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Tom Schneider’s Information Theory Primer 2

I nfor mation and Uncertainty

Information and uncertainty are technical terms that diesany process that selects one or
more objects from a set of objects. We won’t be dealing with tiieaning or implications of
the information since nobody knows how to do that matheralyic Suppose we have a device
that can produce 3 symbols, A, B, or C. As we wait for the nextlsgl, we areuncertain as to
which symbol it will produce. Once a symbol appears and weits@air uncertaintydecreases,
and we remark that we have received samfermation. That is, information is a decrease in
uncertainty. How should uncertainty be measured? The sshplay would be to say that we have
an “uncertainty of 3 symbols”. This would work well until wedin to watch a second device at
the same time, which, let us imagine, produces symbols 1 aft@ second device gives us an
“uncertainty of 2 symbols”. If we combine the devices inteatevice, there are six possibilities,
Al, A2, B1, B2, C1, C2. This device has an “uncertainty of 6 bpis”. This is not the way
we usually think about information, for if we receive two ksowe would prefer to say that we
received twice as much information than from one book. Thawe would like our measure to be
additive.

It's easy to do this if we first take the logarithm of the numbé&possible symbols because
then we can add the logarithms instead of multiplying the Ineimof symbols. In our example,
the first device makes us uncertain by (8g the second by lo@) and the combined device by
log(3) +109(2) = log(6). The base of the logarithm determines the units. When wehesedse 2
the units are in bits (base 10 gives digits and the base ofgheal logarithmse, gives nats([14]
or nits [15]). Thus if a device produces one symbol, we areettai by log 1 = 0 bits, and we
have no uncertainty about what the device will do next. Ifdquces two symbols our uncertainty
would be log2 = 1 bit. In reading an mRNA, if the ribosome encounters any dné equally
likely bases, then the uncertainty is 2 bits.

So far, our formula for uncertainty is lggM), with M being the number of symbols. The next
step is to extend the formula so it can handle cases wherg/higods are not equally likely. For
example, if there are 3 possible symbols, but one of themrregygears, then our uncertainty is
1 bit. If the third symbol appears rarely relative to the ottveo symbols, then our uncertainty
should be larger than 1 bit, but not as high as,(8 bits. Let’s begin by rearranging the formula
like this:

log,(M) = —log,(M™ 1) (1)
1
= —loga(y;)
= —log,(P)

so thatP = 1/M is the probability that any symbol appears. (If you don’t eenter this trick of
‘pulling the sign out’, recall that loly1° = blogM and letb = —1.)

Now let's generalize this for various probabilities of therdbols,P, so that the probabilities
sumto 1:

M
i;ﬂ =1 2
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(Recall that they symbol means to add tH& together, fori starting at 1 and ending 8.) The
surprise that we get when we see tlekind of symbol was called the “surprisal” by Tribus [16]
and is defined by analogy withlog, P to bdl

Ui = —10g,(R). (3)

For example, if? approaches 0, then we will bery surprised to see the'f symbol (since it
should almost never appear), and the formula sagpproachese. On the other hand, iR=1,
then we won'’t be surprised at all to see tiesymbol (because it should always appear) ar
0.

Uncertainty is theaverage surprisal for the infinite string of symbols produced by our device.
For the moment, let’s find the average for a string of lergttmat has an alphabet & symbols.
Suppose that th&itype of symbol appears; times so that if we sum across the string and gather
the symbols together, then that is the same as summing abesgmbols:

M
N=3S N. (4)
2
There will beN; cases where we have surprigal The average surprisal for the N symbols is:
ZiM:l Ni Ui ) (5)
SN
By substitutingN for the denominator and bringing it inside the upper sum, bt@ia:
M
N.
N'Ui (6)

If we do this measure for an infinite string of symbols, thea fitequencyN; /N becomed?, the
pro@bability of the " symbol. Making this substitution, we see that our averagersal (H) would
be

M
H :i;P.ui. 7)

Finally, by substituting fou;, we get Shannon’s famous general formula for uncertainty:

M
H=- ZlP. log, P (bits per symbol),. (8)
i=

Shannon got to this formula by a much more rigorous route thardid, by setting down
several desirable properties for uncertainty, and theridgrthe function. Hopefully the route we
just followed gives you a feeling for how the formula works.

