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A Critical Path Generalization of the Additive Factor Method: 

Analysis of a Stroop Task 
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The University of Michigan 

Sternberg’s additive factor method was generalized to apply to tasks involving both 
serial and concurrent processing. The generalization is based on the critical path method 
of scheduling. The effects on reaction time of factors prolonging separate processes in a 
task are discussed: in general these effects are interactions of a simple form. Reaction 
times can be used to deduce, in part, the schedule of the mental processes in a task, 
including their order of execution. Bounds on process durations can be derived. Often 
there are redundant equations so the method can be easily rejected if it does not apply. 
A dual task experiment by Greenwald was analyzed. In the task subjects were presented 
with two stimuli and made a response to each under high and low compatibility conditions. 
Two bottlenecks in processing were located: (a) Subjects make only one decision at a time, 
in accordance with single channel theory, although the high compatibility condition may be 
an exception; (b) there is a mental process which takes longer when the stimuli conflict. 
The decisions about the two stimuli probably change places in the schedula when com- 
patibility is changed. 

We measure reaction times in order to make inferences about mental processes, 
such as perceiving, deciding, remembering, and thinking, which we cannot observe in 
subjects directly. Two methods often used to analyze reaction times, Donders’ sub- 
tractive method (1968) and Sternberg’s additive factor method (1969a), assume that the 
mental processes under consideration are performed in a sequence, one process beginning 

as soon as its predecessor has finished (Fig. 1). In this paper we consider more general 
arrangements of processes (Fig. 2). 

FIG. 1. A sequence of processes arranged end to end. 

In both the subtractive and the additive factor methods, the amount of time required 
to complete a sequence of processes is considered to be the sum of the durations of all 
the processes in the sequence. In the subtractive method various experimental mani- 
pulations are used to insert processes into the sequence of processes or to delete them. 
The duration of a process can be determined by subtracting the amount of time required 
to complete a sequence which does not include the process from the amount of time 
required to complete the sequence when the process is included. 
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FIG. 2. A task network. Each arrow represents a process and associated with each arrow is a 
number giving the duration of the process. Circled numbers indicate the duration of the longest 
path from u to the point under the circled number. 

A drawback of the subtractive method is that it cannot be used to determine the order 
of the processes in the sequence. A more important drawback of the method is that in 
most cases verification of its results must rest on evidence gathered by other techniques. 
To use the subtractive method to make two independent measurements of the duration 
of some process for the purpose of verification, the process must be embedded in at 
least two different sequences. But it may be difficult or impossible experimentally to 
construct two such different sequences of processes, each complete enough psychologi- 
cally to allow a subject to respond to a stimulus and yield a reaction time. 

In the additive factor method the sequence always consists of the same processes, but 
various experimental manipulations are used to prolong the processes of interest beyond 
their baseline durations. For example, a visual perception process may be prolonged by 
making the stimulus fuzzy; a decision process may be prolonged by increasing the number 
of choices available to the subject. These prolongations can be made singly or in com- 
binations. If each of several manipulations prolongs a different process, the increase in 
reaction time (RT) produced by performing the manipulations concurrently would be 
the sum of the increases produced by performing them singly. Sternberg (1969a) says 
this additive rule is very likely to hold, although not inevitable. We see below that if 
all the processes are not arranged in a sequence, the effects on RT of manipulations 
prolonging separate processes can be interactive. Therefore, investigators should be 
cautious about interpreting an interaction between factors as an indication that they 
affect the same process. 

The additive factor method generates falsifiable predictions since the effect of pro- 
longing any combination of processes concurrently should be predictable from the effects 
of prolonging them individually. However, when all the processes are arranged in a 
sequence the method cannot be used to obtain their order nor their durations. 

Not all psychological activities are suitably represented as a sequence of processes 
arranged end to end. For example, when a subject is given two tasks to perform simul- 
taneously the time required to complete both tasks is usually less than the sum of the 
times required to perform them separately (Kantowitz, 1974). Evidentially, some of the 
processes involved in the two tasks can be performed simultaneously. 

In general a task composed of several processes can be represented as a network in 
which each arrow represents a process (Fig. 2). T wo special types of network are the serial 
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FIG. 3. (a) A network with X and Yin parallel. (b) A dummy process D, with zero duration, 
rearranges X and Y so they are no longer in parallel. 

type of Fig. 1 and the parallel type in Fig. 3. Critical path analysis (Modor & Phillips, 
1970) is a set of techniques for planning and scheduling the processes in such a network. 
One problem which arises in critical path analysis is calculating the amount of time 

a task requires for completion given the structure of the network and the durations of 
the component processes. In studying reaction times we have the inverse problem: We 
know how much time a task requires for completion under various conditions and we 
want to know the structure of the task network and the durations of the component 

processes. 
In this paper we use critical path analysis to extend the additive factor method to 

networks in which the component processes need not be arranged sequentially. From 
a measurement point of view, we are measuring differences in reaction times to construct 

a scale of intervals on a network. We find that for a given task we can partially, and 
sometimes completely, determine the arrangement and ordering of the processes in 
the network. While we are not able to determine the durations of the processes exactly, 
we may be able to find intervals within which the durations lie. Finally, we find that 
verfication of the results of the method need not rest on evidence gathered by other 

means; measurements made using the method generate predictions which can be verified, 
or falsified, by other measurements made using the method. 

In the first part of the paper we discuss the effects which prolonging processes have 
on reaction times and the inferences which can be drawn from these effects about the 
structure of the task network and the durations of the processes. In the second Fart of 

the paper we apply our results to a Stroop-like task studied by Greenwald (1972); we 
find that two bottlenecks can occur when a subject prccesses two stimuli ccncurrently. 

Critical Path AnaLvsis 

We now present some concepts from critical path analysis (Kelley, 1961; AIodor & 
Phillips, 1970; Weist & Levy, 1969) and graph theory (Harary, 1969). Some of these 
concepts were applied to psychological tasks by Christie and Lute (1965). Consider a task 
composed of a finite number of processes all of which must be completed for the task 
to be completed. Each process has a starting point, a terminating point, and a duration. 
It may be that some processes must be completed before others can start. 

Such a task may be represented by a network (Fig. 2) in which each process is repre- 
sented by an arrow directed from the starting point of the process to its terminating 
point. None of the processes starting at a point may begin until a2Z the processes termina- 
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ting at that point are completed. Each arrow has associated with it a nonnegative real 

number indicating the duration of the corresponding process. The system of lines and 
points without the numbers is called a graph. Let G denote the graph associated with 
our task. We use capital letters S, Y, 2 ,... to refer to processes and small letters U, r,:, w,... 
to refer to points. We assume that in G every point is either the starting point or termi- 

nating point of some process, i.e., there are no isolated points. 
We allow more than one arrow to join two points; we say that two processes X and I’ 

are in pavullel if they have the same starting point and the same terminating point. A 

process with zero duration is called a dummy process; the function of such a process is 
merely to indicate precedence. One use of dummy arrows by some authors is to rearrange 
parallel processes so they are no longer in parallel (see Fig. 3); this simplifies notation 
somewhat. Kate that a task can be represented as a network in more than one way. 

A path from a point z+r to a point z, is an alternating sequence of points and arrows, 

% , 1-1 i t ZIl , x2 ) . . . , ‘rr, ) en in which all the points are distinct and each arrow Xi joins 

the points ~-r and a)i in that order. A path may consist of a single point. A nontrivial 
sequence vu , X1 ,..., zlU which would be a path except that its first and last points are 

identical is called a cycle. Paths provide an ordering on the points and arrows of the graph. 
If  a point u preceds a point 2~ on some path we write u <~ V. The same notation is used 
whenever any point or arrow precedes another point or arrow. 

Assumptions about the graph. If  there were a cycle in a task network, then the last 

process in the cycle would have to be completed before the first one could start and vice 
versa, so we assume that the graph G is acyclic, that is, G has no cycles. For points u and ‘5’ 
we write u 5 rl if u == z’ (U is the same point as ~1) or if u ( V. The reader can easily 
verify that in an acyclic graph 5 is a partial ordering on points, that is, if u, V, and w 

are points 

(ii) u 5 z’ and ej 5 u imply u = z!, 

(iii) if u 5 u and u 5 w then u 5 w. 

The relation 5 defined in a similar way for arrows is also a partial ordering. 

Since G has only a finite number of arrows and points and G has no cycles there must 
be at least one point which is the terminal point of no arrow. In a psychological task such 
points can represent the presentation of stimuli which are not preceded by any processes. 
While there could be several such points, we usually consider only the simplest case in 
which there is only one such starting point, which we will call s. There must also be in G 
at least one point which is the starting point of no arrow; in a psychological task such 
points can represent responses which are followed by no further processes. We usually 

assume we have only one such terminating point, t. For every point U, s 5 u 5 t. 

