item, respectively, for target-present
and target-absent displays) were obtained when nontargets were
homogeneous (e.g., search for R among Ps). With heteroge-
neous nontargets, the effect was always much bigger, whether
the target had a unique stroke (12- and 37-ms/item) or not (23-
and 46-ms/item).1 A study of similar tasks by Kleiss and Lane
(1986) is also instructive. Only heterogeneous nontargets were
used. Following Shiffrin and Gardner (1972), Kleiss and Lane
(1986) measured the accuracy of target detection in displays of
constant size, presented either all at once or two at a time. The
technique is useful because unlimited-capacity parallel models
predict no effect of presentation mode. In fact, there was a large

advantage for presentation two at a time in both feature and
conjunction tasks.

Altogether, then, there are several aspects of letter search data
that feature integration theory does not explain. One important
variable is letter size. With large enough letters, there can be
little effect of display size even when the target is unique only in
its within-object conjunction of strokes. A second important
variable is nontarget homogeneity. With heterogeneous nontar-
gets, there can be large effects of display size—and large depar-
tures from unlimited-capacity parallel search—even if the tar-
get has a unique stroke. The four experiments that follow de-
velop these puzzles for feature integration theory, and taken
together, they show that the theory cannot explain the large vari-
ations in search efficiency seen across different letter search
tasks.

Experiment 1

Experiment 1 was designed to investigate effects of letter size
and nontarget homogeneity on both feature and conjunction
search. Using an RT task, we replicated Beck and Ambler's
(1973) comparison between search for Ls and tilted Ts among
nontarget Ts that were either upright or rotated 90° clockwise.
We used two extremes of letter size (size/eccentricity ratios of
1/12 and 1/3) and nontargets that were either homogeneous
(upright in one block of trials, sideways in another) or heteroge-
neous (both upright and sideways mixed in each display).

Method

Tasks. Experiment 1 was run on-line on a Cambridge Electronic
Design laboratory computer system, controlling a Hewlett-Packard X-
Y display (1332A) with P24 phosphor. Displays were viewed from a chin
rest, at a distance of about 65 cm. On each trial, the subject fixated a
dot in the center of the screen, pressed a foot switch, and saw an immedi-
ate 180-ms display of 2,4, or 6 letters. The response was to be made, as
quickly as possible, by pressing a key with the right hand if a specified
target letter was present or with the left hand if it was absent. An interval
of 1,000 ms preceded onset of the fixation point for the next trial.

With the modification noted later, letters appeared on the perimeter
of an imaginary circle of radius 2° 24', centered on fixation. Starting at
12 o'clock, there were eight possible letter positions, evenly spaced
round the circle. A (randomly selected) arc of adjacent positions was
used for each display, equating the distance between adjacent characters
across display sizes.

Three factors varied between blocks. The target was either an upright
L or a T tilted 45° clockwise. Nontargets were either homogeneous—in
which case they were either all upright Ts or all Ts rotated 90° clock-
wise—or heterogeneous—in which case each display contained, as
nearly as possible, an equal number of Ts in these two orientations,
randomly arranged. The two strokes of each letter were equal in length.
They measured either 12' arc or 48' arc, giving letter size/eccentricity
ratios of l/12or 1/3.

A possible difficulty with regular nontarget displays is that supraletter
cues might show whether a target is present. Consider the case of search
for an L among Ts. Suppose, for example, that the horizontal lines of

1 Values have been estimated from Treisman and Gelade's (1980) Fig-
ure 6. Estimates are based only on the comparison of display sizes 1 and
15, the values available for all conditions.
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Table 1
Experiment 1: Reaction Times (in Milliseconds) as a Function of Display Size

Small letters (1/12)

Condition

Target = L
Homogeneous

Present
Absent

Heterogeneous
Present
Absent

Target = tilted T
Homogeneous

Present
Absent

Heterogeneous
Present
Absent

2

432
448

420
448

446
470

492
530

4

432
460

416
452

461
478

505
530

6

444
464

430
475

470
490

523
547

Slope (ms/item)

3
4

3
7

6
5

8
4

2

388
413

383
414

400
404

424
444

Large letters (1/3)

4

383
413

395
425

392
409

427
464

6

402
410

397
416

398
404

445
450

Slope (ms/item)

4
-1

4
1

-1
0

5
2

all letters could be grouped together, and the shape of the resulting group
could be determined. In a homogeneous display with letters arranged
around the perimeter of a circle, this shape would be a smooth arc when
the target was absent, but distorted when the target was present. To elim-
inate such cues, each nontarget was shifted slightly so that one of its
strokes, horizontal or vertical (randomly selected), fell in the position
that the corresponding stroke of an L would occupy in the same display
location. The result was a display of rather irregular appearance, in
which, when the target was an L, any target stroke fell in a position
possible for a nontarget stroke.

Design. Each subject served in six sessions of about 1 hr each, on
different days. Type of nontargets, homogeneous or heterogeneous, was
fixed for any one session and alternated between sessions, with the order
counterbalanced across subjects.

Each session was divided into four blocks, one for each combination
of letter size and target. There were always two blocks at one letter size
followed by two at the other, with the same order of targets in each pair.
With these constraints, the order of blocks was counterbalanced across
subjects, although fixed for any one. Each block was further divided into
two sub-blocks, each of 24 practice followed by 96 experimental trials.
When nontargets were heterogeneous, the two sub-blocks were identi-
cal, but when nontargets were homogeneous, one sub-block was devoted
to the upright and one to the sideways T.

Within each experimental run of 96 trials, there were equal numbers
of trials with and without a target at each display size. Otherwise, the
order of trials was random, as was the arc of letter positions chosen for
each display and the position of the target (if present) in this arc. At the
end of every 24 practice and 96 experimental trials, the subject was
shown mean reaction time and error rate for the run.

Subjects. All of the experiments in this series used subjects from the
paid panel of the Applied Psychology Unit. Here, they were 4 women,
between 28 and 35 years of age.

Results and Discussion

Table 1 shows mean RTs in each condition, as well as slopes
of best-fitting linear functions relating RT to display size. Data
are from experimental trials on the last 2 days of practice. Trials
with RTs greater than 1,500 ms have been excluded.

There were four important results. First, slopes were all in the
range normally taken to suggest parallel search (Treisman &

Souther, 1985), with a maximum of 6-ms/item (averaged across
present and absent trials). Second, slopes were very similar for
the two targets, unlike the results of Beck and Ambler (1973).
Third, slopes were slightly greater with small than with large
letters, although the effect was much smaller than the one re-
ported by Humphreys et al. (in press). Fourth, slopes were little
affected by nontarget homogeneity, although homogeneous
nontargets gave slightly quicker responding overall.

Analysis of variance (ANOVA) confirmed these conclusions.
There was a significant main effect of display size, F(2, 6) =
27.8, p < .001, which interacted with letter size, F(2, 6) = 9.5,
p < .02, but not target type, F(2,6) = 0.2, or nontarget homoge-
neity, F(2,6) = 2.4. There was also a significant but small three-
way interaction between display size, letter size, and target pres-
ence, F(2, 6) = 7.0, p < .05, which we neglect. Finally, there
were significant main effects of nontarget homogeneity, P(l,
3) = 10.9, p < .05, and letter size, F( 1, 3) = 91.5, p< .005, and
a four-way interaction, probably spurious, between nontarget

Table 2
Experiment 1: Error Proportions

Small letters (I/ 12)

Condition

Target = L
Homogeneous

Present
Absent

Heterogeneous
Present
Absent

Target = tilted T
Homogeneous

Present
Absent

Heterogeneous
Present
Absent

2

.023

.031

.031

.024

.039

.016

.039

.031

4

.047

.016

.047

.024

.047

.024

.125

.032

6

.086

.039

.094

.016

.094

.055

.149

.063

Large letters (1/3)

2

.008

.008

.024

.039

.023

.016

.024

.016

4

.031

.008

.000

.008

.023

.024

.024

.047

6

.078

.016

.024

.016

.023

.000

.031

.000
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Table 3
Experiment 2a: Reaction Times (in Milliseconds) as a Function of Display Size

Small letters (1/6) Large letters (1/3)

Condition/session Slope (ms/item) Slope (ms/item)

Present
1
2
3

M

Absent
1
2
3

M

523 565 556
488 509 519
487 505 513

500 526 529

537
515
496

540 560
513 514
497 497

Target = L

516 517 524

499 468 521
485 483 513
491 499 502

492 483 512

483 478 490
477 484 491
489 476 485

483 479 489

Present
1
2
3

M

Absent
1
2
3

M

500 531 539
504 508 525
470 491 497

491 510 520

495 499 511
511 507 519
476 488 477

494 498 502

Target = tilted T

10
5
7

458 455 463 1
457 464 461 1
446 453 463 4

454 457 462 2

473 463 477 1
465 474 458 -2
467 464 443 -6

468 467 459 -2

homogeneity, target type, letter size, and target presence, F\\,
3) = 26.0, p < .02, for which MS, was more than 10 times
smaller than any other in the analysis.

Error data appear in Table 2. They suggest only one modifi-
cation to our conclusions. When letters were small, error rates
increased with increasing display size. This suggests that RT re-
sults may underestimate the true interaction between display
size and letter size.

Experiment 2

Experiment 1 left us with two questions. First, we confirmed
the finding of Humphreys et al. (in press) that smaller letters
produce a greater effect of display size. Perhaps because of the
brief exposure of stimulus displays, however, the result was re-
flected partly in error rates rather than RTs. Experiment 2 ex-
amined the effect further, using displays that remained visible
until the response. This also allowed an examination of RT
effects early in practice—data we have not presented for Experi-
ment 1 because high error rates with small letters made RT data
uninterpretable.

Experiment 1 also showed no effect of target type, in disagree-
ment with the results of Beck and Ambler (1973). Instead, the
effect of display size for both types of target depended on letter
size. These results are also reexamined in Experiment 2.

Method

Tasks. There were the following changes from Experiment 1. Nontar-
gets were always homogeneous upright Ts. Letter sizes were 12' and 24';
eccentricity (with the same small jitter as before) was 1°12' in Experi-
ment 2a, giving size/eccentricity ratios of 1/6 and 1/3, and 2°24' in Ex-
periment 2b, giving ratios of 1/12 and 1/6. Displays remained visible
until the response. A right-hand response was required when all display
items were the same (target absent), a left-hand response when one item
was different (target present).

Design. Each subject served in three similar sessions. The four blocks
of each session, one for each combination of letter size and target, were
counterbalanced as before. Each block had a run of 24 practice trials
and then two runs each of 72 experimental trials.

Subjects. Each of Experiments 2a and 2b had 4 subjects, between 19
and 32 years of age. There were 7 women and 1 man.

Results

Reaction times from Experiment 2a are shown in Table 3.
The table shows separate results for the three sessions of prac-
tice, as well as the mean across sessions. As before, all of the
slopes were in the range normally taken to suggest parallel
search. An ANOVA showed a significant effect of display size,
F(2, 6) = 10.4, p < .02, which interacted with session, F(4,
12) = 3.4, p < .05, but not with target type, F(2, 6) = 1.4, or
letter size, F(2,6) = 3.4. The only other significant effects were
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Table 4
Experiment 2b: Reaction Times (in Milliseconds) as a Function of Display Size

Small letters (I/12) Large letters (1/6)

Condition/session Slope (ms/item) Slope (ms/item)

Present
1
2
3

M

Present
1
2
3

M

Absent
1
2
3

M

476
437
399

528 527
459 482
420 431

437 469 480

Target = L

13
11
8

11

427 458 473 12
388 407 430 11
382 393 409 7

399 419 437 10

Absent
1
2
3

M

539
496
480

505

594
528
507

543

687
565
521

591

37
17
10

22

473
447
452

457

514
464
457

478

525
478
441

481

13
8

-3

6

Target = tilted T

478 497 525 12
431 447 451 5
417 435 426 2

442 460 467 6

546 583 636 23
477 510 534 14
467 481 490 6

497 525 553 14

412 431 443
393 372 394
374 377 380

393 393 405

479 485 499
443 448 442
413 426 412

445 453 451

letter size, F(\,3) = 25.7, p < .02, and a three-way interaction
between target type, letter size, and target presence, F(l, 3) =
11.6, p < .05, which we shall neglect.

Reaction times from Experiment 2b are shown in Table 4.
This time slopes showed a large effect of letter size, especially
early in practice. For the first time, as well, slopes were lower
when the target was a tilted T than when it was an L—although
both showed an effect of letter size. An ANOVA showed a sig-
nificant effect of display size, F(2, 6) = 11.8, p < .01, which
interacted significantly with letter size, F(2, 6) = 10.2, p < .02,
with target type, F(2,6) = 27.2, p = .001, and with session, F(4,
12) = 4.6, p < .02. The only other significant effects were letter
size, P(l, 3) = 12.8, p < .05, and session, F(2, 6) = 10.6,
p < .02.

Error data are shown in Tables 5 and 6. Values are means
across sessions. The data suggest no reason to alter our conclu-
sions. Even when the size/eccentricity ratio was 1/12, there was
no great increase in error rate with increasing display size.