1 Why use U as the symbol for surprisal8is the standard symbol for entropy and that is not easilyrajsished
from s, so the U’ stands for uncertainty . ..we are running out of symbols oienular information theory!

2 The nameH comes through Shannon from BoltzmanHsTheorem in thermodynamics. According to letters
in the American Journal of Physics, Boltzmann originallgdishe letter E and then later switchedHoppresumably
meaning the Greek lettey = Eta. [17[18]. Eta corresponds to H in English. Althougtsinot known why this was
done, perhaps it avoids confusing entropy with with E stagdior energy.
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Tvoﬁsee how the H function looks, we can plot it for the case af symbols. This is shown
belowA:

uncertainty, H (bits)
1.0

0.91
0.84
0.71
0.64
0.51
0.41
0.31
0.24/
O.l-;

O-O .: T T T T T T T T T 1
000.102030405060.7080910
probability of one symbol

Notice that the curve is symmetrical, and rises to a maximin@whe two symbols are equally
likely (probability = 0.5). It falls towards zero whenevear@of the symbols becomes dominant at
the expense of the other symbol.

As an instructive exercise, suppose that all the symbolsqually likely. What does the
formula for H (equation(8)) reduce to? You may want to trgtyourself before reading on.

kkhkkhkkkkkkkkkkkhkkhkkhkkkhkkhkkhkkhkkhkkkx

3The program to create this graph i$ at http://alum.mitwdwg/toms/delila’hgraph.html
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Equally likely means tha®, = 1/M, so if we substitute this into the uncertainty equation we
get:
1 1

H = I
equi probable = Z M 00y — M 9
SinceM is not a function of, we can pull it out of the sum:
M
Hequiprobable = |Og Zl (10)
1 1
= —|(—=log,— |M
(M 09 M)
1
= —log, — 11
92 M (11)
= log,M

which is the simple equation we started with. It can be shdwahfor a given number of symbols
(ie.,M is fixed) the uncertaintifl has its largest value only when the symbols are equally jmeba
For example, an unbiased coin is harder to guess than a liasedAs another exercise, what is
the uncertainty when there are 10 symbols and only one of tygmears? (cIueF:HIiOrpIog p=0

by settingp = 1/M and using I'Hopital’s rule, so Olo@ = 0.)

What does it mean to say that a signal has 1.75 bits per synithmi@ans that we can convert
the original signal into a string of 1's and 0’s (binary dgjitso thabn the average there are 1.75
binary digits for every symbol in the original signal. Sonyenbols will need more binary digits
(the rare ones) and others will need fewer (the common orésie’s an example. Suppose we
haveM = 4 symbols:

A C G T (12)
with probabilities B):
1 1 1 1
which have surprisals{log, R):
uar=1bitt uc=2bits ug=3bits ut =3bits 14
so the uncertainty is
H :}-1+}-2+}~3+}~3:1.75 (bits per symbol) (15)

2 4 8 8

Let’s recode this so that the number of binary digits equassurprisal:

A =1
C = o1

G = 000

T = 001 (16)
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so the string
ACATGAAC a7)

which has frequencies the same as the probabilities deflmmdbais coded as
10110010001101 (18)

14 binary digits were used to code for 8 symbols, so the aeesa@4/8 = 1.75 binary digits per
symbol. This is called a Fano code. Fano codes have the pydpat you can decode them with-
out needing spaces between symbols. Usually one needswotkedreading frame”, but in this
example one can figure it out. In this particular coding (¢igua (16)), the first binary digit distin-
guishes between the set containiygwhich we symbolize agA}) and the se{C,G, T }, which
are equally likely sincg = 7 + 3+ 3. The second digit, used if the first digit is 0, distinguishes
C from G, T. The final digit distinguishe& from T. Because each choice is equally likely (in our
original definition of the probabilities of the symbols)egy binary digit in this code carries 1 bit
of information.Beware! This won’t always be true. A binary digit can supply 1 bty if the two
sets represented by the digit are equally likely (as riggedHis example). If they are not equally
likely, one binary digit supplies less than one bit. (Rettalt H is at a maximum for equally likely
probabilities.) So if the probabilities were

1 1 1 1
PC_67 PG_év PT_67 (19)

there is no way to assign a (finite) code so that each binarytig the value of one bit (by using
larger blocks of symbols, one can approacllﬂ ith the rigged example, there is no way to use
fewer than 1.75 binary digits per symbol, but we could be efattind use extra digits to represent
the signal. The Fano code does reasonably well by splittiegsiymbols into successive groups
that are equally likely to occur; you can read more about ieits on information theory. The
uncertainty measure tells us what could be done ideally,santlls us what is impossible. For
example, the signal with 1.75 bits per symbol could not beedodsing only 1 binary digit per
symbol.