Assumptions about the durations. Let d(X) denote the duration of process X. The 
duration of a path is the sum of the durations of all the processes on the path. 

Suppose u 5 V. If  all the processes terminating at u have finished, the processes 
starting at rr can begin when and only when all the processes on all the paths between u 



GENERALIZED ADDITIVE FACTOR METHOD 109 

and v are completed, i.e., when and only when all the processes which are on the path 
of longest duration between u and v are completed. Let d(uv) be the duration of the longest 
path between u and v (or the duration of any path of maximal duration between u and v 
if several paths have the same duration and are longer than the others). If there is no 
path from u to zj in G we set d(uv) = - co. A path of maximal duration between s and t 
is called a criticaEpath, and its duration d(st) is the time required to complete the task; 
in a psychological task, d(st) = RT. 

If the terminating point of a process X is the starting point for a process Y then X 
and Y are said to be adjacent. Two points are said to be adjacent if they are the starting 
and terminating points of some process. For adjacent points u and v we let P(uv) be 
the set of all parallel processes starting at u and terminating at v. We denote the set of 
points which are adjacent predecessors of u by E(u) ( “entering u”) and we denote the 
set of points which are adjacent to and follow u by F(u). 

The converse graph G’ of a graph G has the same points as G but with all the arrows 
directed in the opposite direction. That is, for points u and v, u E E(v) in G iff u EF(v) 
in G’. The converse of a task graph may have no real world correlate, but we find the 
concept useful. If P is a path in G then P’, the corresponding path in the converse G’, 
contains all the processes of P but in a different order. Hence the duration of P’ is the same 
as the duration of P. If u precedes v in G we will let d’(vu) be the duration of the longest 
path between z and u in G’. 

The function d(uel) satisfies the following conditions, which we will call the longest 
path conditions. 

(i) d(uu) = 0, and if u ,< v then d(uv) 2 0. 

(ii) d(uv) = d’(w). 

(iii) If u 5 z! ,< w then d(uw) > d(uv) + d(vw). 

(iv) If u E E(v) then d(uv) > max{d(X) 1 X E P(w)}. 
(1) 

(v) If u 5 v then there exists a path u, X1 , p, , X2 ,..., X, , e) with 

d(w) = i d(&). 
i=l 

Note that condition (i) is implied by condition (v). The function d(uv) is similar to a 
distance function, but is different in some ways. In particular, (iii) is the reverse of the 
usual triangle inequality. In the kind of task we are considering, all the processes termi- 
nating at a point must finish before any process starting at that point can begin. For a task 
in which a process can start as soon as any process immediately preceding it is completed, 
we would be concerned with the shortest paths between points rather than the longest 
ones. The usual triangle inequality holds for the durations of shortest paths. The concepts 
of critical path analysis would apply to such a task, but the details would have to be 
modified, of course. 

There is an algorithm for calculating d(uv) when u 5 v (Modor & Phillips, 1970). 
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We illustrate the algorithm by calculating d(uv) for u and u in the network in Fig. 2, where 
we have written d(ux) in a circle above each point x between u and et. To start we set 
d(uu) = 0. Of the two processes between u andp the longer is B, so d(up) = d(B) = 5. 
At point q we notice there is only one process, D, which is an adjacent predecessor of q 
and which follows u; D starts at p, so d(uq) = d(up) + d(D) = 5 + 1 = 6. There are 
only two processes, C and E, which are adjacent predecessors of V. Process C can start 
at time 5 and has duration 7, hence to reach u via C requires 5 + 7 = d(up) + d(C) = 12 
units of time. Process E can start at 6 and has duration 2, hence to reach v via E requires 
6 + 2 = d(uq) + d(E) = 8 units. The time required to reach ZI via C is the larger time, 
so d(uv) = 12. 

To find d(uv) for a point u following u we consider all the processes which follow u 
and immediately precede v. We add the duration of each such process to the duration 
of the longest path from u to the starting point of the process, and we set d(uv) equal to 
the largest such sum. 

The algorithm is summarized in the following two equations. Let B(uv) be the set of 
all points i such that u 5 i 5 ‘u. Then 

It is not hard to show that Eq. (2) holds if and only if the longest path conditions (iii), 
(iv), and (v) hold. 

Sometimes it is convenient to calculate the duration of the longest path between two 
points by considering the converse graph. Noting that i E E(u) in G’ iff i EF(u) in G, 
and applying (2) to G’ we obtain 

Slack 

Suppose X precedes Y and that several other processes preceding Y are executed 
concurrently with X and take a relatively long time to be completed. Then the time when 
X is completed is not crucial for determining when Y can start. The amount of time by 
which X can be prolonged without delaying the start of Y is called the slack for X with 
respect to Y, written Sxr , 

We now derive an expression (Eq. (8)) f or slack in terms of the durations of paths in 
the network. We will see later that reaction times provide information about slacks, indi- 
rectly giving us information about path durations via Eq. (8). The reader uninterested in 
technical details may wish to skim ahead to this equation. Let us denote the starting 
point of a process X by x1 and the terminating point by xa . Let ES, denote the earliest 
starting time, measured from the start of the task, for a point u and let ES, denote the 
earliest starting time for a process X. Recall that s represents the start of the task. Since 
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all the processes starting at x1 can begin as soon as all the processes preceding x1 are 
finished, 

ESx = ES,, = d(sx,). (4) 

Note that ES, = 0. 
Let ET, be the earliest termination time for X. Then 

ET, = ES,, + d(X) = d(sx,) + d(X). (5) 

In Fig. 4 the earliest start time for C is 5 and the earliest termination time for C is 9. 

FIG. 4. The slack from A to C is 3 and the slack from A to t is 5. 

Note that -4 need not be completed at its earliest termination time in order for C 
to start at its earliest start time. The earliest termination for A is 2, but A could terminate 
as late as 5 and not delay the onset of C. Let LT xy be the latest time at which A’ can 
terminate and not delay the onset of Y. If Y follows X on a path, then, once X is com- 
pleted, Y can start as soon as all the processes on the longest path between the terminating 
point of X and the starting point of Y are done. That is, 

so 
ESY = LTxv + d(x,y,), 

LTxv = d(a) - d(w,). 

(6) 

If no path joins X and Y in G or in G’ then d(x,y,) = -co, so LTXY = co, that is, 
X can terminate at any time and not delay the onset of Y. For points x2 and y1 we write 

LTz2, = LTx, = LTXY and so on. Note that LT,, = d(st) = ESt . 
Let LSXv bk the latest starting time for X which does not delay the start of Y. If I7 

follows X on a path then 

LSXY = LTXY - d(X). (7) 

We write LS,, = LSXV . 
The slack f:r X with respect to Y is equal to the difference between the latest time 

at which X could terminate without making Y start late and the earliest time at which X 
could possibly terminate. By (5) and (6) if X precedes Y, 

Sxv = LT,, - ETx 

= d(sy,) - d(sx,) - d(X) - d(x,y,). 
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The slack for X with respect to Y can be written as the difference between the durations 
of two paths; one is the longest path going from s to the start of Y, the other is the longest 
path containing Xgoing from s to the start of Y. If  no path joins X and Y then Sxr = rx1. 
We write Sx, = s,yy . 

As an examble, in Fig. 4, S,, = 3. 

The amount of time by which the completion of X can be delayed without delaying 
the completion of the entire task is called the total slack for X, written Sxt . From (8) 

sxt = d(st) - dfsx,) - d(X) - d(x,t). (9) 

Using (9) we find S,, = 5 in Fig. 4. 
A process has a total slack of zero if and only if it is on a critical path. Such a process 

is called a critical process because prolonging it increases the reaction time. 
If  we think of a point u as a process of zero duration, then from (5) if u precedes z: 

ET, = ES,, 

and then from (5) and (6) 

S,, = LT,, - ET, = d(w) - d(w) - d(w). (10) 

It is important not to confuse the slack for X with respect to yi with the slack for x2 
with respect to yi . From (8), (lo), and (1) we have Sx, >, Sz22/1 ; these two expressions 

need not be equal. 
1 

In G’, the converse of G, let ES; be the earliest start time for u and let LTiy be the 
latest termination time for u with respect to s. From (4), (6), and (1) 

and 

ES:, = d’(b) 

= d(st) - LT,,t 

LTks = d’(ts) - d’(m) 

= d(st) - ES, . 

(11) 

(12) 

I f  X precedes Y in G we denote the slack from Y to X in G’ by Sk, . We omit the prime 
from S;, if the meaning is clear from context. 