Discussion

The major point made by Experiments 1 and 2 is that al-
though slopes may sometimes differ in feature (tilted T) and
conjunction (L) search, the overall pattern of results is the same.
In both cases, slopes are close to zero when the ratio of letter

size to eccentricity is large (1 /3). As the ratio decreases, so slopes
increase, especially across the range 1/6 to 1/12.

Note that Humphreys et al. (in press), whose task was search
for an inverted T among upright Ts, found a large increase in
slopes across the range of size/eccentricity ratios 1/3 to 1/6. A
plausible suggestion is that letter search slopes generally in-
crease with decreasing size/eccentricity ratio, but that the exact
shape of the function depends on the particular targets and non-
targets used.

Obviously, these results do not suggest that search for Ls was
serial, whereas search for tilted Ts was parallel. More generally,
many results show that in both visual search and related tasks,

Table 5
Experiment 2a: Error Proportions

Small letters (1/6) Large letters (1/3)

Condition

Target = L
Present
Absent

Target = tilted T
Present
Absent

.031

.031

.021

.049

.035

.038

.014

.028

.038

.042

.045

.038

.031

.045

.045

.049

.042

.031

.004

.021

.031

.014

.024

.011
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Table 6
Experiment 2b: Error Proportions

Small letters (I/12) Large letters (1/6)

Condition

Target = L
Present
Absent

Target = tilted T
Present
Absent

.028

.042

.024

.066

.028

.045

.032

.056

.052

.049

.042

.049

.007

.059

.021

.035

.034

.024

.021

.056

.042

.045

.038

.018

the effect of adding irrelevant (nontarget) information to a dis-
play varies continuously, from little or none (or even a beneficial
effect; see Polich, 1986; Sagi & Julesz, 1987), to at least 100-
ms/item (e.g., Bundesen, Shibuya, & Larsen, 1985; Duncan,
1983,1987; Quinlan& Humphreys, 1987;Treisman&Gelade,
1980; Treisman & Souther, 1985). Variations in slope across let-
ter size, practice, and task in Experiments 1 and 2 make the
same point. Of course, such continuous variations in search
efficiency are consistent with a variety of theoretical positions,
including some based on varying mixtures of serial and parallel
processing (Fisher, Duffy, Young, & Pollatsek, 1988; Schneider
& Shiffrin, 1977; Treisman & Gormican, 1988). We may note
these, nevertheless, because the account we present is based on
continuous variables.

How might feature integration theory account for the finding
that, if letters are sufficiently large, search time is almost inde-
pendent of display size even though targets and nontargets differ
only in their conjunction of strokes? The obvious possibility is
that some elementary feature other than (or in addition to) the
stroke is detected at the first, parallel stage of processing. Of
course, an L has attributes not possessed by a T—a particular
sort of junction, for one. In Experiment 3, we used nontargets
that were identical to the target across a 90° rotation.

Experiment 3

Method

Tasks. The target was an upright L, and nontargets were Ls rotated
90° clockwise or counterclockwise from the target position. Nontarget
homogeneity varied between blocks, as in Experiment 1. Letter size was

24' or 48'. Eccentricity (with the usual modification) was 2°24', giving
size/eccentricity ratios of 1/6 and 1/3. Displays remained visible until
the response. The right hand was used to indicate target present, the left
to indicate absent.

Design. Each subject served in three similar sessions. The four blocks
per session, one for each combination of letter size and nontarget homo-
geneity, were counterbalanced as before. Each block was divided into
two sub-blocks, each of 24 practice and 96 experimental trails. When
nontargets were homogeneous, one sub-block was devoted to each non-
target orientation.

Subjects. The 4 subjects, 2 of each sex, were between 20 and 26 years

Results

Mean RTs for the third day of practice are shown in Table
7. The results were extremely striking. When nontargets were
homogeneous, the effect of display size was comparatively
small. At least with the larger letters, slopes were in the range
normally taken to indicate parallel search. Search through het-
erogeneous nontargets, however, was extraordinarily difficult.
There were very large effects of display size, especially when the
target was absent. For the first time, these results with heteroge-
neous nontargets resembled those reported by Treisman and
Gelade (1980) for conjunction search. Sample displays are
shown in Figure 1.

An ANOVA showed a significant effect of display size, F(2,
6) = 25.3,p < .005, which interacted with nontarget homogene-
ity, F(2, 6) = 16.3, p < .005. There were also significant mean
effects of nontarget homogeneity, P(l,3) = 23.4, p < .02, and
target presence, F(\,3) = 25.8, p < .02, and a significant inter-
action between them, F(l, 3) = 48.1, p < .01. The last signifi-
cant effect was the four-way interaction between letter size, non-
target homogeneity, target presence, and display size, F(2, 6) =
23.5, p < .005, reflecting the fact that the largest interaction be-
tween display size and target presence occurred with large let-
ters and heterogeneous nontargets.

Error data are shown in Table 8. They suggest no change in
conclusions.

Discussion

Experiment 3 adds to the difficulties of feature integration
theory by showing that search time can be almost independent
of display size even when homogeneous nontargets are rotations

Table 7
Experiment 3: Reaction Times (in Milliseconds) as a Function of Display Size

Condition

Small letters (1/6) Large letters (1/3)

Slope (ms/item) Slope (ms/item)

Homogeneous
Present
Absent

Heterogeneous
Present
Absent

457
479

498
601

488
502

568
711

511
525

678
824

14
12

45
56

445
470

480
564

479
473

561
716

478
474

632
846

8
1

38
71
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(a) Homogeneous (b) Heterogeneous

r
r r

L

J

r

j
r

r r L
J

Figure 1. Sample displays from Experiment 3.
(Size/eccentricity ratio = 1/3.)

of the target shape, preserving the orientation of individual
strokes. We shall consider possible elementary features distin-
guishing such rotations after presenting the next experiment.

Experiment 3 also shows that, when nontargets are rotations
of the target shape, the task is made very difficult by mixing
different nontarget rotations in the display. Humphreys et al.
(in press) reported a similar result: Search for an inverted T is
very much easier among homogeneous upright Ts than among
a mixture of both upright and sideways Ts. This very large effect
of nontarget homogeneity in Experiment 3 contrasts with the
negligible effect obtained using the same target (L) in Experi-
ment 1.

Experiment 4

Consider the relation between an upright L and the four rota-
tions of a T shown in Figure 2. Letting the length of a single
stroke be s, Ts at 180° and 270° differ from the L only in dis-
placement of a single stroke by s/2, whereas Ts at 0° and 90°
differ from the L in this same displacement, plus an additional
displacement of the other stroke by s. Given the constraint that
their strokes should be horizontal and vertical, then, the nontar-
get Ts used in Experiment 1 (0° and 90°) may have been those
most easily discriminable from the target. To confirm this, we
asked 8 subjects to classify singly presented letters as Ls or Ts,

TableS
Experiment 3: Error Proportions

Small letters (1/6) Large letters (1/3)

Condition

Homogeneous
Present
Absent

Heterogeneous
Present
Absent

.016

.008

.016

.031

.031

.008

.031

.033

.039

.008

.063

.008

.031

.008

.016

.047

.039

.008

.063

.016

.008

.016

.072

.016

T -\ J_ h-
0° 90° 180° 270°

Figure 2. An upright L compared with a T at four rotations.

indicating their choice with a speeded keypress. Letters were in
the same display positions, and at the smaller size, to be used in
Experiment 4. Ls were always upright, whereas Ts were either
at 180° and 270" (difficult condition) or at 0° and 90° (easy con-
dition). Reaction times were 22 ms longer in the difficult condi-
tion, F(l, 7) = 5.9, p < .05. With this in mind, Experiment 4
investigated search for an upright L among the more difficult
180° and 270° rotated Ts.

One reason for examining these alternative nontarget rota-
tions derives from the work of Bergen and Julesz (1983). Their
task was search for a T among Ls, with all letters randomly ori-
ented. Randomizing letter orientation requires that each non-
target be discriminated from a target in any possible orienta-
tion, including those in which it would most resemble the actual
stimulus. It seems possible that this may in part have been re-
sponsible for the large effect of display size that was obtained.

Method

Except that nontargets were Ts rotated 180° and 270° clockwise from
the upright, Experiment 4 was similar in all respects to Experiment 3.
The 4 subjects, 2 of each sex, were between 19 and 27 years of age.

Results

Mean RTs from the third day of practice are shown in Table
9. The obvious difference from Experiment 1 was that slopes
showed a fairly large effect of nontarget homogeneity, especially
when letters were small. Even with homogeneous nontargets,
slopes were somewhat greater than in the most comparable con-
ditions of Experiments 1 and 2. Even in this case, therefore,
increasing the similarity between target and nontargets may
have a small effect. The effect is much bigger, however, when
nontargets are heterogeneous.

An ANOVA showed a significant effect of display size, F(2,
6) = 46.5, p< .001, a marginal effect of nontarget homogeneity,
F(l, 3) = 9.6, p < .06, and a significant interaction between
them, F(2, 6) = 9.7, p < .02. The only other significant effects
were letter size, F( 1, 3) = 13.2, p < .05, and its interaction with
target presence, F( 1,3) = 35.2, p < .01.

A direct comparison of search for Ls in Experiments 1 and 4
is weak because the two experiments differed in several respects.
An ANOVA on RTs showed, however, a main effect of experi-
ment, F( 1,6) = 11.9, p < .02, and an interaction between exper-
iment and display size, F(2,12) = 15.8, p < .001, modulated by
an interaction of experiment, display size, and nontarget homo-
geneity, F(2, 12) = 5.6, p < .02. To the extent that these results
can be believed, they support our conclusion that slopes may be
affected by nontarget homogeneity only when targets and non-
targets are relatively similar.
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Table 9
Experiment 4: Reaction Times (in Milliseconds) as a Function of Display Size

Condition

Small letters (1/6) Large letters (1/3)

Slope (ms/item) Slope (ms/item)

Homogeneous
Present
Absent

Heterogeneous
Present
Absent

462
486

505
544

465
499

527
592

493
516

568
640

8
8

16
24

443
459

448
480

467
459

481
506

470
482

490
528

7
6

11
12

Error data from Experiment 4 appear in Table 10. They sug-
gest no change in conclusions.

Discussion

The results of Experiment 4 confirm that, as conditions ap-
proach those studied by Bergen and Julesz (1983), search for an
L among Ts shows an increasing effect of display size. Highly
similar targets and nontargets, small letters, and heterogeneous
nontarget orientations all contribute to the effect. Although the
results of Bergen and Julesz (1983) are replicated under these
conditions, their conclusion that serial processing is always
needed to determine the arrangement of strokes within a letter
is evidently too general.

Comparing the results of Experiments 1 and 4 suggests the
important conclusion that, in our previous terms, T-N similar-
ity and N-N similarity may interact. Increasing the similarity
of targets to nontargets increases the importance of nontarget
heterogeneity. It seems likely that this accounts, at least in part,
for the very large effect of heterogeneity when nontargets are
simple rotations of the target (Experiment 3).

In Experiment 4 as in Experiment 1, even heterogeneous
nontargets had something in common (they were all Ts) that
distinguished them from targets. Evidently, this alone is in-
sufficient to nullify effects of heterogeneity. Other experiments
we have run confirm this conclusion.

Assessment of Feature Integration Theory

It is clear that feature integration theory cannot account for
the results of Experiments 1 to 4 if the elementary letter feature

Table 10
Experiment 4: Error Proportions

Small letters (1/6) Large letters (1/12)

Condition

Homogeneous
Present
Absent

Heterogeneous
Present
Absent

.031

.024

.016

.000

.024

.016

.110

.016

.078

.024

.063

.024

.031

.023

.008

.039

.039

.031

.031

.016

.047

.031

.070

.016

coded at the first, parallel processing stage is taken to be the
stroke. All four experiments show that, under some circum-
stances, search for particular stroke conjunctions is little
affected by display size. Here, we consider various alternative
assumptions.

The first possibility is that the corner of an L is a feature dis-
tinct from the junction of a T. This proposal is sufficient to ac-
count for the results of Experiments 1 and 2, but not Experi-
ments 3 and 4. Experiment 3 shows that, when nontargets are
homogeneous, a corner-junction distinction between targets
and nontargets is not a necessary condition for insensitivity of
RT to display size. Experiment 4 shows that, when nontargets
are heterogeneous and closely similar to targets, it is not a
sufficient condition either.