Tying the Ideas Together

In the beginning of this primer we took information to be am@ase in uncertainty. Now
that we have a general formula for uncertairity, (8), we camess information using this formula.
Suppose that a computer contains some information in itsanernf we were to look at individual
flip-flops, we would have an uncertainitlyesore bits per flip-flop. Suppose we now clear part of
the computer's memory (by setting the values there to zem}hat there is a new uncertainty,
smaller than the previous onHysier. Then the computer memory has lost an averaEe of

R= |'|bef ore — Hafter (20)

bits of information per flip-flop. If the computer was comgligt cleared, themasiee = 0 and
R= Hbefore-

4This is because the fractions in equatidng (19) evaluateatiainal numbers when the logarithm is base 2, and
since a Fano code divides by rational numbers, no binary Eade can be made that exactly matches.
5 The symboR comes from Shannon. It stands for rate of information trassion.
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Now consider a teletype receiving characters over a phowee If there were no noise in the
phone line and no other source of errors, the teletype woud fhe text perfectly. With noise,
there is some uncertainty about whether a character priatezhlly the right one. So before a
character is printed, the teletype must be prepared for filedetters, and this prepared state has
uncertaintyHpefore, While after each character has been received there isastile uncertainty,
Hafter. This uncertainty is based on the probability that the syirttiat came through is not equal
to the symbol that was sent, and it measures the amount &.nois

Shannon gave an example of this in section 12 of [10] (page33# [13]). A system with two
equally likely symbols transmitting every second woulddsaha rate of 1 bit per second without
errors. Suppose that the probability that a O is receivedhveh@is sent is 0.99 and the probability
of a 1 received is 0.01. “These figures are reversed if a 1 &ved.” Then the uncertainty after
receiving a symbol iHafter = —0.99109,0.99— 0.0110g,0.01 = 0.081, so that the actual rate
of transmission iR = 1 —0.081= 0.919 bits per second.The amount of information that gets
through is given by the decrease in uncertainty, equdfiGh (2

Unfortunately many people have made errors because theyotlikeep this point clear. The
errors occur because people implicitly assume that thare i®ise in the communication. When
there is N0 NoiseR = Hpefore, @S With the completely cleared computer memory. Théttisere
IS no noise, the amount of information communicated is equal to the uncertainty before commu-
nication. When there is noise and someone assumes that there isnthanigads to all kinds of
confusing philosophies. One must always account for noise.

One Final Subtle Point. In the previous section you may have found it odd that | used th
word “flip-flop”. This is because | was intentionally avoidithe use of the word “bit”. The reason
is that there are two meanings to this word, as we mentiontedéwhile discussing Fano coding,
and it is best to keep them distinct. Here are the two meariorgbe word “bit”:

1. A binary digit, 0 or 1. This can only be an integer. Thesés'lare the individual pieces of
data in computers.

2. A measure of uncertaintyH, or informationR. This can be any real number because itis an
average. It's the measure that Shannon used to discuss aupation systems.

6Shannon used the notatiéfy(x), meaning the conditional uncertainty at the receiwgiven the message sent
from x, for what we calHafter. He also used the term “equivocation”.



Tom Schneider’s Information Theory Primer 8

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeuchtinformation con-
tent of binding sites on nucleotide sequences). Mol. Biol.,, 188:415-431, 1986.
http://alum.mit.edu/www/toms/papers/schneider1986/.

T. D. Schneider. Information and entropy of patternsenetic switches. In G. J. Erickson and
C. R. Smith, editorsivlaximum-Entropy and Bayesian Methods in Science and Engineering,
volume 2, pages 147-154, Dordrecht, The Netherlands, ¥d8®&er Academic Publishers.