An example of slack. Welford’s (1952, 1967) single channel hypothesis provides an 

example of slack in psychological tasks. Suppose two stimuli are presented, one after 
the other, and the subject is to make a response to each. We represent the interstimulus 
interval as a process in the task network (although there may be no corresponding action 
on the part of the subject). One version of Welford’s model assumes that making decisions 
requires access to a single central channel which can service only one stimulus at a time. 
If  the first stimulus occupies the channel while the second stimulus is presented, the 
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processing of the second stimulus must wait until the channel is free. So, according to 

the model, presentation of the second stimulus can be delayed somewhat without pro- 
longing the time elapsing from the presentation of the first stimulus until the response 
to the second; that is, the interstimulus interval has slack with respect to the response 

to the second stimulus. 

AP~ALPSIS OF THE TASK NETWORK: EFFECTS OF PROLONGING PROCESS 

So far we have assumed that the task under consideration can be represented as a 
network of partially ordered processes. Each process has a definite point at which it 
begins, a period during which it is executed, and a definite point at which it stops. There 
is a point s which precedes every process and every other point. All the processes on 
every path must be completed, and they must be completed in the order in which they 
lie on the path, The durations of processes and paths are fixed, not stohastic, and obey 

the longest path conditions (1). 
Now we make a further assumption based on a key idea of Sternberg’s (1969a) additive 

factor method. We assume we are given a set of experimental manipulations which 

selectively interfere with processes. We assume that each manipulation prolongs the 
duration of one process, but does not change the duration of any other process, nor does 
it change the graph. The usefulness of Sternberg’s idea of prolonging processes is that 
“stretching” the arrows leaves the topology of the network intact, facilitating mathematical 
analysis. 1Ye take d(X) as the baseline duration of X, so if X is prolonged by dX the new 

duration for S is d(X) + dX. The reaction time RT = d(st) for the task when all 
processes are at their baseline levels is considered to be the baseline reaction time; 
changes in reaction time are measured with respect to RT unless otherwise noted. We 
use RT(A,Yl ,..., AX,) to denote the reaction time when Xi ,..., li, have been prolonged 

by AXI ,..,, A,\;, , respectively. Other times and time intervals will be denoted analogously. 
We use the notation 

[a]- = a if a>0 

=o otherwise. 

The following identity can easily be proved, 

[a]+ + [b - [a]+]+ = max([a]+, [b]+j. (13) 

Suppose process X is prolonged by AS. I f  X is on a critical path then the reaction 

time is prolonged by AX. I f  X is not on a critical path and AX < Sxt then there is no 
change in RT. And, if AX > S,, then Sxt of AX is used to put X on a critical path 
and the remainder of AX increases RT. That is, 

RT(AX) = RT + [AX - S,,]+. (14) 

Let ART(AX) = RT(AX) - RT. 
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Additional details about prolonging a process. (This section is not essential for the 
main arguments.) The following theorem considers the effect which prolonging one 

process, H, has on another process, C. 

THEOREM 1. Let H and C be two processes. 

(a) If  H does not precede C, 

ES&AH) = ES,. 

(b) If  C does not precede H, 

(‘5) 

LT,,(AH) = LTc, + [AH - S,,]‘. (‘6) 

(c) If H precedes C, 

ES,(AH) = ES, + [AH - SHC]+. (17) 

(d) If C precedes H, 

LT,,(AH) = LTct + [AH - SHJ+ - [AH - Sk]‘. (‘8) 

Proof. (a) For a process A let p(A) be the largest number of processes on any path 
between s and a, . Suppose C is a process not preceded by H for which p(C) = 0. Then 
cr = s and ES&AH) = ES, = ES, . 

Suppose for all processes A not preceded by H if p(A) < n then ES,(AH) : ES, . 
Suppose C is a process not preceded by H with p(C) = n. Then, by (2) and (4), noting 
that E(c,) C B(sc,), 

= ESc. 

(b) For a process A let h(A) be the largest number of processes on any path from a, 
to t. Suppose C is a process not preceding H for which X(C) = 0. Then cp = t and since 
LT,, == RT, by (14) 

LT,,(AH) = LT,,(AH) = LTt, + [AH - SM]+. 

Suppose for all processes A not preceding H, if X(A) < n then LT,,(AH) = LTAt + 
[AH - SHt]+. Suppose C is a process not preceding H for which h(C) = n. We first 
derive an expression for LTc, when H is not prolonged. 
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If we prolong H by AH the above expression becomes 

LTc,(AH) = @$LTit(AH) - x~yi,(d(x)% 
2 

By the induction hypothesis, 

(c) By (2) and (4) ‘f 1 we remove all processes not preceding C from the network 
ES, is not changed. In the remaining subnetwork cr is the terminus since every process 
precedes cr and cr precedes no process. Let ES: and LTc*, be the earliest start time and 
latest termination time for cr in the remaining subnetwork. Using (b) of this theorem, 

ESJAH) = ES,*,(AH) = LT&(AH) 

= LT;,, + [AI-I - SK]+ 

= ESC1 + [AH - S,,]‘. 

(d) If C precedes H then in the converse graph H precedes C. Then by (c) of this 
theorem 

ES@H) = ES:, + [AH - Sj,,,]+. 

BY (ll), (14) and (6) 

LT,,,(AH) = RT(AH) - ES;,(AH) 

x LT,,, + [AH - S,,]’ - [AH - Sk]‘. Q.E.D. 

Effkcts of Prolonging Two Processes 

Our goal in this section is to describe what happens to reaction times when two processes 
are prolonged. Theorem 2 below shows that the effects depend on whether the two 
processes are on a path together or not. 
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This problem was investigated in another context by Shapley (1959) who derived 
equations for the maximal flow through a network as a function of the capacities of two 
arrows (Ford & Fulkerson, 1962). 

Let d,,(uv) be the duration of the longest path between u and w when X is prolonged 
by AX. We say that a process X is between points u and z, if u < X < 2’. From (IV) 
it is clear that if X is not between u and v then prolonging X does not change the duration 
of the longest path between u and V, that is, 

d&w) = d(w). (1% 

Prolonging one process may change the total slack available to another process. If 
prolonging X delays the termination of the task, then a process Y not on a path with X 
does not have to be finished as soon as usual; Y may gain some extra total slack. Let 
Sr,(AX) be the total slack for Y when X is prolonged by AX and suppose X is not on 
a path with Y. Then by equations (9) (19), and the assumption of selective inference 

S,,(AX) = 4&t) - &f(SY,) - 4x(Y) - 4dYd) 

= d4x(st) - d(st) + d(st) - d(sy1) - d(Y) - &Y,t). 

Then since by (14), d&St) - d(st) = [AX - Sxt]+, we have 

S,,(AX) = sy, + [AX - Sal+* (20) 

(Equation (24) below is the analogous expression for the case when X precedes I-.) 
The following theorem is our basic tool for analyzing the task network. When Stern- 

berg’s method is extended to tasks in which some processes are executed concurrently, 
the effect of prolonging both X and Y need not be the sum of the effects of prolonging 
them individually. Sternberg (1969a) pointed out that the effect of prolonging both 
of two processes in parallel would be the maximum of the effects of prolonging them 
individually. The theorem shows that this result is true in general for any two processes 
not joined by a path. Even if X and Y are on a path together, the effect of prolonging 
both need not be the sum of the effects of prolonging them individually. Investigators 
should be cautious about interpreting an interaction between two factors as an indication 
that the two factors influence the same process. Such interactions will be commonly 
found in tasks in which the mental processes are not arranged in a sequence of stages. 

THEOREM 2. Suppose X is prolonged by AX and Y by A Y. 

(a) If no path joins X and Y then 

ART(AX, AY) = max(ART(AX), ART(AY)}. (21) 

(b) Suppose X precedes Y and AX and AY are large enough so that ART(AX), 
ART(AY) > 0 and so that when X is prolonged by AX and Y by AY there is a critical path 
containing both X and Y. 
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Then 

dRT(AX, AY) = ART(AX) + ART(AY) + K(XY), (22) 

where K(XY) = Sxt - Sxu. 

Proof. (a) If we consider RT(AX, AY) to be RT(AX) plus the change in RT(AX) 
produced by prolonging Y by A Y, then by (14) and (20), 

RT(AX, AY) = RT(AX) + [AU - S,,(AX)]+ 

= RT + [AX - Sxt]+ + [AY - SYt - [AX - Sxt]+]+. 

Then, using identity (13), 

ART(AX, A Y) = max{[AX - Sxt]+, [A Y - Sr.,]+j. 

(b) By Eqs. (8) and (9) 

d(st) - d(sy,) = d(Y) + d(y,t) + s,, 
and 

By addition, 

RT = d(st) = +,) + d(X) + 4~4 + Sxv -t d(Y) C d(S) + S,t. 