A second proposal revises the theory more radically—the ele-
mentary feature may be some part of a letter (stroke, corner,
etc.) linked to its position within the letter or to some other
spatial attribute (e.g., direction of pointing). We consider three
versions of the idea. All can account for some aspects of the
data, but all can be eliminated in the same way: by showing that
none is a sufficient condition for display size insensitivity when
T-N similarity and N-N similarity are appropriately manipu-
lated. First, the elementary feature could be the stroke coupled
to its within-letter location. Results reported by Duncan (1987)
eliminate this possibility. The target was an upright L, whereas
nontargets were a mixture of rotated Ls (F or J) and arrows
combining the major diagonal of the letter with either the hori-
zontal or the vertical stroke of the target ([, or /.). In some con-
ditions the target had a stroke that was unique in terms of its
position within the letter (e.g., nontargets T and U), but in oth-
ers it did not (e.g., F and /L). There was no difference between
conditions; both gave a large effect of display size (22-ms/item
on the third day of practice). Second, the elementary feature
might be the corner coupled to either its location within the
letter or its direction of pointing. The present Experiment 3
eliminates this possibility because display size insensitivity is
predicted even with heterogeneous nontargets. Third, the ele-
mentary feature might be the free line terminator coupled to its
direction of pointing. An L, for example, has free terminators
pointing upwards and to the right. Eliminating this possibility,
Humphreys et al. (in press) obtained large effects of display size
(50-ms/item) in search for an inverted T among a mixture of
upright Ts and Is (formed by the union of upright and inverted
Ts). Similarly, in pilot work, we have replicated Experiment 3
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using an upright V (60° angle between strokes) as a target and
Vs rotated by 120" clockwise (\~) or counterclockwise (-7) as
nontargets. The same very strong interaction between display
size and nontarget homogeneity was observed, as before, despite
the fact that upward pointing terminators were unique to the
target even with heterogeneous nontargets.2

The final, most radical proposal is that the elementary fea-
ture is the whole letter. All conditions showing large effects of
display size are inconsistent with this possibility.

The general point here is that no account of the results in
terms of feature integration theory seems internally consistent.
Let us analyze the reason. According to this theory, the key con-
sideration is the target-nontarget relation and, in particular,
that set of distinguishing properties possessed by the target but
by no nontarget. If a discriminable feature is included in this
set, then search will be parallel; otherwise, it will be serial. We
can find no description of letter properties, however, that reveals
a consistent association between sets of distinguishing proper-
ties and good or poor performance. When this happens we sus-
pect that the theory is neglecting some further, important vari-
able. (If a model has too few degrees of freedom, it is impossible
to obtain an internally consistent fit to the data.) This further
variable, we suggest, is the relation between one nontarget and
another.

Stimulus Factors Determining the Efficiency
of Target Selection

Principles

By the standards of the literature, Experiments 1-4 have
shown large variations in search efficiency across stimulus ma-
terials. Given the inadequacy of feature integration theory to
account for these results, we turn now to an alternative charac-
terization of how stimulus factors determine search difficulty.

Our results suggest four general principles:
1. Search efficiency (as indexed by the effect of display size)

varies continuously across tasks and conditions. There is no
clear implication of a dichotomy between serial and parallel
search modes.

2. Search efficiency decreases with increasing T-N similar-
ity. The point is most clearly made by comparing Experiment
4 with Experiments 1 and 2.

3. Search efficiency decreases with decreasing N-N similar-
ity. The point is most clearly made in Experiments 3 and 4.

4. The preceding two factors interact to scale one another's
effects. Increasing T-N similarity has relatively little effect
when N-N similarity is high (compare homogeneous nontarget
conditions in Experiments 1 and 4). Decreasing N-N similarity
has little effect if T-N similarity is low (Experiment 1). Alter-
ations in search efficiency can only be understood by consider-
ing both variables together.

Figure 3 summarizes our proposals graphically. T-N similar-
ity and N-N similarity are plotted, respectively, on the x-axis
and the z-axis, with a reversal of scale between them. As a joint
function of these two, the effect of display size is plotted on the
>°-axis. Axes are not marked numerically because the figure is
intended only as a qualitative summary. It reflects the following

low

nontarget-
nontarget
similarity

slope of the
search function

high

A low high

target- nontarget
similarity

Figure 3. The search surface.

hypotheses. When T-N similarity is low, search is always highly
efficient, irrespective of N-N similarity (line AC). This hypoth-
esis is consistent with the independence of display size and non-
target heterogeneity observed in Experiment 1. When N-N
similarity is maximal (nontargets identical but for spatial trans-
lation), T-N similarity has a relatively small effect (line AB).
Such a small effect is suggested by comparing the homogeneous
nontarget conditions of Experiments 1 and 4. When N-N simi-
larity is reduced, however, T-N similarity becomes very impor-
tant (line CD). Comparing the heterogeneous nontarget condi-
tions of Experiments 1 and 4 supports this suggestion. Similarly,
when T-N similarity is high, N-N similarity has a very substan-
tial effect (line BD and Experiment 4). Performance is worst at
point D: T-N similarity is high and N-N similarity is low or,
in other words, nontargets each have much in common with the
target but rather less in common with one another. This relates
very plausibly to the heterogeneous condition of Experiment 3,
in which the two nontargets were simple rotations of the target,
each sharing one stroke with the target but no strokes with one
another. Interpolation between these boundaries produces a
continuous surface of search efficiency. Its exact shape is specu-
lative, but we intend its general form (implied by the preceding
hypotheses) to be correct.

Experiments 1 to 4 were planned as tests of feature integra-
tion theory. Although the difficulties they raise for that theory
are quite clearcut, the results provide only preliminary support
for the alternative account summarized in Figure 3. Findings
are limited to a small domain of stimulus materials, and we
have used only rough manipulations of letter similarity. We
noted too that comparisons across experiments were question-
able because experiments were not all run under the same con-
ditions. To bolster our conclusions, we show next that the search
surface is consistent with a wide range of published results, in

2 The same result eliminates a more elaborate proposal suggested by
a journal reviewer. Suppose that an angle's direction of pointing is coded
in terms of elementary features up, down, left, and right. In Experiment
3, the target's angle (down and left) would have a unique feature only
when nontargets were homogeneous. In the same experiment with Vs,
however, the target's downward pointing angle would always be unique.
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search for letters, shapes, color patches, single lines, and so on.
Indeed, it accounts for a great deal of the variation in search
difficulty observed across different stimulus materials.

To speak of stimulus similarity is fairly unambiguous when
stimuli differ only along simple dimensions like size and color.
Here, there are simple physical scales for measuring such
differences, and many psychophysical studies confirming that
proximity on such physical scales is closely associated with dis-
criminability for the human observer. For more complex stim-
uli, such as letters differing in shape, the situation is more com-
plex. Because such stimuli have multiple attributes, they can be
categorized in different ways. Thus, a pair of letters can be sim-
ilar in one respect and different in another; and the relative im-
portance of different stimulus attributes may depend upon the
psychological context. As one example, Beck (1966) showed
that the perceived boundary between an area containing up-
right Ts and an area containing tilted Ts is stronger than the
corresponding boundary between areas of upright Ts and Ls.
These results suggest the relative importance of line orientation.
In direct similarity ratings, however, it is the upright and tilted
Ts that are judged to go together, suggesting reliance on other
attributes. We shall return to the contrast between perceptual
grouping and single element classification later on. For the mo-
ment, we may note that, even for shapes, there remain some
physical constraints on plausible notions of similarity, backed
up by psychophysical work. As we might expect, the confusabil-
ity of two letters is strongly correlated with the amount of con-
tour that they share (Townsend, 1971), a constraint consistent
with our earlier argument concerning similarity of an L to Ts at
different rotations (Figure 2). As an extreme case, identical let-
ters are the same in all their attributes (cf. our manipulations of
N-N similarity in Experiments 1-4). Such constraints allow us
to speak of similarity between letters and shapes without com-
plete circularity. Each time we do so, however, we shall try to
make clear the particular attributes in respect of which similar-
ity is specified, either by definition or by examples.

Simultaneous-Successive Comparisons

We begin with a small group of experiments that measure
the accuracy of target detection or recognition in displays of
constant size, presented either all at once (simultaneous) or two
at a time (successive). As we have already mentioned, the tech-
nique is useful because it holds constant the total amount of
material presented but varies the amount to be processed at
any one time. Unlimited-capacity parallel models predict no
difference between simultaneous and successive conditions (Er-
iksen & Spencer, 1969), contrasting with their inexact predic-
tion of some unknown effect when the total amount of material
changes (as in RT tasks).

The range of results obtained with this technique extends
from identical performance in simultaneous and successive
conditions (Shiffrin & Gardner, 1972) to successive advantages
of 0.8 or more in d' (Kleiss & Lane, 1986). On the whole, the
results are consistent with the view that there will be a large
successive advantage only when T-N similarity is high and N-
N similarity is low. In the classic experiment, Shiffrin and Gard-
ner (1972) manipulated T-N similarity but always maintained

maximal N-N similarity (identical nontargets). Their target
was T or F, whereas nontargets were either all T-F hybrids or all
Os. In either case, performance in simultaneous and successive
conditions was identical. At the opposite extreme, Kleiss and
Lane (1986) obtained large successive advantages with high T-
N similarity (shared contour criterion) and heterogeneous non-
targets (e.g., Experiment 4: mean successive advantage of 0.8 in
d' for detecting R among mixed Ps and Qs, and 0.6 for detecting
R among mixed Ps and Bs). Duncan (1980b) and Kleiss and
Lane (1986) obtained intermediate results using the targets 2 to
9 and nontargets A, E, G, J, M, P, T, X. Further experiments
with this technique would be very useful, especially using stim-
uli whose similarities were more fully understood. For example,
when targets are digits and nontargets letters, should we be con-
sidering similarity of visual or categorical descriptions? At
least, however, the contrasting results of Shiffrin and Gardner
(1972) and Kleiss and Lane (1986) do suggest a major effect of
N-N similarity.

Reaction-Time Tasks

Reaction-time tasks have been used much more widely. As
we have noted, effects of display size vary from little or none to
over 100-ms/item. Here, there is information on a much wider
range of stimulus materials and direct study of both T-N and
N-N similarity.

The results leave little doubt that across a wide range of stim-
ulus materials, both forms of similarity exert strong effects on
search difficulty. As for T-N similarity, Neisser (1963) first
showed that a letter target is much harder to find when it is phys-
ically similar to nontargets (e.g., both target and nontargets are
angular or both are curved). Subsequent experiments have con-
firmed this result using letters (Corcoran & Jackson, 1977),
color patches (Carter, 1982; Farmer & Taylor, 1980), lines vary-
ing in curvature (Treisman & Gormican, 1988), contours vary-
ing in the size of a gap (Treisman & Souther, 1985), and so on.
Fewer experiments have dealt directly with N-N similarity, al-
though it may be noted that many well-known reports of "par-
allel search" with simple shape stimuli used identical nontar-
gets (e.g., Beck & Ambler, 1973; Donderi & Case, 1970; Don-
deri & Zelnicker, 1969; Egeth et al., 1972, Experiments 1 and
2). Where direct comparisons have been made, they confirm
that search is facilitated by increasing N-N similarity, whether
varying the number of different nontarget letters (Gordon,
1968; Mclntyre, Fox, & Neale, 1970), or using simple stimuli
such as color patches (Farmer & Taylor, 1980). The data of Erik-
sen (1953) also suggest that search is impaired by varying non-
target color.

What of the detailed interaction between T-N and N-N simi-
larity? In Figure 3, line AC reflects the hypothesis that, if targets
are sufficiently unlike nontargets, search time is always indepen-
dent of display size, irrespective of nontarget heterogeneity. In
part, this hypothesis reflects the results of the present Experi-
ment 1 and, in part, the following theoretical consideration. In
the normal visual environment, selection of behaviorally rele-
vant information must generally operate in the presence of large
but irrelevant contrasts throughout the visual field. If selection
is ever to be efficient, it must be possible to disregard such irrele-
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vant contrasts at least when conditions are otherwise favorable,
that is, when nothing irrelevant in the field is closely similar
to the information sought. A direct test of this hypothesis is
described by Duncan (in press, Experiment 1). Stimuli were
color patches chosen, within the constraints of a color monitor,
to be as dissimilar as possible (red, yellow, green, blue-green,
blue, purple). Across days, each color served as the target
equally often; displays contained from 2 to 5 patches, with no
color repeated within a display. Under these conditions of mini-
mal (and equal) T-N and N-N similarity, search times were
almost independent of display size. Studies of search for single
letters and digits also show that, when T-N similarity is mini-
mized (on the basis of such considerations as straight vs. curved
shapes), search times can be almost independent of display size
even with heterogeneous nontargets (see data and reviews in
Duncan, 1983; Schneider AShiflFrin, 1977).

Line AB in Figure 3 reflects the proposal that, when N-N
similarity is maximal (identical nontargets), increasing T-N
similarity has a relatively small effect. In letter search, the ex-
periments of Humphreys et al. (in press) are the clearest dem-
onstration that, even when targets and nontargets have a great
deal in common (search for an inverted T among upright Ts),
search time can be almost independent of display size if nontar-
gets are all identical. That there is some effect of increasing T-
N similarity even with identical nontargets, however, has been
confirmed in search for simple targets defined both by length
and by brightness (Treisman & Gormican, 1988).