T. D. Schneider and G. D. Stormo. Excess information atdr@ophage T7 genomic promot-
ers detected by a random cloning technigNacleic Acids Res., 17:659-674, 1989.

T. D. Schneider and R. M. Stephens. Sequence logos: A neay W0
display consensus sequences. Nucleic Acids Res., 18:6097-6100, 1990.
http://alum.mit.edu/www/toms/papers/logopaper/.

N. D. Herman and T. D. Schneider. High information conation implies that at least three
proteins bind independently to F plasni@dD repeats.J. Bacteriol., 174:3558-3560, 1992.

P. P. Papp, D. K. Chattoraj, and T. D. Schneider. Inforaraanalysis of sequences that bind
the replication initiator RepAJ. Mal. Biol., 233:219-230, 1993.

R. M. Stephens and T. D. Schneider. Features of spliceesgvolution and function inferred
from an analysis of the information at human splice sitdsMol. Biol., 228:1124-1136,
1992. http://alum.mit.edu/www/toms/papers/splicel/.

T. D. Schneider. Sequence logos, machine/channel ggplslaxwell’s demon, and molecu-
lar computers: a review of the theory of molecular machihasotechnology, 5:1-18, 1994.
http://alum.mit.edu/www/toms/papers/nano?2/.

P. K. Rogan and T. D. Schneider. Using information cohtamd base frequencies to dis-
tinguish mutations from genetic polymorphisms in splicegtion recognition sitesHuman
Mutation, 6:74—76, 1995. http://alum.mit.edu/www/toms/papearsiasplice/.

C. E. Shannon. A Mathematical Theory of Communicati&ell System Tech. J., 27:379—
423, 623656, 1948. http://tinyurl.com/Shannon1948.

J. R. Pierce.An Introduction to Information Theory: Symbols, Sgnals and Noise. Dover
Publications, Inc., NY, 2nd edition, 1980.

W. Sacco, W. Copes, C. Sloyer, and R. Statkformation Theory: Saving Bits. Janson
Publications, Inc., Dedham, MA, 1988.

N. J. A. Sloane and A. D. WyneClaude Elwood Shannon: Collected Papers. IEEE Press,
Piscataway, NJ, 1993.

Thomas M. Cover and Joy A. Thomddements of Information Theory. John Wiley & Sons,
Inc., N. Y., 1991.


http://alum.mit.edu/www/toms/papers/schneider1986/
http://alum.mit.edu/www/toms/papers/logopaper/
http://alum.mit.edu/www/toms/papers/splice/
http://alum.mit.edu/www/toms/papers/nano2/
http://alum.mit.edu/www/toms/papers/colonsplice/
http://tinyurl.com/Shannon1948

Tom Schneider’s Information Theory Primer 9

[15] D. K. C. MacDonald. Information Theory and Its Appligais to Taxonomy.J. Applied
Phys., 23:529-531, 1952.

[16] M. Tribus. Thermostatics and Thermodynamics. D. van Nostrand Company, Inc., Princeton,
N. J., 1961.

[17] S. G. Brush. Boltzmann’'s “Eta Theorem”: Where’s the dence? American Journal of
Physics, 35:892, 1967.

[18] S. Hjalmars. Evidence for Boltzmannt$ as a capital eta American Journal of Physics,
45:214-215, 1977.



Tom Schneider’s Information Theory Primer 10

1 APPENDIX: A Tutorial On Logarithms

Under standing the L og Function. In the mathematical operation of addition we take two
numbers and join them to create a third:

1+1=2. (21)

We can repeat this operation:
1+1+1=3. (22)

Multiplication is the mathematical operation that extetids:
3x1=3. (23)

In the same way, we can repeat multiplication:

2x2=4. (24)
and
2x2x2=28. (25)
The extension of multiplication is exponentiation:
2x2=2°=4 (26)
and
2x2x2=23=8. (27)

This is read “two raised to the third is eight”. Because exgmdiation simply counts the number
of multiplications, the exponents add:

2% 28 =223 25 (28)

The number ‘2’ is called the base of the exponentiation. Ifraiee an exponent to another expo-
nent, the values multiply:

(22) 2 « 22 « 22 22+2+2 22><3 26 (29)



Tom Schneider’s Information Theory Primer 11

The exponential functiog = 2* is shown in this graﬂ)

y=7
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Figure 1: The exponential function.