When X is prolonged by AX and Y by A Y a critical path passes through both X and Y. 
Then the reaction time is equal to the duration of the longest path going from s to x1 , 
along X, from x2 to yi , along Y and from ys to t. Then by (19) and the assumption of 
selective interference, 

RT(AX, AY) = d(q) + d(X) + AX + d&y,) + d(Y) + AY + d(y,t). 

Subtracting the above two equations we obtain 

ART(AX, AU) = AX - Sxu + AY - Syt . 

Then by (IS), 

ART(AX, AY) = ART(AX) + Sxt - Sxu + ART(AY). Q.E.D. 

We call K(XY) the coupled slack between X and Y. It is the synergistic effect on 
reaction time of prolonging X and Y together. The magnitude of K(XY) can be deter- 
mined empirically by calculating the difference between the effect of prolonging X and Y 
simultaneously and the sum of the effects of prolonging them individually, for prolonga- 
tions which are not too small. 

BY (8) and (9), 

K(XY) = d(st) - d(sy,) - d(x,t) + d(x2yl). (23) 
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We will see as we go that coupled slack provides information about the scheduling and 
durations of processes. 

Note that the value of K(XY) is independent of dX and dY. If several levels of 
prolongations are used and dRT(dX, d Y) - dM’(dX) - dRT(d Y) changes with 
the levels of AX and AY then Theorem 2(b) does not hold for the experiment. This is 
the first of three tests of the validity of the method which we point out. 

As an example of the effect of coupled slack on reaction time, consider Fig. 4. Equation 
(22) applies to processes A and C. If we prolong A by AA = 7 the new reaction time is 13, 
so ART(AA) = 13 - 11 = 2. If we prolong C by AC = 6 the new reaction time is 15, 
so ART(AC) = 4. Now suppose we prolong A by 7 and at the same time prolong C by 6. 
The resulting RT is 19, so ART(AA, AC) = 8. We have calculated above that S,, = 5 
and S,, = 3, so K(AC) = 2. Hence, 

ART(AA, AC) = ART(AA) + ART(AC) + 2. 

Note that increasing d/l and AC leaves the value of K(AC) unchanged at 2. No path 
joins A and B in Fig. 4 and Eq. (21) holds for them. The coupled slack for A and B 
is not a real number; by Eq. (23) the coupled slack for two processes not joined by a path 
is negative infinity. 

Coupled slack can be positive, as in the example we just gave, but it can also be zero or, 
as we will see later, negative. If all the processes are arranged in a sequence, as in Fig. 1, 
then all slacks are zero and K(XY) = 0 for every pair of processes X and Y. Then (22) 
becomes 

ART(AX, AY) = ART(AX) + ART(AY), 

that is, the usual additive factor situation is a special case for which (22) holds. 
If X and Y are on a path together the value of K(XY) provides no information about 

which comes first on the path. Suppose X comes before Y in the task and consider the 
converse network in which Y comes before X. Let K’(YX) be the coupled slack in 
the converse network. Applying (8) and (9) to the converse we obtain 

s;,q = d’(h) - d’@y,) - d(Y) - d’(y,s) 

and 

s;, = w4 - WY,) - W) - 4YPd 

Subtracting and using the fact that d(uv) = d’(vu) we find 

K’(XY) = s;, - s;x 

= 44 - 4SYl) - 4%~) + W,Yd 

= K(XY). 

Therefore, K(XY) alone cannot be used to determine the precedence of X and Y. 
Incidentally, we have shown that S,, - Sk, = S,, - Sxv . 



GENERALIZED ADDITIVE FACTOR METHOD 119 

Small prolongations of processes on a path. What happens if X and Y are on a path 
together but their prolongations are too small for Theorem 2 to apply ? The answer 
turns out to be somewhat complicated. 

Let us begin by considering the change in the total slack for Y if X precedes Y and is 
prolonged by AX. By (8) applied to Sr, and Theorem I(b) and (c), 

S,,(AX) = LT,,(AX) - ET,(AX) 

= LT,, + [AX - Sxt]+ - ETy - [AX - S,,]+ (24) 
= S,, + [AX - S,,]+ - [AX - S,,r]+. 

(This equation is analogous to (20) for X and Y not on a path together.) 
We now derive the general expression for the change in RT when X and Y are prolonged 

and on a path together. Suppose X precedes Y and X is prolonged by AX and Y by AY. 
Then from (14) and (24) 

RT(AX, AY) = RT(AX) + [AY - S,,(AX)]+ 
(25) 

= RT + [AX - S& + [AY - SYt - [AX - S,,]’ + [AX - Sxy]+]+. 

Then by identity (13), 

ART(AX, AY) = max([AX - S,#, [Al’ - S,, + [AX - S,,]+]+>. (26) 

Note that when the assumptions of Theorem 2(b) hold all the bracketed expressions 
in (25) are positive and so ART(AX, A Y) = ART(AX) + ART(AY) + K(XY). 

Since any pair of processes are either on a path together or not, the only two kinds of 
interaction consistent with our method are those of form (21) or (26). We have nothing 
to say about interactions of other forms; such interactions indicate, of course, that some 
of our assumptions have been violated. For a discussion of interactions not covered by (21) 
or (26) but which were used to infer that the processing in a task was not done in a 
sequence of stages arranged end to end, the reader is referred to Miller (1976). 

Negative coupled slack. Suppose X and Y are joined by a path, but S,, < Sxr . 
Then K(XY) is negative. If S,, < AX < S,r or if Syl < AY < Sr, , then from (26), 
even though X and Y are joined by a path 

ART(AX, A Y) = ma4W - Sd+, LAY - &VI+}, 

which is the same as Eq. (21) for X and Y not joined by a path. If AX or AY is small 
and K(XY) < 0 then X and Y may mimic the behavior of processes not joined by a 
path. 

Townsend (1971, 1976) has discovered a fundamental limitation in analyzing reaction 
times. Processes in serial are generally indistinguishable form processes in parallel 
on the basis of the distributions of their completion times. Equations (21) and (22) 
overcome this limitation to some extent by considering processes which are prolonged. 
Nevertheless, Townsend’s problem of indeterminacy arises with prolonged processes; 

480/18/2-z 
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small prolongations cannot distinguish processes on a path together with negative coupled 
slack from processes not on a path together at all. 

How can we distinguish these cases empirically ? A sure method is to use long prolonga- 
tions, because Eq. (21) and (26) b h e ave differently as the levels of prolongations are 
increased. If AX and AY are so large that ART(AX), ART(AY) > RT, then if X and Y 
are joined by a path Eq. (22) should hold. So if Eq. (21) holds for such long prolongations 
one may conclude that X and Y are not joined by a path. Unfortunately, no simpIe 
method exists for distinguishing these two cases and the difficulties are accentuated by 
the stochastic nature of reaction times. 

FIG. 5. If the coupled slack between Xand Y is a negative real number then the task 
contains a Wheatstone bridge shaped subnetwork; s may coincide with a and t with b. 

network 

The following theorem shows that if K(XY) < 0 the task graph must contain the 
Wheatstone bridge shaped subgraph illustrated in Fig. 5 (or the converse subgraph). 
Note that it is not the shape of the network alone which yields negative coupled slack; 
for some durations of the paths, X and Y can be arranged in such a subgraph with 
K(XY) 3 0. 

THEOREM 3. Suppose Xprecedes Y. Then K(XY) < 0 ifl all of the following conditions 
hold. 

(i) The longest path from xa to y1 is not contained in the longest path from x2 to t; 

we can let p be the last point preceding y1 to be on both paths; 

(ii) the longest path from x2 to y1 is not contained in the longest path from s to y1 ; 
we can let q be the first point following xt to be on both paths; 

(iii) p # q and 

W < d&4 + W) - 4Pd. 

Proof. Suppose 0 > K(XY) = d(st) - d(sy,) - d(x,t) + d(x,y,). If y1 were on the 
longest path from x2 to t, then d(x,t) = d(x,y,) + d(yIt) and by substitution 

K(XY) = d(st) - d(sy,) - d(y,t) >, 0, 

a contradiction. Likewise, x2 is not on the longest path from s to y, . 
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Choose p and q as stated, then 

and 

4sYJ = 44 + 49YA 

4x,t) = 4%P) + 4PQ 

4x,y,) = 4%?P) + 4Pd + 49Yd 

Substituting these expressions into the equation for K(XY) yields 

K(XY) = d(d) - d(sq) - d(pt) + d(pq) < 0 

and statement (iii) follows immediately. 
If(i), (ii), and (iii) hold then clearly K(XY) < 0. Q.E.D. 