Two final experiments have investigated T-N similarity, N-
N similarity, and their interaction in detailed analysis of search
for color patches. The first was reported by Farmer and Taylor
(1980). Targets were greys varying in brightness, whereas non-
targets were colors of middle brightness, chosen all to be equally
distinct from the grey. T-N similarity was determined by target
brightness, being highest for the target whose brightness
matched nontargets. N-N similarity was determined by the set
of nontarget hues chosen from the middle-brightness color cir-
cle, either maximally dissimilar (e.g., red, yellow, green, blue,
purple) or highly similar (e.g., five hues between green and
blue). At the fixed display size of 15 items, search times showed
the predicted effects of T-N similarity, N-N similarity, and
their interaction. The second experiment was described by
Duncan (in press, Experiment 2). To understand the method,
consider the list of four colors: green (1), yellow (2), orange (3),
red (4). Both physically and psychologically, the adjacent pairs
(1-2,2-3,3-4) in this list are most similar, whereas the extreme
colors (1 -4) are most dissimilar. (This reflects the standard geo-
metrical representation of color space as a circle, red-orange-
yellow-green-blue-purple-red.) By dividing the list into two
pairs, 1-4 and 2-3, we may contrast two tasks, in one of which
(middle nontargets) 1-4 are targets and 2-3 are nontargets,
whereas in the other (end nontargets) 2-3 are targets and 1-4
are nontargets. In terms of T-N similarity, the two tasks are
exactly matched; in terms of N-N similarity, however, they are
very different. In terms of Figure 3, we remain at a fixed point
on the x-axis and examine a large move along the z-axis. The
experiment may then be repeated at different points along the
x-axis by choosing sets of colors 1 to 4 more widely or more
narrowly spaced. Using this method and a variety of color sets,

Duncan (in press) obtained results in good agreement with the
search surface. With wide color spacing (low T-N similarity),
search time was almost independent of display size in both mid-
dle-nontarget and end-nontarget cases (cf. line AC, Figure 3).
With closer color spacing (high T-N similarity), effects of dis-
play size were rather larger and, in particular, a very large advan-
tage for the middle-nontarget case emerged (line BD). With
close color spacing and end nontargets, slopes were at least as
high as those typically reported for conjunction search.

Of course, in most search studies, T-N and N-N similarities
have been left to the chance selection of stimulus materials, pro-
ducing a wide range of RT slopes (e.g., Duncan, 1983) with little
apparent order. Comparing stimulus similarities across studies
and materials (color patches, letters, words, etc.) is not generally
meaningful. Where they have been directly tested, however, the
proposals summarized in the search surface have been sup-
ported. Of particular importance is confirmation of these pro-
posals in experiments using simple stimuli, for which the ma-
nipulation of similarity is relatively straightforward. There can
be little doubt that the conclusions based tentatively on the pres-
ent Experiments 1 to 4 in fact reflect principles determining
search difficulty across a wide range of stimulus materials. In
the next section, we turn to a theory of how T-N and N-N
similarity exert their effects.

We should make it clear that we regard the search surface as
a general, somewhat approximate summary of a wide range of
search findings. For example, we have not attempted quantita-
tive measures of stimulus similarity nor to establish with such
measures that the search surface has a fixed shape across tasks
or stimulus dimensions. Of course, such extensions of our work
would be extremely interesting. In this article, though, the ap-
proximate empirical principles that we already have will prove
sufficient for our theoretical development.

A Theory of Visual Selection

Overview

Our theory has several antecedents. In structure it resembles
the theory of Duncan (1980b, 1985). There are three compo-
nents: (a) a parallel stage of perceptual description, producing
a structured representation of the input across the visual field
and at several levels of spatial scale, (b) a process of selection by
matching input descriptions against an internal template of the
information needed in current behavior, and (c) entry of se-
lected information into visual short-term memory (VSTM), al-
lowing control of effectors (and corresponding to access to
awareness). Our idea of an internal template comes partly from
Naatanen's (1985) "attentional trace." Our account also owes
much to Bundesen (1987; personal communication, October
27-30,1987), with whom we have had many useful discussions.

Some key features of our theory may be mentioned in ad-
vance. It is general across search materials, dealing in the same
way, for example, with feature and conjunction search though
directly suggesting why conjunction search is often so difficult.
An essential element is a distinction, not considered in previous
work, between similarity of stimulus alternatives and similarity
of stimuli within a display. This distinction leads to consider-
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ation of hierarchical structure in perceptual representation and
its influence on selection. Although our major motivation is to
account for the search surface, as we proceed, we draw together
a number of additional findings. We give an account of the rela-
tion between search and whole report and of the importance of
perceptual grouping in search and selection. Finally, our ac-
count relates sensibly to selection in natural, complex visual
environments.

The Theory

Description

We call the first stage of processing in our model perceptual
description (Sutherland, 1968). This stage produces the data
base for subsequent operations: a parallel, hierarchically struc-
tured representation of input across the visual field, from which
a part can then be selected for control of immediate behavior.
This representation is highly processed. For example, shapes
have been categorized in such a way as to make contact with
nonvisual properties (e.g., aspects of meaning) in memory. Sim-
ilarly, there will be descriptions of color that are independent of
the illuminant, of size independent of distance, and so on.

Like many others (e.g., Beck, Prazdny, & Rosenfeld, 1983;
Marr & Nishihara, 1978; Palmer, 1977; Sutherland, 1968), we
note that visual input has a natural hierarchical or part-whole
organization. On a page of text, for example, relations between
letters within a word are both more constrained and more im-
portant than relations between letters from different words;
similarly, spatial relations between fingers on the same (seen)
hand are more important and more constrained than relations
between fingers on different hands. To capture these distinc-
tions, a visual representation must be segmented. Parts that are
to be described within the same whole must be linked together
(Gestalt grouping) or, complementarity, boundaries must be
drawn between parts that are to be described separately. Follow-
ing Palmer (1977), we call the segments thus created structural
units, although they resemble also the object files of Kahneman
and Treisman (1984) and the 3-D models of Marr and Nishi-
hara (1978).

The details of segmentation are not important here (see, e.g.,
Beck et al., 1983; Grossberg, 1987; Julesz, 1981). Following
many others, we simply note that many different considerations
combine to determine where segmentation occurs. Spatial fac-
tors, in particular the tendency to group by proximity, often
dominate. Similarity grouping is also important, and will play
a major role in our discussion of search. Thus, elements in a
field with the same color, same motion, same shape, or other
shared properties will tend to group together or, complementa-
rily, boundaries between structural units will occur wherever
there are local discontinuities in such properties. Perceived vol-
umes may often be segmented into parts wherever there are
sharp concavities in outline (Biederman, 1987). Probably, too,
segmentation tends to produce familiar entities: We should ex-
pect rather different segmentation patterns in the strings
THECAT and TACEHT (Prinzmetal & Millis-Wright, 1984).

A fully hierarchical representation is created by repeating
segmentation at different levels of scale (Marr & Nishihara,

1978; Palmer, 1977). Each structural unit, contained by its own
boundary, is further subdivided into parts by the major bound-
aries within it. Thus, a human body may be subdivided into
head, torso, and limbs, and a hand into palm and fingers (Marr
& Nishihara, 1978). Such subdivision serves two purposes. The
description of a structural unit at one level of scale (animal,
letter, etc.) must depend heavily on the relations between the
parts defined within it (as well as on properties such as color or
movement that may be common to the parts). Then, at the next
level down, each part becomes a new structural unit to be fur-
ther described with its own properties, defined among other
things by the relations between its own sub-parts. At the top of
the hierarchy may be a structural unit corresponding to the
whole input scene, described with a rough set of properties (e.g.,
division into light sky above and dark ground below).

Within the hierarchy, we propose that each structural unit is
described with a set of properties, including at least its relative
location, motion, color, surface texture, size, and shape. As we
have said, nonvisual properties (e.g., categorizations based on
meaning) may also have been added from memory. We propose
that the entire process of segmentation and description is paral-
lel and resource free. In visual search, for example, the time
taken to process one part of the field is not dependent on how
many elements occur elsewhere. Although the whole input de-
scription is derived in parallel, however, it has no immediate
control over behavior. Subjectively, this description is outside
awareness. To serve as the focus for action, a part of the input
description must be selected for access to VSTM. Here, we pro-
pose that structural units act as wholes, competing for and gain-
ing access to VSTM with all their associated descriptions (Kah-
neman &Henik, 1977).

Selection

Access to VSTM is strictly limited. The classic experiment
was reported by Sperling (1967). A row of letters was exposed
for a variable duration, terminated by a mask. Subjects re-
ported as many letters as possible. The number reported in-
creased by roughly one per 10-ms increase in exposure, to a
maximum of three or four. Once this maximum was reached,
further increases in exposure had little effect.

Consider first the initial, steep increase in number of items
reported with increasing exposure. Following Sperling (1967),
we take this to reflect the entry rate of information into VSTM.3

Although a roughly linear increase might suggest a serial pro-
cess, Sperling himself favored a parallel, limited-capacity
model, and subsequent stronger evidence confirms this view
(Pashler&Badgio,1987).

Thus, we propose that access to VSTM is determined as fol-
lows. There exists some resource, limited in total amount, that
can be divided in varying proportions among structural units
in the input description (Rumelhart, 1970). Increased assign-
ment of resources to any structural unit increases its speed and
probability of access to VSTM (Bundesen, 1987; Shibuya &

3 In Sperling's (1967) model it is actually the "recognition buffer" that
corresponds functionally to our visual short-term memory.
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Bundesen, 1988). Resource assignment is strictly competitive:
Increasing the assignment to one structural unit necessarily de-
creases the net assignment to others. Following Rumelhart
(1970), we may think of each structural unit as having some
weight, reflecting the strength with which it competes (cf. the
"attentional strengths" of Shim-in, Dumais, & Schneider, 1981;
and the "impacts" of Bundesen et al., 1985). Note then that
resource allocation depends on relative rather than absolute
weights (Rumelhart, 1970). Total available resources are always
used and are distributed across inputs in proportion to relative
weights. For example, increasing or decreasing all weights
equally has no great effect.

We intend resource to be understood as neutrally as possible.
It might refer to any factor competitively distributed among
structural units. For example, as proposed in a theory devel-
oped by Bundesen (1987; personal communication, October
27-30, 1987), the speed and probability of VSTM access for
any structural unit could be determined by its degree of activa-
tion, with total activation across structural units fixed (e.g.,
through mutual inhibition). Then, increases and decreases in
weight might correspond respectively to excitatory and inhibi-
tory inputs.

For simplicity we assume that weights are initially set to some
constant, average value for all structural units in the input de-
scription. For selection, then, the problem is to alter or bias
these initial weights so that resources are assigned to the correct
structural units. Such a selection system must be indefinitely
flexible. Depending on present concerns, descriptions at any lo-
cation or scale level may be behaviorally relevant. In this respect
we propose that vision is typically directed by the search for
some particular information (e.g., the next word in a page of
text, an approaching vehicle at an intersection) whose advance
specification, however, may vary substantially in precision. We
call this advance specification a template of the information
sought, although with no commitment to common ideas of
template matching and with the explicit proposal that tem-
plates vary in both the nature and detail of the information they
contain. For example, a template could specify only one attri-
bute of the desired information, such as its location or color, or
many combined attributes, including shape. Selection operates
by matching input descriptions to current templates. The result
is a change of weight for each structural unit that is proportional
to the degree of match, good matches increasing the weight but
poor matches decreasing it.

One further consideration links this account of selection to
the idea of hierarchical representation. In an artificial search
display it may seem reasonable to limit consideration to the few
stimulus elements that are presented by the experimenter, but
in a realistic, natural image the problem is more complex. The
field contains a multiplicity of structural units at different levels
of scale. Suppose that one searches for red berries hanging in a
holly tree. Is their template compared separately and indepen-
dently with a description of every visible leaf, or even with every
individual spike separated by concavities from other parts of
each leaf? Working independently in this way would seem
alarmingly inefficient. Instead, we propose that weights tend to
change together to the extent that structural units are linked in
the input description (i.e., according to the strength of grouping

between them). To put this another way, a change in weight for
any one structural unit is also distributed to others proportion-
ally to the strength of grouping. This process we call weight
linkage.

Again, it would be easy to model weight linkage in terms of
activation strengths in the input description. In connectionist
models, for example, it is common for units consistent with the
same perceptual hypothesis to support one another's activity
(e.g., McClelland & Rumelhart, 1981). Accordingly such units
tend to gain or lose activation together. Here, we might suppose
a similar functional linkage, proportional to the strength of per-
ceptual grouping, between different structural units in the input
description.

The most important result of weight linkage is efficient rejec-
tion of strongly grouped nontargets through what we call
spreading suppression between them. At one level of scale, each
leaf of the holly tree is a distinct structural unit, but at the next
level up, these are linked into homogeneous green areas broken
by the branches and clusters of berries. Qose association means
that each reduction in weight for one leaf tends also to be dis-
tributed to others—or in other words, that all such reductions
reinforce one another.

Note that we do not propose a reduction in any element's
weight simply because it is similar to or grouped with others
("lateral inhibition"). Instead, we propose that weights covary
according to grouping strength. There is no bias against select-
ing parts of the input that are grouped with others (Ullman,
1984), only a bias toward selecting or rejecting grouped parts
together.