Now consider that we have a number and we want to know how mamst be multiplied
together to get that number. For example, given that we ang (& as the base, how many 2’s
must be multiplied together to get 32? That is, we want toestitis equation:

2B=32 (30)

Of course, 2= 32, soB=5. To be able to get a hold of this, mathematicians made up a new
function called the logarithm:
log,32=>5. (31)

We pronounce this as “the logarithm to the base 2 of 32 is 5'is the “inverse function” for
exponentiation:
20%2 = 3 (32)

and
log,(2%) = a. (33)

"The program to create this graph i$ at http://alum.mitwdwg/toms/delila/expgraph.html


http://alum.mit.edu/www/toms/delila/expgraph.html
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The logarithmic functiory = log, x is shown in this gra@]

y= I0g2x

0 1234567 8 91011121314151617181920212223242526272829303132
X

Figure 2: The logarithmic function.

This graph was created by switching thandy of the exponential graph, which is the same as
flipping the curve over on a 49ine. Notice in particular that log1) = 0 and log(0) = —co.

The Addition Law. Consider this equation:

2ath — pa b (34)

which is just a generalization of equatidni28). Take thatdgm of both sides:
log, 2**? = log, (2’°‘ X 2b) (35)
Exponentiation and the logarithm are inverse operatiangjescan collapse the left side:
a+b=log, (2a X 2b) (36)
Now let’s be tricky and substitute: lgg = a and logy = b:

log, x+log,y = log, (2'092" X 2'092y) (37)

8The program to create this graph http://alum.mit.edu/wims/delila/expgraph.htiml


http://alum.mit.edu/www/toms/delila/expgraph.html
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Again, exponentiation and the logarithm are inverse op®rat so we can collapse the two cases
on the right side:

log, x+l0g,y = log, (X x ) (38)
This is the additive property that Shannon was interested in

The‘Pull Forward’ Rule. From equation(32):
a= 2%3 (39)

Raise both sides to the U
al = (2'°gza> . (40)

Now, we can combine the exponents by multiplying, as i (29):
¥ = 2uI092 a (41)

Finally, take the log base 2 of both sides and collapse tlin sige:

log,a" = ulog,a (42)

This can be remembered as a rule that allows one to “pull” ¥perent forward from inside the
logarithm.

How to Convert Between Different Bases. Calculators and computers generally don’t
calculate the logarithm to the base 2, but we can use a triotale this easy. Start by letting:

x = log,a/log,b (43)
Rearrange it as:
log,a = xlog,b. (44)
Now use a “reverse pull forward” (1):
log,a = log, b* (45)
and drop the logs:
a=Db* (46)
Now take the log base:
log,a = log, b*. 47)
This simplifies to:
log,a= x. (48)

But we know whak is from equation[(43):
log,a =log,a/log,b (49)

The conversion rule to get logarithms base 2 from any base z is

log,(a) = log,(a)/log,(2) (50)
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Notice that since thedoes not appear on the left hand side it doesn’t matter whdtddilogarithm

you have available, because you can always get to anotherusasg this equation! Try this
example on your calculator:

lo 32
l0g,(32) = —logg;:tfvef-(( 2)>. (51)

You should get ‘5’

Tricks With Powers of 2. In calculus we learn about the natural logarithm with base
2.718281828459045 [ Calculations with this base can easily be done by a computaiculator,
but they are difficult for most people to do in their head.

In contrast, the powers of 2 are easy to memorize and remember

choices bits
M

1

2

4

8

16
32
64
128
256
512
1024

Boo~wounnsrwnrko®

where 2 = M and logM = B.

We can use this table and a trick to make quick estimates dbgfseof higher numbers. Notice
that

210 — 1024~ 1000= 10°. (52)
So to take the log base 2 of41P, we think:

logy(4x 10°) = log,(4) +log,(10°) (53)

= 2+log,(10® x 10°) (54)

= 2+log,(10%) +log,(10°) (55)

~ 2+10gy(2'°) +log,(2'°) (56)

~ 2+10+10 (57)

~ 22 (58)

The actual value is 21.93.

9 Want to impress your friends by memorizing this number? N after the 2.7 (you are on your own for that!)
we have two 1828’s followed by a 4®0°-45°triangle.
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