TABLE I 

ART(AX, AY) as a Function of AX and AY in Eq. (26) for X Preceding Y 

K(XY) = s,, - sxy > 0 
- 

AX AY ART(AX) ART(AY) ART(AX, AY) 

AXsSxysS,y, AY~.S;,ssyt 0 0 0 

SxusAXsSxt AYsS~~SS~~ 0 0 0 

Sxy<Sxt<AX AY<S&<Syt AX-Sxr 0 AX - Sx, 

AXsSxrsSx, S;x<AY~Syt 0 0 0 

S,, < AX Q S,, S;, Q AY < Syt 0 0 [AY -- Sy, + AX -- Sxy]+ 

Sxy s S,yt s AX S;, Q AY < Syr AX - Sxt 0 AX - S,, + AY- S;, 

AX Q SXY s Sx, S;, s Syt s AY 0 AY - Syt AY -- Syr 
S,, s AX s S,, S;, Q Syt Q AY 0 AY- Syt AY - Syf -t AX ~- S,, 

sx, S S,, S AX S;, < Syt < AY AX - S,, AY - Syt AX - S,7, -t AY - Sy, 1. ~~~ 

WXY) = SX‘ - sxy s 0 
.- 

AX AY ART(AX) ART(AY) ART(AX, AT’) 
-.~_~~ .~_ ~~_ .__ - ~~~._~ __~.__~ 

AXsSxcsSxy AY<syrssS;x 0 0 0 

SxiGA~~sSxy AYsS~,<S;~ Ax-sxt 0 AX - S,, 
I 

SxtsSxysAX AY<syt<syx AX - S,, 0 AX -- s,, 

AX,cSx,sSxy Sy,<d~<s;~ o AI’- Syt AY - syt 

SX, s AX S SXY SY~ S AY S S;, AX - S,y, AY - Syt max{AX - s,, , AI’ - .sv,; 

sxt Q SXY S AX Syc s AY Q S;, AX - Sxr AY - Syt AX -- S,, 
AX Q Sx, s Sx, syt s s,, ., < AY 0 AY - Syt AY - Syt 

&t S AX Q SXY Srr s S;, s AY AX - S,, AY - Syt AY - Syt 
SX~SSXYSAX S~,CSS;~<AY AX-SxL AY-Syt AX-Sxt-~-AY-Sy,.~~xy 



122 RICHARD SCHWEICKERT 

Because Eq. (26) is a complicated expression, we have displayed in Table 1 the value 

of ART(AX, AY) as a function of AX and A Y when (26) holds. 

Stochastic Networks 

We have assumed that a process X always requires the same amount of time d(X), 
and that if X is prolonged it is always prolonged by a fixed amount AX. In practice the 
durations and prolongations are likely to be random variables, creating a problem in 

applying the method to psychological data. 
Ginfortunately, the statistical problems involved in using the critical path method 

seem to be formidable. The interested reader is referred to Fulkerson (1962) and Sielken et 
al. (1974) for approaches to these problems. The crux of the difficulty is in equations such 

as (I), (21), and (26) w ic h h involve the maximum of two random variables in the stochastic 

situation. Finding the distribution of 2 = max{X, Y}, where X and Y are random 
variables is straightforward if X and Y are independent and identically distributed, 
but may be almost impossible if they are not. 

There is no problem when prolongations are long and processes are on a path together. 

Suppose S and Y are on a path together with say, X preceeding Y. Suppose AX, AI’, 
and the path durations are random variables. If  on every trial the prolongations are so 
long that AX >, Sxt , Sxu and AY > Sy,, Sk,, then by taking expected values in 
Eq. (22) we obtain 

EART(AX, AY) = EART(AX) + EART(AY) + EK(Xl-), 

where EZ denotes the expected value of a random variable 2. The tests of validity 
discussed in this paper turn out to be applicable to the expected values of the variables 

involved when the processes are on a path together and their prolongations are large. 
However, a problem arises in trying to use small prolongations to distinguish the case 

in which X and Y are not on a path together from the case in which they are on a path 

together with negative coupled slack. 
In the deterministic case, if 

max(ART(AX), ART(AY)j < ART(AX, AY) < ART(AX) f ART(AY) (27) 

then from Table 1 we could conclude that X and I’ are in a Wheatstone bridge. But since 

max(EART(AX), EART(AY)} < E max{ART(AX), ART(A Y)} < ERT(AX) 

+ EART(AY) 

it may often be the case that (27) holds for the expected values of the changes in reaction 
time, even though X and Y are not on a path together. In the deterministic case 
processes in a Wheatstone bridge can mimic processes not on a path together. 
This mimicking is facilitated by stochastic processing times. Further research on these 
problems is clearly needed. 
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Measurements of Time at Seaeral Points 

We have assumed so far that time is recorded at only two points, s and t, but we may 
be able to record time at several points in the network. We may know the times at which 
various stimuli are presented and responses made, and we may also know the times at 
which various physiological events occur. We will see that measurements of time at 
several points can provide valuable information about the order and durations of the 

processes in the network; furthermore, we can check such measurements against each 
other in order to verify our assumptions. 

A point of the network not preceded by any other point is called a source and a point 
not followed by any other point is called a sink. If  there are several sources and several sinks 

in the network, we can add a new point s preceding each source and a new point t following 
each sink; in the resulting network s 5 u 5 t for every point u and our previous results 
can be applied in a straightforward way. 

Consider a network with a single source s and suppose we can measure the reaction 

time RT, from s to a point u. I f  all the processes start as soon as possible then RT, = ES,. 
Consider a new network formed by removing from the task network all points and 
processes which do not precede u. Suppose X < Y < U. Note that the slack for X with 
respect to Y is independent of u. Let 

K,(XY) = sxu - sx, . (28) 

I f  dX and d Y are large enough so that Theorem 2(b) applies to the new network, then 

ART,(AX, AY) = ART,(AX) + ART,(AY) + K,(XY). 

Let S;,(U) be the slack for Y with respect to X in the converse of the new network. 
Note that for two points u and v  with X < Y < u, u it need not be true that S;,(u) 
equals Sk,(v). 

The next theorem presents two simple but important relationships which hold for 
reaction times measured at two points. 

THEOREM 4. Let process X precede process Y which precedes points u and v. 

(a) If  ARTJAX) and ARTJO,y) are both positive, then 

ART,(AX) -j- IQXY) = ART,(AX) + IQXY). 

(b) If  A Y is greater than S,.,, , Sy, , S;,(u), and S;,y(v), then 

ART,,(AX, AY) - ART,,(AY) = ART&AX, AY) - ART,(AY). (29) 

To apply Theorem 4(b) we must know whether the hypotheses hold; this can sometimes 
be inferred from the data by using Table 1. If  AX and AY are both relatively large then, 
of course, parts (a) and (b) are equivalent. The proof of (a) follows from (14) and the 
definition of coupled slack. The proof of (b) follows immediately from (26) applied to 
ARTJAX, AU) and ART,(AX, AY), see Table 1. 
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If dRT,(dX) and LU?Z’,(~X) are both positive, then the durations of the longest path 
between xa and u and the longest path between x2 and v are related by 

RT,(dX) - RT,,(dX) = d(x,u) - d(xp); (30) 

the derivation is straightforward. Another equation which is useful because it provides 
both a means of verifying our conclusions and of ordering the processes in the network is 
the following. If s precedes X, I’, and 2, which precede u and cl, and if furthermore 
X < I’ < Z, then 

&(X2) - K,(XY) = K,(XZ) - qxq; (31) 

again the derivation is straightforward. 
Theorem 4 is important for two reasons. First, it can be used to determine the order 

of two processes. When X precedes Y the equations of the theorem will not hold if 
expressions in X are substituted for the corresponding expressions in Y and vice versa 
(unless SIX(u) happens to equal Sk,(o) or both sides in (b) are 0). Second, the equations 
are independent of equations of form (22) and thus provide a test of the applicability of 
the method. This is the second of the three tests of the method which we discuss in this 
paper. 

Prolonging Several Processes. 

The results of prolonging several processes can, in general, be predicted from the 
results of prolonging them in pairs. This fact provides the third check on the applicability 
of the critical path method to a given set of data. 

Prolonging several processes which are on a path together can provide information 
about the order in which the processes are executed. The following theorem shows that 
if X, Y7, and Z are on a path in that order, that is, if Y is between X and Z, and if the 
prolongations AX, rlY, and LIZ are not too small, then 

LlRT(dX, LlY, AZ) = dRT(dA~ + K(XY) -+ LlRT(LlY) + K(XZ) + LlRT(dZ). 

Note that the term K(XZ) does not occur in the above expression, so we can learn that I’ 
is between X and Z in the following way. By prolonging one process at a time we can 
calculate dRT(dX), dRT(dY), and ART(dZ). Then by prolonging two of the processes 
at a time we can calculate K(XY), K( YZ), and K(XZ) from Eq. (22). Finally, we prolong 
all three processes together and try to fit the above equation with exactly two of the 
parameters K(XY), K(YZ), K(XZ). Th e p arameter left out corresponds to the first and 
last of the three processes. 