To sum up, two factors combine to determine selection
weights. The first is match of each input against a template of
currently needed information. Weights increase with increasing
match. The second is weight linkage. Any change in weight for
one input is distributed to others in proportion to the strength
of perceptual grouping.

Visual Short- Term Memory

Access to VSTM allows a structural unit to become the focus
of current behavior. It may be described, picked up, and so on.
We need not decide why it is that access to VSTM is so severely
limited. Along with Posner (1978) and Allport (1987), we may
speculate that one major reason is the need to avoid overload
and conflict in response systems, which ideally should only
"know" as much as they currently need. Here, though, the sim-
ple existence of limitation is the important thing.

Returning to Sperling's (1967) experiment, we recall that,
with increasing exposure duration, the number of letters re-
ported from a tachistoscopic array asymptotes at three to four.
Again, we may accept Sperling's view that this asymptote re-
flects the total capacity of VSTM. How to define capacity will
be left open; for example, the limit might concern number of
structural units or of descriptions and might perhaps be sensi-
tive to the hierarchical structure of selected information. When
VSTM is filled, it must be flushed before the entry of new infor-
mation can begin. Perhaps flushing is normally accompanied
by refixation, in accord with the suggestion of Loftus (1981)
that fixations last for the (variable) amount of time needed to
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acquire a fixed amount of information from the visual scene.
Thus, limited VSTM access has both a parallel and a serial ele-
ment, parallel within each period of filling the store, but serial
from one such period to the next.

Account of Visual Search Data

From the preceding account it is clear that we shall have to
consider two sorts of stimulus similarity in visual search. First,
there is the problem of classifying each single element in a dis-
play as target or nontarget. In the aforementioned theory this
involves matching each element against a template of possible
targets. To understand this process we need to consider similari-
ties within a task's list of stimulus alternatives (i.e., the possible
targets and nontargets); these we call interalternative similari-
ties. Second, there is the issue of perceptual grouping. Here the
important consideration is the similarity of one stimulus to an-
other within a display; this we call within-display similarity. We
will show that both forms of similarity have major effects on
search.

In outline, the approach we take may already be clear. In-
creasing T-N similarity is harmful because in the competition
for VSTM access, the weight of each nontarget depends on its
match to target templates. Decreasing N-N similarity is harm-
ful because it reduces the opportunity for spreading suppres-
sion of grouped nontargets. In what follows we both supplement
this view with other, less central arguments and show why in
broad outline we prefer it to other possible accounts of similar-
ity effects.

Selecting a Target Description

We begin by defining the most usual and general strategy for
experimental search tasks. Structural units in the input descrip-
tion are compared against a template of the target(s). A positive
response is made when a selected target description enters
VSTM. Negative responses are made by default, as we consider
in detail later.

Interalternative similarity and selection efficiency. Target de-
tection times will be independent of display size if nontargets
attract no resources. Otherwise, increasing the number of non-
targets will be harmful, inasmuch as it must diminish resource
availability for the target. Because the weight of each nontarget
depends on how closely it matches a target template, the effect
of T-N similarity follows readily. (By extension, too, we assume
that background aspects of the input description, that is, fea-
tures of the room other than the experimental display, have so
little weight as to be ignored.)

Several previous workers have made similar proposals about
T-N similarity. Most notable is Hoffman (1978), who directly
proposed that nontargets resembling a possible target gain pref-
erential access to limited-capacity perceptual systems, but in
rather different terms, Estes (1972), too, suggested that one
stimulus inhibits the perception of others in a display to the
extent that it is like a possible target. This view is significantly
different, however, from several others.

First, our account is in terms of interalternative similarity.
We have considered not similarities between one stimulus and

another within an actual array, but rather the similarity of each
nontarget to any possible target. In contrast, Bjork and Murray
(1977) proposed an account of T-N similarity entirely in with-
in-display terms. In their theory, characters in a display inhibit
one another to an extent dependent on their activation of shared
feature detectors. This predicts a form of camouflage: A target
will be hard to see when a similar nontarget is nearby. An im-
portant experiment by Pashler (1987b) illustrates one case in
which such within-display factors are unimportant, the resem-
blance of each nontarget to any possible target being the key
consideration. Possible targets were the letters C and E; nontar-
gets were a combination of letters chosen to resemble neither
target (X and N), mixed (on some trials) with letters chosen to
be confusable with one target or the other (Gs or Fs in different
displays). The presence of confusable nontargets was harmful,
and significantly, their effect was independent of whether the tar-
get they resembled was the one actually present. At least in this
experiment, interalternative similarity was crucial and within-
display similarity was immaterial.

Second, consider accounts based on classification difficulty. It
is very plausible that the resource demand of a display element
should depend on how hard this element is to classify. This is
the straightforward prediction of any serial model in which the
time spent on an element depends on how long it takes to accu-
mulate sufficient evidence for an accurate decision. Similar pro-
posals were made by Neisser (1963) and Broadbent (1970) in
terms of the number of features to be extracted from search
elements (see also, more recently, Fisher et al., 1988). Our ac-
count differs subtly. Nontargets similar to targets call for re-
sources not because they are close to any classification bound-
ary separating target and nontarget categories, but because they
are close to the target category itself. The resulting prediction
is obvious and has often been confirmed: Irrespective of classi-
fication difficulty, targets themselves make the greatest resource
demands (Duncan, 1980b, 1985; see also Ostry, Moray, &
Marks, 1976; Sorkin, Pohlmann, & Gilliom, 1973).

Before leaving our discussion of interalternative similarity,
we must deal with one further matter. If we bear in mind that
the important factor is similarity between each input descrip-
tion and a target template (as opposed, e.g., to the complete de-
scription of a target input), then a further consideration arises.
What factors determine the nature of the template? Clearly it
must be sufficiently elaborate to include all likely targets and to
exclude all likely nontargets. It follows that selection will in all
probability be impaired by increased heterogeneity either
within the set of possible targets or within the set of possible
nontargets.

In this article we are little concerned with heterogeneity of
targets (T-T similarity), although of course it is known that in-
creasing the number of possible targets (memory set size) often
has a harmful effect (Schneider & Shiffrin, 1977). The more
heterogeneous the targets, the more elaborate will be the tem-
plate or set of templates needed to differentiate them from non-
targets. (An exception occurs when targets can all be differenti-
ated from nontargets on the basis of some common property. In
this case, target heterogeneity might be unimportant.) Sim-
ilarly, the more heterogeneous are nontargets, the less likely is
it that a simple target description will exclude them all. For ex-
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ample, suppose the target is a line varying randomly in length
between 1.75 cm and 2.25 cm. If nontargets are all lines of
length 3 cm, the target description could be shorter than 2.5
cm. Adding a second nontarget of length 1 cm, however, would
require the more complex description shorter than 2.5 cm but
longer than 1.5cm.

There are two general approaches to the problem of why
more elaborate templates should lead to poorer selection. The
first is based on the complexity of the required matching opera-
tion. In the case of target lines from 1.75 cm to 2.25 cm, for
example, a single criterion along the dimension of length will
discriminate targets from 3-cm nontargets, whereas two criteria
are needed when the 1-cm nontarget is added. The idea that
more features might need to be checked with more heteroge-
neous sets of target and nontarget letters (cf. Rabbitt, 1967) is
analogous. The second approach is more consonant with the
present emphasis on similarity considerations. A distinction is
often drawn between the shared and distinguishing attributes
of two entities (e.g., Tversky, 1977). If the selection weight as-
signed to a nontarget depends largely on its shared attributes
with the template, then the more attributes a template pos-
sesses, the more on average is it likely to share with each nontar-
get and the worse will selection be. For example, functional sim-
ilarity between a line of 3 cm and the description shorter than
2.5 cm may be less than functional similarity with the descrip-
tion shorter than 2.5 cm but longer than 1.5 cm, because in the
second case, the 3-cm nontarget in fact possesses one of the two
attributes in the target description.

In fact, it is a very general psychological truth that classifica-
tion becomes easier with (a) decreased similarity between stim-
uli requiring different responses and (b) increased similarity be-
tween stimuli requiring the same response (Shepard & Pod-
gorny, 1986). Furthermore, the latter point (b) is generally
explained by appeal either to the complexity of required deci-
sion operations or to considerations of functional similarity be-
tween members of different response classes (Podgorny & Shep-
ard, 1983). The arguments of the present section reflect an ap-
plication of these general psychological principles to the
particular act of selection between competing input descrip-
tions.

In this section we have dealt with harmful effects of increased
T-N similarity and decreased N-N similarity in interalterna-
tive terms. We turn next to evidence that these considerations
alone are far from sufficient for a full account of similarity in-
fluences on search.

Within-display similarity and perceptual grouping. In the
preceding section we argued that search would be impaired by
increased heterogeneity either within the set of possible targets
or within the set of possible nontargets. Recall, however, the ex-
periment of Duncan (in press, Experiment 2), described in de-
tail earlier. A set of four colors was divided either so that targets
were relatively homogeneous and nontargets relatively heteroge-
neous, or so that targets were relatively heterogeneous and non-
targets relatively homogeneous. Despite the fact that the distinc-
tion between targets and nontargets was exactly the same in the
two cases, the task with homogeneous nontargets was substan-
tially easier.

Although exactly comparable letter search studies have not

been done, there, too, a similar asymmetry may exist. Although
increasing the number of targets from one to two is initially
harmful, practice soon reduces the effect or eliminates it al-
together (Schneider & ShifFrin, 1977). Increasing the number of
nontargets from one to two, however, has large and lasting
effects (Duncan, 1987).

Interalternative considerations suggest no reason for this
asymmetry between T-T and N-N similarity. The obvious
asymmetry in the tasks, however, is that displays contain multi-
ple nontargets but not multiple targets. The implication, as our
theory predicts, is that similarity of one stimulus to another
within the display may be crucial. N-N similarity is much more
important than T-T similarity because similar nontargets in a
display tend to group perceptually. Because of weight linkage,
they do not compete independently for VSTM access.

To reiterate, the more closely are two inputs linked in the
hierarchical input description, the stronger is the tendency for
their weights to covary. In search this means that reducing the
weight of any one nontarget in a strong perceptual group tends
correspondingly to reduce it for the rest. This is what we have
called spreading suppression. Although separate groups of non-
targets must be rejected independently, members of the same
group tend to be rejected together.

Again, several previous workers have expressed similar views,
in particular that nontargets in a strong perceptual group may
be rejected as a unit (Bundesen & Pedersen, 1983; Farmer &
Taylor, 1980). The strongest evidence for such a position comes
from experiments dealing with nontarget grouping directly. In
an experiment by Bundesen and Pedersen (1983), for example,
a target of known color was presented in displays containing
various mixtures of nontarget colors. When nontargets were
grouped into local areas of common color, there was little effect
(about 2-ms/item) of the number of items per group, but a
much larger effect (about 12-ms/item) of the number of groups.
In other words, adding a nontarget to a display had little effect
when it simply increased the size of an already existing group,
but a much larger effect when it created a new group. Similar
results were reported by Farmer and Taylor (1980) for color
search and by Treisman (1982) for targets defined by a conjunc-
tion of color and form. Indeed, adding nontargets to a display
can even be helpful if it increases perceived grouping of the re-
mainder (Banks & Prinzmetal, 1976). Such findings cannot be
explained by considerations of interalternative similarity. They
clearly indicate the importance of interactions between one ele-
ment and another within a display.

Although these experiments deal with nontarget grouping,
the tendency of targets to group with nontargets must also be
important. A tendency for two weights to covary is helpful if
both are to be set low (two nontargets) or high (two targets), but
must be harmful if one is to be set low and the other high. Thus,
our analysis of T-N similarity must also have its within-display
aspect. Grouping between targets and nontargets will be harm-
ful. We predict, for example, that targets could sometimes be
camouflaged by placing them close to similar nontargets in an
array.

In general, because access to VSTM is competitive, the most
important consideration will be relative weights of targets and
nontargets. Distributing a reduction in weight from one nontar-
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get to other input elements will only be helpful if it reduces
the weights of (some) other nontargets more than it reduces the
weight of a target. The necessary condition for a benefit from
spreading suppression must be that grouping between a set of
nontargets be stronger than grouping between nontargets and
targets. In the experiment of Bundesen and Pedersen (1983), for
example, distributing a reduction in weight within a color
group is helpful because weights within the group change more
than all other weights. Although weight changes may also have
some tendency to be distributed across color groups, this will
be unimportant because its average effect on nontargets in these
other groups will be equal to its effect on any target.

Effects of selection failure. Before leaving the issue of selec-
tion efficiency, we should consider the detailed implications of
selection failure. Assignment of resources to nontargets has two
different harmful effects. First, it reduces resources available for
the target and, hence, the average speed of VSTM access. Sec-
ond, in the extreme case, VSTM may be filled by nontarget de-
scriptions before target access is achieved, so that the store must
be flushed (by re-fixation?) and selection started again.

A study by Pashler (1987a) fits rather neatly with this analy-
sis. In a detailed study of display size functions for typical con-
junction search (e.g., green Ts among red Ts and green Os),
Pashler (1987a) found that positive and negative RTs increased
by roughly the same amount from display size 2 to 8, followed
by diverging functions (2:1 ratio of negative:positive slopes)
thereafter. He proposed that a limited-capacity parallel process
deals with clumps of about eight items, but moves in a serial
self-terminating search from clump to clump.

Finally, we should consider how negative responses are made.
In all probability, the exact strategy is rather variable. At one
extreme, if the assignment of resources is so selective that any
target is always the first description entered into VSTM, then
the negative response can safely be made either when any non-
target description enters or after a suitable time interval. At the
opposite extreme, if resources are assigned equally to targets
and nontargets, the negative response cannot safely be made
until descriptions of all display elements have passed into (or
through) VSTM. In fact, negative response functions are noto-
riously variable, and many authors have suggested that such re-
sponses are based on variable checking strategies (Corcoran &
Jackson, 1977; Treisman & Souther, 1985). In general, however,
when the search strategy is the one we have considered so far,
negative responses will be slower than positive responses (be-
cause they are made by default), and any factor impeding selec-
tion will affect negatives at least as substantially as positives.

Special Case: Homogeneity Coding

We have said that for any input image, structural units will
be described at various levels of scale. In most search arrays,
one such unit will correspond to the whole patch of stimulus
elements, described with its overall shape (in the present experi-
ments, an irregular arc), brightness, texture, and so on. This
immediately raises the possibility of a special strategy for carry-
ing out the search task. Suppose that the presence of a target
produces some characteristic change in the description of this
whole-array unit. (For example, one can imagine tasks in which

a target would make the whole array larger or smaller or would
alter the array's outline shape.) Then there is no need to match
each element of the array against a template of the target, mak-
ing a positive response when a target description enters VSTM.
Instead, the whole-array unit can be selected (by match to a
corresponding template, e.g., the template of a bright, irregular
arc, which excludes background features of the room). A re-
sponse can be based on the perceived properties of this whole-
array unit.

With this strategy, we expect little affect of array size because
elements do not compete individually for access to VSTM. Fur-
thermore, there is no reason for negative responses to be slower
than positive responses. Negative responses are not made by
default. The whole-array unit simply has one perceived prop-
erty if the target is present and another if it is absent. Such fast
negatives are rarely observed with heterogeneous nontargets,
even in the purest cases of "parallel" search (Duncan, in press,
Experiment 1; Schneider & Shiffrin, 1977; Taylor, 1978; for an
exception, see Duncan, 1983, Figure 2). With homogeneous
nontargets, however, negatives can be as fast as positives (Corco-
ran & Jackson, 1977; Donderi& Case, 1970;Egethetal., 1972;
Humphreys et al., in press). Sometimes such negative RTs even
decrease with increasing array size, especially from display size
1 (when whole-array homogeneity does not distinguish positive
from negative trials) to 2 (Humphreys, Riddoch, & Quinlan,
1986; see also Donderi & Case, 1970; Donderi & Zelnicker,
1969; Polich, 1986). A final observation is that RTs can be inde-
pendent of array size even when the task is simply to decide
whether a whole array is homogeneous ("same") or not
("different"), with no advance specification of the identity of
any mismatching element (Donderi & Case, 1970; Donderi &
Zelnicker, 1969). All of these results suggest that, when nontar-
gets are all identical, responses can sometimes be based on di-
rect coding of homogeneity or heterogeneity at the level of the
whole-array unit.

In fact, this is a reasonable suggestion. We have said that de-
scription of any structural unit includes a specification of how
and where it is divided into parts (Marr & Nishihara, 1978;
Palmer, 1977). In an array composed of multiple elements, ma-
jor divisions into parts occur where adjacent elements are dis-
similar in color, shape, or some other property (Beck et al.,
1983; Julesz, 1981). Adding a target to a field of otherwise iden-
tical nontargets may indeed produce, at the level of the whole-
array unit, a unique perceived division into subgroups.

This is a speculative possibility, and it makes little difference
to our account of RT slopes. With homogeneous nontargets,
slopes might be shallow either because responses are based on
direct, perceived homogeneity of the whole array or because
spreading suppression allows efficient target selection. Only ab-
solute RTs may be much influenced by the choice of strategy.
Furthermore, we would regard response to whole-array homo-
geneity as a special, rather degenerate case of search. In a natu-
ral visual environment it might be unlikely that we can detect
relevant information simply because some higher level entity in
the field is less homogeneous that otherwise expected. Still, the
possibility of this strategy should perhaps be acknowledged in
any complete account of N-N similarity effects.

In essence we have proposed that description of any struc-
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tural unit includes information concerning the largest local dis-
continuities within it. Along related lines, it has been suggested
by both Sagi and Julesz (1984) and Ullman (1984) that parallel
visual processes are entirely confined to local discontinuity de-
tection. Parallel processes indicate the element in the field that
is most unlike its surroundings but are insufficient for any task
requiring stimulus identification. Like us, Sagi (1988) has also
recently shown that within-object conjunction search can be
very easy when nontargets are all identical. According to our
account, one sufficient condition for parallel search is indeed
that the target be the display element most unlike its surround-
ings (line AB on the search surface). This is not a necessary
condition, however (line AC; see the data reviewed earlier, and
in particular, Duncan, in press, Experiment 1). If T-N similar-
ity is sufficiently low for perfect selection, then N-N similarity
is immaterial.

Size/Eccentricity Ratio

Our experiments suggest that decreasing the size/eccentricity
ratio increases slopes in all letter search tasks. This follows
straightforwardly from the theory. Decreasing size/eccentricity
ratio makes all differences between letters harder to see. This
will impair any discriminative operation based on such differ-
ences, including (a) discriminative setting of target and nontar-
get weights based on match to a target template and (b) any
benefit from spreading suppression, arising when grouping be-
tween a set of nontargets is stronger than grouping of nontargets
with a target.

T-T Grouping

The stronger is the perceived grouping of two inputs, the
greater is the tendency for their selection weights to change to-
gether. Spreading suppression between grouped nontargets is
one side to this. If arrays contained multiple targets, however,
then increasing their perceived grouping should also allow
spreading enhancement between them. An increase in weight
for one target would be distributed to others proportionally to
the strength of grouping. As we have said, N-N grouping is
more important than T-T grouping only because of an asym-
metry in the structure of typical search arrays, which contain
multiple nontargets but not multiple targets. The analogue of a
search task with multiple targets is partial report. Here several
studies have confirmed that selecting a number of letters from
a brief array is easiest when they form a strong perceptual group
(Kahneman & Henik, 1977; Merikle, 1980; note, however, that
in such studies T-T, T-N, and N-N grouping all necessarily
covary).

Related to this is our hypothesis that structural units, with all
their associated descriptions, are selected as wholes for VSTM
access. In support, Duncan (1984) showed that two properties
of the same object (e.g., brightness and tilt of a line) can be
identified simultaneously in a brief display, without mutual in-
terference, whereas properties of two different objects cannot.
The different descriptions attached to a single structural unit
are perhaps the most strongly grouped aspects of an input de-
scription; this may be why they are necessarily selected together.

Summary

The theory we have proposed both explains the general form
of the search surface and reveals its limitations. Returning to
Figure 3, line AC shows that, irrespective of N-N similarity,
search time is always independent of array size as long as T-N
similarity is sufficiently low. In the competition for VSTM ac-
cess, reducing T-N similarity eventually renders nontarget
weights negligible. Line AB shows that even increasing T-N
similarity has relatively little effect when N-N similarity is
maximal (identical nontargets). When N-N grouping is
stronger than T-N grouping, selection is aided by spreading
suppression. (Of course, as T-N similarity approaches N-N
similarity, performance must eventually be impaired. Thus, al-
though line AC is horizontal, AB must eventually turn up.) But,
as we move along lines CD or BD, performance rapidly deterio-
rates. Nontargets increasingly match the target template, and
spreading suppression is decreasingly helpful. The result is a
continuous degradation in search efficiency.

One major limitation of the search surface is its bundling to-
gether of two quite different similarity considerations. We have
proposed that, in the competition for VSTM access, two differ-
ent factors combine to determine selection weights. The first is
a tendency of each element to attract resources in proportion
to its match to a target template. Here, the relevant consider-
ation is interalternative similarity. With reference to standard
classification principles (Shepard & Podgorny, 1986), we ar-
gued that appropriately assigning weights will be enhanced by
(a) increasing similarity within the set of possible targets, (b)
increasing similarity within the set of possible nontargets, and
(c) decreasing similarity between possible targets and nontar-
gets. The second factor is perceptual grouping. To the extent
that two elements are linked in the input description, their
weights tend to covary. Here, the relevant consideration is with-
in-display similarity. We argued that selection will be enhanced
by (a) increasing grouping between simultaneous nontargets
and (b) decreasing grouping between targets and nontargets. If
displays contained multiple targets, then increasing their per-
ceived grouping would also be helpful. Although these analyses
of interalternative and within-display similarity have obvious
and interesting correspondences,4 it is important to keep them
apart. Suppose, for example, that we wished to extend the
search surface to give a quantitative account of similarity effects

4 In brief, much the same principles may be at work in different repre-
sentational domains. For analysis of interalternative similarity, the rele-
vant domain is the representation in memory of alternative possible
stimuli. Distance in this representation concerns the dimensions of vari-
ation used in mentally classifying stimuli. We may think of classification
as drawing a boundary in this space of stimulus alternatives to distin-
guish target and nontarget areas. Classifying any given element is easier
the further it is from this boundary (T-N similarity) and the simpler the
boundary is (T-T and N-N similarity). For analysis of within-display
similarity, the relevant domain is representation of the input across vi-
sual space. Distance corresponds to grouping strength. We may think
of selection as drawing a boundary in this input representation to distin-
guish selected and unselected areas. This is easier the further apart are
selected and unselected areas (T-N grouping) and the more compact is
each one (T-T and N-N grouping).
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in some stimulus domain. We have no guarantee that interalter-
native confusability and interelement grouping will respond in
exactly the same way to any given manipulation, whether of
color, shape, or any other attribute. Indeed, the considerations
arising in analyzing these two problems are necessarily some-
what different. This is our major reason for offering the search
surface as a first, approximate summary of experimental find-
ings. To go further, we need independent measurement and un-
derstanding of stimulus principles governing interalterna-
tive confusability in input-template matching and grouping
strength in perceptual description.

A second limitation of the search surface is neglect of T-T
similarity. As we have shown, N-N similarity is in fact more
important in search as it is usually investigated (Duncan, in
press, Experiment 2). In the more general case of multiple tar-
gets and nontargets, however, T-T and N-N effects may well be
symmetrical.

Across-Object Conjunctions

Experiments 1-4 dealt with within-object conjunctions. In
those experiments, individual nontargets differed from the tar-
get only in the arrangement of strokes within the letter. Among
other things, this allowed us to examine the extreme case of
nontarget homogeneity (identical nontargets). As yet, however,
we have said nothing about across-object conjunctions. One of
the key findings in support of feature integration theory is the
difficulty of search when a target can be formed by recombining
attributes of the different, heterogeneous nontargets (e.g.,
search for a red O among blue Os and red Xs). Can our theory
suggest an account of this result?

According to the theory there are two sufficient conditions for
efficient visual search. The first is that N-N similarity should
be appreciably higher than T-N similarity (Figure 3, line AB).
Because grouping between all nontargets is stronger than group-
ing of any nontarget with the target, there is maximal benefit
from spreading suppression. In typical across-object conjunc-
tion search, this condition is clearly violated. The two alterna-
tive nontargets each share one attribute with the target, but no
attributes with one another.

The second sufficient condition is that T-N similarity should
be so low that nontarget weights are negligible (Figure 3, line
AC). In analyzing this we must recall two key points. First, the
important consideration is similarity between nontargets and
the target template, not between nontarget and target stimuli.
Second, selection may be expected to suffer as templates be-
come more elaborate. In particular, the more attributes are
specified in a template, the more on average will be shared with
each nontarget.

In their classic experiment, Treisman and Gelade (1980)
compared two tasks. Nontargets in each case were green Xs and
brown Ts. In feature search, the target was either blue (in which
case it was either an X or a T) or it was an S (in which case it
was either green or brown). Either target could occur on any
given trial. In conjunction search, the target was a green T. The
experiment was carefully designed to equate both N-N and T-
N similarity across tasks, construing T-N similarity as the
number of attributes shared between each nontarget and the

most similar possible targets (e.g., a green X shares one attri-
bute with either a blue X or a green S; similarly, it shares one
attribute with a green T). The conjunction task, nevertheless,
was substantially more difficult.

According to our theory, the variable not matched across
tasks was similarity between each nontarget and the target tem-
plate. If we assume that templates included only those attributes
distinguishing targets from nontargets, then in feature search,
each nontarget shared no attributes with either of the templates
blue and S, whereas in conjunction search, each nontarget
shared one attribute with the template green T. If we suppose
that allocation of resources to nontargets is determined partly
by the number of attributes shared with target templates (as
opposed just to the number of distinguishing attributes), the
relative difficulty of conjunction search readily follows.