If Xi is a process we denote its starting point by xi,i and its terminating point by xi,s . 
To avoid the use of double subscripts we will sometimes write S(XY) for S,, . 

THEOREM 5. Suppose XI -c: X2 ( . . < X, and suppose for every i, i = l,..., n, 
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AXi is a prolongation of Xi such that AXi > S(Xit). If when every process Xi is prolonged 
by AXi there is a critical path containing all of X, ,..., X, then 

ART(A;k; ,..., AX,) = f ART(AXJ + n2 K(X,&+,). 
i=l i=l 

The proof is a straightforward generalization of the proof for Theorem 2(b). 
The following theorem considers the effect on reaction time of prolonging three 

processes at a time. The theorem considers all four possible arrangements of three 
processes in a graph, except for variations produced by relabeling (see Fig. 6). Note 
that the four possibilities can be distinguished from one another by prolonging the pro- 
cesses in pairs and using Theorem 2. There is only one case for which we cannot predict 
the quantitative effect on reaction time of prolonging three processes from the effect of 
prolonging them singly and in pairs. This is when the three processes are on a path 
together and the prolongations are small, case (d) below. Of course, if the prolongations 
are large, Theorem 5 applies to this case. 

X . . . -, . . . 
Y . . . . . . 
Z . . . .-, . . . 

(4 

X: 

. . .L . . .>L> 
. . . z ,. . . 

(b) 

X Y Z ----+...-*..- 

FIG. 6. The four possible arrangements of three processes in a graph. 

THEOREM 6. Let X, Y, and Z be three processes. 

(a) If no two of X, Y and Z are joined by a path (Fig. 6a) 

ART(AX, AY, AZ) = max(ART(AX), ART(AY), ART(AZ)}. 

(b) If X precedes Y on a path but no path joins Z with X or Y (Fig. 6b), 

ART(AX, AY, AZ) = max(ART(AX, AY), ART(AZ)}. 

(c) If Xprecedes Y on a path and X precedes Z on a path, but no path joins Y and Z 
(Fig. SC), 

ART(AX, AY, AZ) = max{ART(A.X, AY), ART(AX, AZ)). 
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(d) If X precedes Y which precedes Z on some path (Fig. 6d), 

ART(AX, A Y, AZ) 

= max(ART(AX, AZ), [AY - Syt + [AZ - S,,]+ + [AX - S,,]+]+}. 

Proof. Let X, Y, and Z be arranged as indicated in each case. 

(a) Using Theorem 2(a) to calculate the effect on RT of prolonging Y and Z by 
A Y and AZ, respectively, 

RT(AX, AY, AZ) = RT(AX) + max{[AY - &,(0X)]+, [AZ - S,,(AX)]+}. 

Now using Eq. (20) to obtain S,,(AX) and S,,(AX) and using Eq. (14) 

ART(AX, AY, AZ) = [AX - Sx,]+ + max{[AY - Sr, - [AX - SJ+]+, 

[AZ - S,, - [AX - S,,]+]+). 

= max{ART(AX), ART(AY), ART(AZ)}, 

where the last line follows from identity (13). 

(b) Using Eq. (26) to calculate the effect on RT of prolonging X and Y by AX 
and AY, respectively, 

RT(AX, A Y, AZ) 
= RT(AZ) + max{[AX - S&IZ)l+, [AY - Sr,(AZ) + [AX - SXY(AZ)I+I+I. 

Using Eq. (20) and noting that S&lZ) = S,r , 

ART(AX, AY, AZ) = [AZ - S,,]+ + max{[AX - Sxt - [AZ - Szt]+]+, 

[AY - S,, - [AZ - &,I+ + [AX - S,,l+l+> 
= max{ART(AZ), ART(AX, AY)}, 

where the last line follows from identity (13) and Eq. (26). 

(c) Using Theorem 2(a) to calculate the effect on RT of prolonging Y and Z by 
AY and AZ, respectively, 

RT(AX, AY, AZ) = RT(AX) + max{[AY - S,,(AX)]+, [AZ - S,,(AX)]+}. 

Using Eq. (24) and identity (13), 

ART(AX, AY, AZ) 
= [AX - S&j+ + max([A Y - Sr, - [AX - SxJ+ + [AX - Sx~l+l+, 

[AZ - S,, - [AX - S&j+ + [AX - S,l+]+) 
= max{ART(AX, AY), ART(AX, AZ)}. 
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(d) Using Eq. (25) t o calculate the effect on RT of prolonging X and Y by AX and 
A Y, respectively, 

RT(AX, AY, AZ) = RT(AZ) + [AX - S&AZ)]+ 

+ [AY - S,,(AZ) - [AX - S,,(U)]+ + [AX - S,,(AZ)]+]+. 

We apply Eq. (24) to the converse, noting that S&AZ) = Sxy , so 

ART(AX, AY, AZ) 

= [AZ - &,I+ + [AX - S,, - [AZ - S,,]+ + [AZ - S,,]+]+ 

+ [AY - SYt - [AZ - &,I+ + [AZ - S,,]+ 

-[AX - S,, - [AZ - S,,]+ + [AZ - &,]+I+ + [AX - S,,]+]+ 

= max(ART(AX, AZ), [AY - S,, + [AZ - S,,]+ + [AX - Sxu]+]+), 

where the last line follows from identity (I 3). Q.E.D. 

Two other expressions which may be useful for case (d) are 

(i) ART(AX, AY, AZ) = max{ART(AX, AY), [AZ - S,, + max{[AX - Sxz]+, 

[AY - S,, + [AX - S,,]+]+)]+}. (32) 

(ii) ART(AX, AY, AZ) = max{ART(AY, AZ), [AX - Sxt + max([AZ - Sax]+, 

LAY - &x + [AZ - &,l+l+>l+>. 

Processes in Serial and Parallel 

In both psychology and graph theory the terms serial and parallel are used in slightly 
different ways by different authors. For our definitions we say that X and Y are in series 
if they are on a path together and if a process other than X or Y can be on a path with X 
if and only if it is on a path with Y. We have already defined processes X and I’ to 
be in parallel if they start at the same point and terminate at the same point. The reader 
can easily show that X and Y are in parallel according to our definition if and only if 
they are not on a path together and if furthermore a process other than X or Y can be 
on a path with X if and only if it is on a path with Y. Extensive work on the stochastic 
behavior of serial and parallel processes has been done by Townsend (1971, 1972, 1976). 
In this section we show in Theorem 9 that processes X and Y are either in series or in 
parallel if and only if for every process A other than X or Y, K(AX) = K(AY). This 
theorem can be used to show that certain processes are not in series or in parallel. To 
establish that certain processes are in series or in parallel, however, would require 
knowing the coupled slack for every pair of processes. 

In the proof of Theorem 9 we use the following proposition; we are presenting it 
separately here because it illustrates the fact that Eq. (23) 

WXY) = 44 - db,) - d(+) + d(w,), 
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generates a variety of statements about the network which can be tested by comparing 
the magnitudes of the coupled slacks with one another. 

THEOREM 7. Suppose Xprecedes Y which precedes Z. 

(a) I f  yz is on the longest path from x2 to t then 

K(XZ) - IqYZ) 2 0. 

(b) I f  yz is on the longest path from x2 to z1 then 

K(XZ) - K(YZ) < 0. 

Proof. From (23) 

K(XZ) - K(YZ) = d(xgJ - d&z,) - d(q) + d(ypt). 

Adding and subtracting d(x,y,) we find 

WW - fW’Z) = Wv,) - 4wd - ~YG~I- Wet) - 4~~s) - 4~~91 

and the results follow immediately. Q.E.D. 

In the proof of Theorem 9 we use the following lemma, the proof of which is left to 
the reader. 

LEMMA 8. Suppose u precedes Q which precedes w. If u, X1 , v1 ,..., X, , w is a path 

from u to w and if for every i, i = l,..., n either Xi = Q or Xi is on a path with Q, then 

there is some i such that Xi = Q. 

THEOREM 9. Two processes X and Y are in series or in parallel i f f  for every process A 
other than X or Y, K(AX) = K(AY). 

Proof. Suppose K(AX) = K(AY) f or every A # X, Y. Then K(AX) = --CO iff 
K(AY) = - co, so X and Y must be either in serial or parallel. 