"Search asymmetries" reported by Treisman and Souther
(1985) may be explained by similar means. For example, it is
very much easier to find a circle with an intersecting line among
circles without a line, then to find a circle without a line among
circles with lines. If the target is a circle with a line, the template
may simply specify line or intersection, but if the target is the
circle with no line, only a complete template circle and absence
of line can be used. (Obviously, the subject cannot search just
for "no line"—most parts of the field will contain no line.)
Other asymmetries reported by Treisman and Gormican
(1988) may be explicable in the same way. For example, it is
easier to find a slightly tilted line among vertical lines than the
reverse. Treisman and Gormican suggested that a tilted line
may be described perceptually as the standard (vertical) plus
the deviation (tilt). Then, in search for a tilted line, only the
deviation need be specified in the template, whereas in search
for the vertical, the whole (standard and absence of deviation)
must be included.

Because (by definition) templates will never be the same in
feature and conjunction search, it may be impossible to achieve
a perfectly controlled comparison between the two. According
to our theory, a better approach is to examine wide variations of
T-N and N-N similarity in both sorts of task. We have already
reviewed experiments on search for color patches showing that,
as T-N similarity increases and N-N similarity decreases, re-
sults come closely to match those typically reported for con-
junction search (e.g., Duncan, in press, Experiment 2). Experi-
ments 1-4 dealt with maximal N-N similarity in within-object
conjunction search. Experiment 5 deals with T-N similarity in
across-object conjunction search.

Experiment 5

Treisman and Gelade (1980) showed that it is easier to find
an R among mixed Ps and Bs than among mixed Ps and Qs. In
the first case, the target has a unique stroke (the diagonal),
whereas in the second it is unique only in its conjunction of
strokes. Thus, the results are consistent with feature integration
theory. According to our theory, the R-PB task is easier because
a simpler template (a description just of the diagonal) can be
used.

In Experiment 5, we compared the R-PQ task with a modi-
fication designed to reduce T-N similarity while maintaining
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R Table 12
Experiment 5: Error Proportions

Figure 4. Stimulus set in Experiment 5. (Targets are on
the left, nontargets on the right.)

the condition that all target strokes be contained in the nontar-
gets. Much of the shared contour between an R and a P lies in
their common loop. We asked what happens when the bulk of
this loop is simply omitted. The target becomes a caret (Figure
4, second from left), whereas nontargets become I and Q (Figure
4, right). How does this reduction in T-N similarity—as as-
sessed again by amount of shared contour (Townsend, 1971)—
affect search?

As we have said, although the number of attributes distin-
guishing each nontarget from the target template may be similar
in feature and conjunction search, the number of shared attri-
butes is not. The more complex templates of conjunction
search may be harmful because selection weights depend partly
on shared attributes. In this light it may be noted that our ma-
nipulation of T-N similarity left the contour distinguishing tar-
gets and nontargets the same. Only shared contour was altered.

A preliminary experiment asked how our manipulation
affects the time to classify single shapes. In one task the two
alternative stimuli were R and P, whereas in the other they were
the caret and I. Shapes were identical to those used in Experi-
ment 5, presented in the same display locations. A single shape
appeared on each trial, and the subject indicated which it was
by pressing one of two alternative keys. Reaction times were 53
ms shorter in the caret-I task, F(\, 3) = 45.1,p< .01.

Method

Tasks. Stimuli are shown, drawn to scale, in Figure 4. The two alter-
native targets—an R and a caret—are on the left, and the three nontar-
gets—P, I, and Q—are on the right. There were two tasks: search for an
R among Ps and Qs, and search for a caret among Is and Qs. The only
difference was that, in the second task, the loop shared by an R and a P
was omitted.

Except for the I, which occupied the same position as the upright in

Table 11
Experiment 5: Reaction Times (in Milliseconds)
as a Function of Display Size

Heterogeneous

Condition

Caret in IQ
Present
Absent

RinPQ
Present
Absent

Caret in PQ
Present
Absent

2

450
494

512
595

439
482

10

453
576

691
996

473
593

18

502
608

916
1516

484
652

Slope (ms/item)

3
7

25
58

3
11

Condition

Caret in IQ
Present
Absent

RinPQ
Present
Absent

Caret in PQ
Present
Absent

2

.021

.011

.005

.026

.000

.016

Heterogeneous

10

.016

.011

.042

.016

.016

.011

18

.011

.011

.032

.026

.016

.005

a target, each letter measured 29' arc square. Displays contained either
2, 10, or 18 letters, positioned at random on two imaginary circles of
radius 1° 23' (letter height/eccentricity = l/2.9)and 1° 57'(letter height/
eccentricity = 1/4.1) centered on fixation. There were 12 possible letter
positions on each circle, evenly spaced, starting at 12 o'clock for the
inner circle and at 12:30 for the outer circle. In the previous experi-
ments, nontargets had always been shifted slightly from their positions
on the display perimeter, so that a target's strokes fell in positions that
were possible for nontarget strokes. This procedure was unnecessary
here because the experiment concerned across-object rather than with-
in-object conjunctions. Instead, display regularity was avoided by as-
signing letters randomly to display locations.

Other procedural details were copied from Experiment 3.
Design. Each subject attended for three sessions. Each session was

divided into two blocks, one for each task, with the order counterbal-
anced across subjects. Each block had one run of 24 practice trials fol-
lowed by three runs of 96 experimental trials. In the third session only,
after completion of the main experiment, there was a further block of
24 practice plus 3 X 96 experimental trials of search for a caret among
PsandQs.

Subjects. The 4 subjects, all women, were between 21 and 33 years

Results

Mean RTs from the third session appear in Table 11. There
was a very large difference between the two tasks. Search for a
caret among Is and Qs was scarcely affected by display size.
Search for an R among Ps and Qs replicated the results of Treis-
man and Gelade (1980): Large slopes in a ratio of about 2:1 for
target-absent and target-present responses. An ANOVA compar-
ing these two tasks showed significant effects of task, F(l,3) =
100.2, p < .005; display size, F(2, 6) = 44.3, p < .001; target
presence, F(l,3)=* 22.9, p < .02; and every interaction: Task X
Display Size, F(2, 6) = 60.0, p< .001; Task X Target Presence,
F(l, 3) = 116.6, p < .005; Display Size X Target Presence, F(2,
6) = 36.0, p < .001; and Task X Display Size X Target Presence,
F(2,6) = 41.0, p < .001. Last, the data at the bottom of Table 11
show that results did not depend on any special characteristic
of the nontarget I. Search for a caret was equally easy whether
nontargets were Is and Qs or Ps and Qs.

Error data appear in Table 12. They suggest no change in
conclusions.
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Discussion

To account for these results in terms of feature integration
theory, we should have to propose that adding a loop to the caret
caused it to lose some elementary feature shared by no other
letter in the stimulus set. Again, we can find no plausible sugges-
tion that cannot be eliminated by other findings.

One journal reviewer suggested three candidate features dis-
tinguishing the caret from I and Q: triangularity, intermediate
amount of contour, and number of free line terminators (3).
The last seems doubtful because our R also had more free ter-
minators (2) than either P or Q (1 each, Figure 4), but to elimi-
nate all three suggestions, we tested four unpracticed subjects in
search for a caret among mixed Is, Qs, Ys, and triangles (whose
corners were in the positions of the caret's three free line ends).
On target present trials, slopes were almost identical to those
obtained in the basic task of search for a caret among Is and
Qs. A second reviewer suggested that the caret's unique feature
might be the roughly T-shaped junction of its two component
lines. Again, we were doubtful because locally this intersection
was identical in the caret and the Q (Figure 4). Still, we modified
the task of search for a caret among Is, Qs, Ys, and triangles by
subtracting from the Q all those lines contributing to its closed
loop, except the leftmost three (Figure 4). This left a shape
rather similar to the caret, but which in the neighborhood of
the junction was identical to the previous Q. Now performance
became very poor, the slope for target-present trials increasing
by a factor of four.

From the perspective of our theory, the results confirm that
decreasing T-N similarity can make even across-object con-
junction search very easy. With one caveat they also support
our hypothesis that selection weights are determined partly by
attributes shared between nontargets and the target template.
The R-PQ and caret-IQ tasks differ only in the amount of con-
tour shared between target and nontargets, not in distinguishing
contour. This is important because it helps to explain why con-
junction search is often more difficult than feature search.

The caveat concerns the following thought. To account for
the difference between feature and conjunction search, we have
proposed that templates need not specify whole target shapes.
For example, in search for R among Ps and Bs, only the diagonal
stroke might be specified. If this is so, then in Experiment 5,
why did the target template not specify only a caret even when
the actual target was an R?

The explanation may be linked to the following observation.
We asked 18 subjects to divide an R (cf. Figure 4) into parts in
the most natural way possible. The diagonal stroke appeared as
a natural part in 15/18 answers, whereas the caret appeared in
0/18. (Indeed, the vertical and the loop may be more closely
linked than the vertical and the diagonal. Some subjects broke
the vertical and made a single part out of the whole closed loop,
whereas some broke the loop and made a single part out of the
vertical. One way to put this is that the figure contains both a
vertical and a closed loop, which are partly coextensive.) Obvi-
ously, we need further work on this issue. Still, it seems likely
that, in search for shapes, templates can only be those natural
parts or wholes that appear in the hierarchical input descrip-
tion.

As we have said, however, the main conclusion is simply that
decreasing T-N similarity can make even across-object con-
junction search very easy. Related results were reported by
Quinlan and Humphreys (1987). Their target was a small green
H; in two conditions of conjunction search, nontargets either
shared one attribute each with the target (large green As, large
orange Hs, small orange As) or two attributes (small green As,
small orange Hs, large green Hs). Slopes for positive and nega-
tive trials were 12- and 29-ms/item, respectively, with one
shared attribute, as compared with 37- and 83-ms/item for two
shared attributes. Reducing T-N similarity reduced slopes by
a factor of three. Very recently, Wolfe, Cave, and Franzel (in
press) have used a similar method to reduce conjunction search
slopes almost to zero.

There remains little reason to suppose that feature and con-
junction search differ in principle. By manipulating T-N and
N-N similarity we can make feature search arbitrarily difficult
or conjunction search arbitrarily easy. In either case, stimulus
similarities are the basic consideration determining search
difficulty.

Relation to Other Theories

Feature Integration Theory

The theory we have proposed differs from feature integration
theory in two major respects. First and most obvious, we sug-
gest that feature and conjunction search are in principle very
similar. By manipulating T-N and N-N similarity, we can
make either one very easy or very difficult. Second, feature inte-
gration theory is concerned almost exclusively with the relation
between targets and nontargets. (For a partial exception see
Treisman, 1982.) Scant attention is given to interactions be-
tween elements within a display: The overwhelming consider-
ation is the procedure of classifying each separate input as tar-
get or nontarget. For this reason, the theory has little to say
about why the nontarget-nontarget relation is so important in
both feature (Duncan, in press, Experiment 2) and conjunction
(this article, Experiments 1-4) search.

It is also useful, however, to mention points of contact be-
tween the two theories. One of these concerns Treisman and
Gormican's (1988) suggestion that arrays can be searched in
clumps of items varying in size. This is not the same as our idea
that strongly grouped nontargets tend to be rejected together. In
Treisman and Gormican's (1988) model, clumps of items do
not have to be alike. Clump size is determined only by the aver-
age amount of noise activation that each nontarget produces
in the target map (i.e., by the average similarity of targets to
nontargets). Their proposal that search can be parallel within
clumps but serial from clump to clump does relate, however, to
our view that search has both a parallel and a serial element,
parallel within each period of filling VSTM but serial from one
such period to the next.

We may also note a modification to feature integration theory
suggested recently by Wolfe et al. (in press; see also Treisman,
1988). Recall that, according to the theory, elementary features
are initially registered in multiple, independent maps of the vi-
sual field. According to Wolfe et al. (in press), outputs from
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these maps might then be combined to determine the focus of
attention. Locations in each feature map are linked to corre-
sponding locations in a single master map (Treisman & Souther,
1985). The most activated location in the master map becomes
the focus of attention. In feature search, only inputs from the
target map to the master map are enabled. If search is for a red
item, for example, only activity in the redness map is passed to
the master map, and attention is drawn at once to red targets.
In conjunction search, by extension, inputs from two feature
maps to the master map might be enabled. In search for a red
O among blue Os and red Xs, for example, the master map
would receive activation from both redness and curvature
maps. The region occupied by the target would again be the
most activated in the master map, although against a back-
ground of partial activation from other regions. According to
Wolfe et al. (in press), how harmful this background activity is
depends on target-nontarget discriminability.

This of course is a rather profound modification of feature
integration theory. As Wolfe et al. (in press) noted, it makes
feature and conjunction search very similar in principle. Infor-
mation about the combination of an object's attributes comes
together to determine the focus of attention. And of course,
even this modification has nothing to say about interactions be-
tween one nontarget and another and, hence, about the effects
of N-N similarity and nontarget grouping. We do see this, how-
ever, as a plausible account of how input-template matching is
achieved when the target is defined by at least some conjunc-
tions of different attributes. The target template is distributed
in the form of enabled connections between two or more
different feature maps and the master map. The model gives a
good account of why shared attributes between inputs and this
template are harmful; inputs activating any of the maps whose
master map connections are enabled add noise to the process
of directing attention (Treisman, 1988; Wolfe et al., in press).
Finally, retaining the idea of initially distinct representation for
(some) different visual attributes is consistent with neurophysi-
ological evidence (Maunsell & Newsome, 1987) and may allow
us still to account for the range of different psychological phe-
nomena (e.g., illusory conjunctions) to which feature integra-
tion has been applied (Treisman & Gelade, 1980; Treisman &
Schmidt, 1982).