For the proof in the other direction, suppose X and Y are in series; with no loss of 
generality we can assume X precedes Y. Let A be another process. We wish to prove 
that K(AX) = K(AY). By hypothesis K(AX) = ---CO iff K(AY) = --CO, so if A is not 
on a path with X or Y we are finished. Suppose A is on a path with X and Y. There are 
two cases : 

(i) Suppose X precedes A which precedes Y. Any process on the longest path 
from xz to t is on a path with X and, by hypothesis, is either Y itself or is on a path 
with Y. Then by the preceding lemma, Y is on the longest path from x2 to t. Likewise, 
X is on the longest path from s to yr . 

Therefore, from Eq. (8) 

Sxt = 44 - [d(q) + d(X) + d(x,y,) + d(Y) + d(y,t)l = St-t. 
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Furthermore, Sxa = 0 because any process on the longest path from s to a, is on a 
path with Y and hence on a path with X. Then by the preceding lemma, X is on the 
longest path from s to a, , so S, = 0. Likewise, S;, = 0. Then 

K(XA) = Sxt - Sx‘4 = Syt - s;, = K(YA). 

(ii) Suppose A is not between X and Y. Without loss of generality we can assume .4 
follows J-, which follows X. Since X and Y are in series, by the preceding lemma Y is 
on the longest path from x2 to t and Y is also on the longest path from x2 to a, . Then by 
Theorem 7, K(XA) - K(YA) = 0. 

The proof for X and 1’ in parallel is left to the reader. Q.E.D. 

ANALYSIS OF A STROOP TASK 

If two stimuli are presented simultaneously, or in rapid succession, and a subject 
responds to one or to both, his responses usually take longer than they do when he 
responds to each stimulus presented separately (Kantowitz, 1974; Kerr, 1973). The 
phenomenon is called “psychological refractoriness” after Telford’s (1931) hypothesis, 
now discarded, that after processing one stimulus there is a “psychological refractory 
period,” like the refractory period for neurons, during which a second stimulus cannot 
be processed. A notable example of interference while processing two stimuli is the Stroop 
effect (Stroop, 1935). If a color name, say green, is written in colored ink, say red ink, 
the time required to name the ink color is inordinately long. 

We use the critical path method to analyze a Stroop-like experiment by Greenwald 
(1972), in which he manipulated two factors known to affect refractoriness, the difficulty 
of the decisions in the task and the degree of conflict in the responses. Response conflict 
occurs if, for example, one response is to press up while the other is to say “down”; 
such conflict is usually considered to produce reaction- time delays by affecting activities 
concerned with responding (Kantowitz, 1974; Keele, 1973). Decisions have a role in 
refractoriness according to Welford’s (1952, 1967) single channel theory because each 
stimulus must use a limited capacity decision mechanism and the mechanism can process 
only one stimulus at a time. Even if two stimuli are perceived simultaneously, each must 
wait its turn to use the central decision mechanism, and the waiting causes a delay in 
responding. 

In Greenwald’s experiment, subjects were presented with two stimuli almost simul- 
taneously and responded to each. On each trial, the word “left” or the word “right” was 
presented through earphones and within a few milliseconds of the word’s onset an arrow 
pointing either to the left or to the right was presented on a television monitor. Responses 
were made by speaking the word “left” or “right” and by moving the toggle switch to 
the left or right. In the high ideomotor compatibility condition, subjects moved the toggle 
switch in the direction indicated by the arrow and repeated the stimulus word. In the 
low ideomotor compatibility condition, the responses were interchanged, that is, subjects 
named the direction indicated by the arrow and moved the toggle switch in the direction 
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indicated by the word. (Subjects never had to make a right response to a stimulus indica- 
ting left, or vice versa.) A different group of eight subjects was run in each compati- 
bility condition. 

Reaction times were measured from the onset of the stimuli to the onset of each 
response. We let RT, and RTC be the reaction times for the verbal responses in the low 
and high ideomotor compatibility conditions, respectively; RT, and RT$ are defined 
similarly for the manual responses. Subjects were not instructed to respond in any order, 
but the verbal response was usually produced after the manual response. 

Our analysis is based on the reaction times for correct responses gathered on the last 
day of the experiment.l The data from the last day, when subjects were highly practiced, 

TABLE 2 

Reaction Times and Differences in Reaction Times in Greenwald’s Experiment” 

Low ideomotor compatibility 

Condition RTm RTv ART, 
- 

ADw , AD,, , AC 514 703 395 

ADw > ADA 465 519 286 

ADw , AC 358 465 179 

ADw 325 411 146 

ADA, AC 309 424 130 

ADA 292 411 113 

AC 182 252 3 
Baseline RT 179 216 - 

High ideomotor compatibility 
-- - 

Condition RT,* RT: ART; 
.-__ 

ADw , ADA, AC 297 351 124 

ADw , ADA 295 343 122 

ADw , AC 293 341 120 

ADw 292 331 119 

ADA, AC 245 317 72 

ADA 231 293 58 

AC 188 246 15 
Baseline RT 173 225 - 

ART, 

487 

363 

249 

195 

208 

195 

36 
- 

ART: 

126 

118 

116 

106 

92 

68 

21 
- 

D Times are in milliseconds. The ART columns are formed from the corresponding RT columns 
by subtracting the baseline RT from each entry. 

1 Greenwald, A. G. Personal communication, April 14, 1977. 
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give a slightly better fit to the equations and reveal more of the structure of the networks 

than Greenwald’s (1972) published data which were averaged over all 4 days. 
The reaction times and changes in reaction times in the various conditions of the 

experiment are given in Table 2. All measurements are in milliseconds. 
In some blocks of trials, each stimulus could indicate left or right with equal probability, 

independently of the other; in other blocks, one stimulus was always the same, while the 
other varied randomly between left and right; finally, in some blocks, both stimuli were 
always the same. In a condition if the word or the arrow required a choice between two 
alternatives there is a AD, or a AD, , respectively, in the corresponding row of Table 2. 

On some trials within a block, the arrow and the word indicated different directions, 
so there was response conflict, and on other trials, the stimuli agreed, so there was no 

response conflict. Let AC denote the presence of conflict. 
In our analysis of Greenwald’s experiment, we consider the processes affected by the 

experimental manipulations in pairs and try to determine whether the processes in a pair 
are on a path or not. For processes X and Y prolonged by AS and AI’, respectively, 
we see which of the following equations holds: 

(a) ART(AX, A Y) = max{ART(AX), ART(AY)J, 

(b) ART(AX, AY) = ARTlAX) + ART(AY) + K(XY). (22) 

We use K,(XY’) and Km(XY) in Eq. (22) t o d enote the coupled slack with respect to the 

verbal and the manual responses, respectively. The reader recalls from Theorem 2 that 
Eq. (21) holds only if X and Y are not joined by a path or if X and Y, having negative 
coupled slack, are joined by a path in awheatstone bridge arrangement(Fig. 5, Theorem 3) 
and the prolongations AX and AY are relatively small. Equation (22) holds if and only if 

X and I’ are on a path together and AX and A Y are relatively large. Occasionally we go 
into more detail using Eq. (26). 

To keep our discussion simple, we do not consider questions of parameter estimation 
and simply substitute data into equations in a straightforward way. More sophisticated 
techniques would improve our estimates and would, of course, change the amount of 
error we report, although not substantially. 

Efects of the Number of Alternatives 

Let the process affected by the number of possible responses to the arrow be D, ; 
presumably D, is the process of deciding which response the arrow requires. Likewise, 
let Dw be the process affected by the number of possible responses to the word. Table 2 
gives the effects on reaction times of prolonging D, and D, alone and in combination. 

Low ideowzotor compatibility. Let us begin with the low ideomotor compatibility 
condition and consider RT, , the reaction time for the verbal response to the arrow. We 
see from Table 2 that Eq. (22) holds for ART,(AD, , AD,) with &(D,D,) = -27; 
i.e., 363 = 19.5 + 195 - 27. We conclude that D, and D, are on a path. together, one 
preceding the other in accordance with single channel theory. If  D, and D, were not 
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on a path together, Eq. (21) would hold, but (21) is in error by 168. Since I&(&D,) 
is negative, Dw and D, are arranged in a Wheatstone bridge like the network illustrated 
in Fig. 7, or its converse. 

D W 

S .,-:-----:I xc F--Y---. 

a 
/ 

FIG. 7. A network for the low ideomoter compatibility condition. Only processes required to 
explain Greenwald’s data are included. The data do not indicate the ordering of C and DA . The 
longest path from s to m, not illustrated here, does not contain C, Z&+, , or DA. 

While K,(D,D,) is not much less than zero, our inference that D, and D, are arranged 
in a Wheatstone bridge is consistent with the results we obtain in the high ideomotor 
compatibility condition. 

For the manual response in the low ideomotor compatibility condition, Eq. (22) 
holds for ART,(AD,, AD,) with Km(DwDA) = 27, i.e., 286 = 146 + 113 + 27. 