In this article we have dealt only with selection efficiency and,
hence, whether adding nontargets to a display has a generally
large or small effect. Two other important questions concern (a)
the shape of the search function and (b) the relation between
functions for negative and positive trials. In Treisman's work,
functions for conjunction search are often steep and linear, with
a negative/positive slope ratio of 2/1. This suggests serial, self-
terminating search. Functions for feature search are often flat-
ter and negatively accelerated, with a negative/positive ratio of
more than 2/1. This is taken to indicate parallel search. Com-
monly, however, the different criteria for serial and parallel
search do not cohere. For example, we noted before that func-
tions for positive and negative responses in conjunction search
may be parallel up to a display size of about eight, only diverging
thereafter (Houck & Hoffman, 1986; Pashler, 1987a). Flat dis-
play size functions for positive responses may sometimes be as-
sociated with much steeper functions for negatives, but just as

often, negatives also are quite flat (e.g., Treisman & Souther,
1985; Duncan, in press, Experiment 1). Linearity is hard to
assess with relatively flat functions because restriction of range
assures that the proportion of variance accounted for by linear-
ity is likely to be low. Even in conjunction search an average 2/
1 slope ratio for negative and positive trials can be characteristic
of few individual subjects (Wolfe et al., in press).

We have suggested that the variable relation between positive
and negative RTs reflects variable response strategies. Similarly,
we would suppose that a variety of factors influences linearity,
including the probability that VSTM is filled before a target is
found, introducing a serial element into search (Pashler,
1987a), and the detailed relation between number of elements
and number of perceived homogeneous groups in a heteroge-
neous display (Bundesen & Pedersen, 1983). We regard both the
relation between positive and negative RTs and the exact shape
of search functions as complex issues in their own right. More
work would be needed before our theory could give a good ac-
count of them.

Late Selection

In architecture, the present account resembles Duncan's
(1980b) late selection theory of attention. A defining feature of
late selection theories concerns how highly processed are input
descriptions even at the parallel, preselective stage. According
to these theories, in particular, categorical processing of input
patterns is sufficient for selection to be guided by such consider-
ations as alphanumeric class (Duncan, 1980b) or (for spoken
words) semantic category (Ostry et al., 1976).

In contrast, early selection theories propose that, before selec-
tive stages of processing, many perceptual distinctions are sim-
ply not "analyzed" and hence are not available for any discrimi-
native purpose. A somewhat corresponding point in the present
work is that access to VSTM becomes increasingly indiscrimi-
nate with increasing similarity between targets and nontargets,
a principle that seems to hold whatever the selection criterion,
from a simple attribute such as color to a more complex attri-
bute such as the conjunction of strokes in a letter. It would be
wrong to conclude, however, that fine perceptual distinctions
are unavailable for any purpose before resources are allocated
for VSTM access. The same fine distinctions that are used only
poorly in selection (e.g., the distinction between Ls rotated by
90°) may be used perfectly in grouping (see Experiment 3).
Different uses of the same information have differing accuracy
(Duncan, 1985).

In most visual search studies, the visual details of targets are
known in advance of the display. Under these circumstances,
visual similarity considerations may always dominate. We need
more work on selection when target information is specified
more loosely, perhaps just by rather nonspecific relevance to a
task like driving a car or shopping for a present.

Automatic and Controlled Processing

We have not dealt here with the substantial effects of practice
on search (Schneider & Shiffrin, 1977). Practice increases the
selection weight of stimuli that are usually targets and decreases
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the weight of those that are usually nontargets (Schneider &
Fisk, 1982). This may be seen as learning an indwelling selec-
tion tendency, supplementary to the short-term tendency to se-
lect momentarily relevant information that we have discussed
here. Correspondingly, it is well-known and desirable that im-
portant information can draw attention even when not antici-
pated (or relevant) in the immediate context (Moray, 1959).

Another part of Schneider and Shiflrin's (1977) view is that
continuous variations in search efficiency reflect varying mix-
tures of serial and parallel processing. This is an idea that we
have worked out in some detail here.

Segmentation and Grouping

Our theory is inconsistent with the common view that per-
ceptual grouping is sensitive only to a few, simple stimulus char-
acteristics such as the length, orientation, and color of line ele-
ments (e.g., Julesz, 1981). According to our account, grouping
must be influenced even by complex characteristics of shapes,
at least when display elements are sufficiently large (see, e.g.,
Experiment 3). Of course, studies dealing with perceptual seg-
mentation commonly use large fields consisting of very many
elements. As an unintended result, the size/eccentricity ratio of
a single element is often much less than the ratios used here.

Much more consistent with our theory is the idea that, what-
ever the characteristic distinguishing elements in the parts of an
array, the strength of segmentation depends partly on simple
discriminability (Enns, 1986).

Extensions

Interleaved Nontarget Groups

According to our theory, weight linkage depends on the
strength of perceptual grouping. This, in turn, is strongly influ-
enced by spatial proximity. Recall, for example, the experiment
of Bundesen and Pedersen (1983). The main factor influencing
search time was neither the number of nontargets (Nn) in a dis-
play, nor the number of different nontarget colors (Nc), but
rather the number of homogeneous color groups (Ay. For given
JVn and AC, RT was minimized by spatial arrangements of non-
targets than minimized Nt. (Indeed, RT could be well predicted
from subjects' direct judgments of how many color groups a
display contained.) We have taken this as strong evidence for
the importance of perceived nontarget grouping and weight
linkage. Beyond this, it emphasizes the role of spatial factors in
grouping. It is adjacent elements of the same color that form a
strong perceptual group, or in other words, elements of the
same color may not group strongly when differently colored ele-
ments are placed between them. If this had not been so, then
the number of judged groups (and RT) would have depended
only on Nc.

Sometimes, however, perception creates structural units
whose parts are spatially interleaved in the input image. If an
animal runs behind a bush, common movement ensures coher-
ence of its parts despite interleaving in the image with bush
parts. An experiment by Nakayama and Silverman (1986)
makes the same point for visual search. Stimuli were patches of

moving dots, presented stereoscopically at two apparent depths.
The target was unpredictably either a far patch whose dots
moved upward or a near patch whose dots moved downward;
nontargets were a mixture of near/upward and far/downward
patches. Although this is conjunction search, there was little
effect of display size. Subjects reported that the field could be
segmented perceptually into two interleaved groups, separated
in depth. Each group, in turn, was simply checked for homoge-
neity. Related results using other grouping dimensions have
been reported by Steinman (1987) and McLeod, Driver, and
Crisp (1988).

These results indicate one way in which perceptual grouping
and weight linkage might allow performance to be independent
of array size even in conjunction search. More generally, if the
weights of all identical nontargets in an array can be closely
linked, irrespective of spatial arrangement, then RT will depend
only on the number of different types of nontarget that are
present.5

It is perhaps interesting that subjects in Nakayama and Sil-
verman's (1986) study reported focusing on each depth plane
in turn. Absolute RTs were indeed very long, suggesting a time-
consuming switch from one perceptual organization to another.
When grouping is complex or weak, perhaps it must be sup-
ported by some top-down influence. For example, increasing
the selection weight (activation?) for all elements in one depth
plane might allow them to be linked into a new structural unit,
a unit then perceived as foreground against the background of
all other elements. Although we have treated segmentation and
selection independently, there may well be important interac-
tions between them.

Nontarget Heterogeneity on Relevant
and Irrelevant Dimensions

The dimension(s) along which targets are distinguished from
nontargets may be called the relevant dimension(s) of a search
task. Nontargets might then differ from one another on either
relevant or irrelevant dimensions. Some preliminary results re-
ported by Treisman (1988) suggest that nontarget heterogeneity
on irrelevant dimensions has little effect. If the target is defined
by color, it is harmful to mix different nontarget colors in a dis-
play but not to mix different nontarget orientations. If the target
is defined by orientation, it is mixed nontarget orientations that
are harmful.

One suggestion might be that the processing of irrelevant di-
mensions is simply prevented or inhibited. Results described
recently by Pashler (1988) show that this cannot be. The task
was to detect a single element differing in shape from the others
in a large array (e.g., a / in a field of Os). Although random
variation in color had little effect (cf. Treisman's, 1988, find-

5 This is not a likely explanation for our findings concerning search
for a caret among either mixed Is and Qs or mixed Ps and Qs. Even if
the taiget is an R, array size has little effect when nontargets are homoge-
neous Ps (unpublished observations). If perceptual segmentation could
organize a mixed P-Q array into two interleaved groups, one of Ps and
one of Qs, then we should expect even search for an R to be very easy.
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ings), a single element that differed in color from the rest was
extremely harmful.

In analyzing these results, we must remember a key point.
Because access to VSTM is competitive, the most important
consideration is the relative selection weight of targets and non-
targets. Correspondingly, spreading suppression has little effect
if it influences targets and nontargets equally. When we analyze
the effects of N-N similarity and grouping, the most important
consideration is the strength of N-N linkage relative to T-N
linkage.

Now consider manipulation of nontarget heterogeneity on a
relevant dimension. As an example, let the target be a yellow
horizontal line, whereas nontargets are green and red horizon-
tals. In the homogeneous condition all nontargets in one display
are the same, whereas in the heterogeneous condition the two
nontarget colors are mixed. Here we have altered the average
strength of N-N linkage but left T-N linkage the same. A large
difference between conditions may be expected.

Nontarget heterogeneity on an irrelevant dimension is a
different matter. Let the target be a vertical line, whereas non-
targets are horizontal lines. In the homogeneous condition, all
elements in a display are the same color (all red or all green). In
the heterogeneous condition, colors of both targets and nontar-
gets vary randomly (mixed reds and greens). This time the effect
is simply a net change in the mean linkage of any element, target
or nontarget, to the remainder. Relative N-N to T-N linkage is
not affected. As before, spreading suppression between nontar-
gets will be weaker in the heterogeneous condition because each
nontarget differs in color from one half of the others. To exactly
the same extent, however, spreading suppression from nontar-
gets to the target will also be weaker. The difference between
our manipulations of nontarget heterogeneity on relevant and
irrelevant dimensions lies in their effect on T-N, not on N-N
linkage!

By the same reasoning, a single nontarget that differs from
others on an irrelevant dimension could have a profound effect.
Now, the task might be to find a green / in a large field of green
Os, with an occasional red O inserted. Because they suffer less
from spreading suppression, both the green / and the red O will
be favored in competition for VSTM access.

Parametric studies of nontarget heterogeneity on relevant
and irrelevant dimensions remain to be done. Here we have a
framework within which such studies might be analyzed.

Multiple Targets

In this article we have largely been concerned with the pro-
cessing of multiple nontargets. How do we deal with multiple
targets? There are two possibilities. As we have noted, if the task
requires that separate structural units be entered into VSTM
for each target, then increasing the number of simultaneous tar-
gets should be very harmful (as it usually is; see Bundesen et al.,
1985; Duncan, 1980b, 1985). Occasionally, though, this may be
avoided. As an extreme case, suppose that one to four target
lines are presented in an otherwise blank field and the subject
is to count them. Very plausibly, they will be perceived as form-
ing a single structural unit whose shape (dot, line, triangle,
quadrilateral) usually indicates the number of targets. Because

only this one unit need enter VSTM, there is no competition
for resources.

Findings consistent with this analysis were reported by Sagi
and Julesz (1984), although their targets were mismatching ele-
ments in a field of otherwise identical lines. (For a failure to
replicate under these circumstances, see Folk, Egeth, & Kwak,
1988.) For the future, the important hypothesis is that perceiv-
ing properties of simultaneous targets without mutual interfer-
ence depends on functional grouping. This contrasts with re-
jecting simultaneous nontargets in parallel, for which strong
grouping is a sufficient but not a necessary condition.

Natural Visual Environments

The view of visual selection that we are proposing seems to
us to fit sensibly with both the requirements and the experience
of normal vision. If selection is to be effective in the usual rich
visual environment, it must be possible to discard the vast ma-
jority of information efficiently. We tend only to experience se-
lection difficulties when objects in the environment are indeed
very similar: when we stare at a drawer of cutlery searching for
a particular fork or at a supermarket shelf searching for a partic-
ular tin. Only in such constrained environments may demands
on the selection system approach those of laboratory search
tasks using similarly constrained stimulus materials. Presum-
ably, such experiences strike us because we are used to a selec-
tion system that works.

We think that, in the present theory, we have the beginnings
of a general account of how stimulus factors influence the selec-
tion of behaviorally relevant information from visual scenes.
Explicit generalization beyond laboratory search tasks is one of
the most important challenges for the future.
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