(The fact that K,{D,D,) was negative does not imply that Km(DwDA) must be negative.) 
The idea that D, and D, are on a path together in the low ideomotor compatibility 
condition is strongly supported; Eq. (21), w ic would hold otherwise, is in error by 140. h h 

Which comes first, Dw or D, . ? By Eq. (29), if D, precedes D, we would expect 

ART,(AD,, AD,)- ARTJAD,) = ARTm(ADw 7 AD,) - ARTdADw). 

Calculating from Table 2 we find that the left-hand side is 168 while the right-hand side 
is 140, so this equation does not hold very well. On the other hand, if D, precedes D, 
we would expect 

ART,(ADw > AD,)- ART,(AD,) = ARTm(ADw, ADA)- ARTdAD,). 

The left-hand side is 168 and the right-hand side is 173; since the error is only 5 we 
conclude that D, precedes D, 

Let us investigate the location of the onset of the manual response with respect to 
Dw and D,. Let 6 and x be the terminal points of D, and Dw , respectively, and let m 
and u be the onsets of the manual and verbal responses, respectively (see Fig. 7). While 
we cannot locate point m precisely, the following remarks restrict the possibilities: 
(a) Point m is not on the longest path from x to ~2, otherwise by Eq. (8) we would have 

L - sz!, = hl > which must be nonnegative. But S,, - S,, = ART,,(AD,) - 
ART,(ADw) = -49 which is negative; (b) likewise, m is not on the longest path from 
b to v; (c) process DA precedes both m and V, otherwise prolonging DA would not increase 
both the manual and the verbal reaction times; and (d) remarks (b) and (c) indicate that 



GENERALIZED ADDITIVE FACTOR METHOD 133 

the longest path from b to m must branch from the longest path from b to ZJ at some 

point; we have placed the branching point at b in Fig. 7, but the point may occur after b. 

High ideomotor compatibility. Turning to the high ideomotor compatibility condition 

we see that ART,*(ADw , AD,) is about equal to the maximum of ART$(ADw) and 

ART$(AD,), i.e., 118 = max(106, 68) with an error of 12. Since Eq. (21) holds, it may 
be that Dw and D, are, as in Fig. 8, not joined by a path or it may be that D, and D, 
have negative coupled slack and are arranged in a Wheatstone bridge like the network 
in Fig. 7 or its converse. Whether or not D, and D, are on a path together, each precedes 
v, the onset of the verbal response, since prolonging either of them individually prolongs 

RT$. 

D, and C 

s~->i-----+~ 

DW 

FIG. 8. A network for the high ideomotor compatibility condition. The order of C and DA is 
not indicated by the data. 

Considering the manual response, we find that Eq. (21) holds for RTg(AD, , AD,), 
i.e., 122 = max(l19, 58) with an error of 3. Furthermore, D, and D, both precede m, 

the onset of the manual response, since prolonging either D, or D, individually prolongs 
RTZ . A network including D, , D, and both responses in the high ideomotor compati- 
bility condition is shown in Fig. 8. The actual task network may, of course, contain 

processes not indicated in the figure, in particular, there are almost certainly perceptual 
processes coming before the decisions. 

Networks other than the one in Fig 8 are possible Recall that x and b are the terminal 
points of Dw and D, , respectively. The point m could be on the longest path from b 
to 21, on the longest path from x to v, or on both. Furthermore, D, may precede D, or 

D, might not be on a path with Dw . No strong conclusions about these possibilities 
can be drawn from the data. 

Although it is possible that the networks in the two conditions may have the same shape, 
the locations of some of their processes must be different, since in one condition the 

verbal response is made to the word, while in the other is made to the arrow. 
Process B in Fig. 7, which may have zero duration, indicates that one decision precedes 

the other. According to Welford’s single channel theory the bridge B would be present 
in the high ideomotor compatibility condition, although the prolongations ADw and AD, 
may not have been long enough to reveal its existence. According to Greenwald’s theory, 

on the other hand, in the high ideomotor compatibility condition the feedback from the 
response resembles the stimulus, and this unusual characteristic of the condition allows 
the limited capacity decision mechanism postulated by Welford to be bypassed. Further 
experiments are required to establish the existence or nonexistence of a path between 
decisions when there is high ideomotor compatibility. 
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Eflects of Response Conflict 

Low ideomotov compatibility. Let C be the process affected by response conflict. In 

the low ideomotor compatibility condition we find that C is on a path with Dw since 
Eq. (22) holds for ART,(AC, AD,) with K,(CD,) = 18, i.e., 249 = 195 + 36 + 18. 
Note that C precedes the manual response because RTm(ADw , AC) > RTm(ADw), 
that is, the manual reaction time sometimes changes when C is prolonged. Since 

ART&AC) equals 3, it is barely greater than zero so the hypotheses of Theorem 2 are not 
satisfied. Therefore Eq. (22) cannot be used to find the value of Km(CDw). We show 
shortly that K&CD,) = 67, but first we show that D, precedes C. 

The data show that ART&AC, ADw) > ART&AD,) > 0 and ART,(AC) is close 
to zero. Looking for this combination in Table 1 we find that Km(CDw) > 0. Further- 
more, if C precedes Dw (which we show is wrong) then line 8 of Table 1 shows that 

AD, > S~(D,C), S(D,m). Table 1, line 9, shows also that for the verbal RT, AD, > 
S:(D,C), S(D,u). Then Th eorem 4(b) applies, and if C precedes Dw we should have 

ART,(AC, AD,) - ART,!AD,) = ART&K’, A&v) - ARTdAD,). 

But the left-hand side is 54 while the right-hand side is 33; the error is 21 so the equation 
does not hold well. We conclude that the hypothesis that C precedes Dw is wrong, 
hence Dw precedes C. We test this conclusion below. 

Now, from Theorem 4(a), 

ART&lD,) + KQwC) = ART,(ADw) + K,(DwC). 

Calculating, we find that Km(DwC) = 67. 
Is C on a path with D,? I f  so, then Eq. (31) should hold. Suppose D, precedes C. 

Then by Eq. (31) 

K,(D,C) - K,(DwD,) = Kn(DwC) - G(DwD,). 

The right-hand side is 45 and the left-hand side is 40. This equation validates our con- 
clusion that Dw precedes C and that Km(CDw) = 67. Furthermore, the equation shows 
that C is indeed on a path with D, . We do not know whether C precedes or follows D, , 
however, since the above equation is equivalent for both cases. 

Which equation, (21) or (22) applies to C and D,? For the verbal reaction times, 
Eq. (22) holds for C and D, with K,(CD,) = -23, i.e., 208 = 195 + 36 - 23. 
However, one could argue that Eq. (21) holds instead, since 208 = max(195, 36) with 
an error of 13. Either way since C and D, are on a path together they are on a Wheatstone 
bridge. 

Since ARTm(AC) is nearly zero we cannot apply Eq. (22) to ART&AC, AD,). Equation 
(21) holds approximately, however, since 130 = max(ll3, 3) with an error of 17. 

Incidentally, none of the terminating points of C, D, , or D, is on the critical path 
from s to m because Km(CDw) and Km(DwDA) are both positive. Therefore each of these 
processes has positive total slack with respect to m. 
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High ideomotor compatibility. In this section we establish an important fact: The 
scheduling of mental processes is not fixed but depends on the experimental task. In 
particular, the positions of Dw and D, are probably interchanged in the high and low 
ideomotor compatibility conditions. 

Recall that in the low ideomotor compatibility condition C and D, are on a path 
together but not in a Wheatstone bridge, while C and D, are in a Wheatstone bridge. 
In the high ideomotor compatibility condition, it is C and D, which are on a path together, 
but not in a Wheatstone bridge, while C and D, are either in a Wheatstone bridge or 
not on a path together. 

Here are the details. Equation (21) holds for C and D, . From Table 2, 
ART,*(AD, , AC) is about equal to the maximum of ARTz(AD,) and ART:(AC), i.e., 
116 = max{l06,21} with an error of 10. And ARTz(AD, , AC) is about equal to the 
maximum of ART,$AD,) and ART$(AC), i.e., 120 = max(ll9, 15} with an error of 1. 
We conclude that C and D, are either not on a path together or are on a path together 
in a Wheatstone bridge. 

Processes C and D, have additive effects in the high ideomotor compatibility condition. 
Equation (22) holds for the verbal reaction times; ARTz(AC, AD,) is about equal to the 
sum of ART,*(AC) and ARTz(AD,), i.e., 92 = 68 + 21 + 3. Likewise, for the manual 
reaction times, ART,$(AC, AD,) is about equal to the sum of ARTz(AC) and 
ARTz(AD,), i.e., 72 = 58 + 15- 1. We conclude that C and D, are on a path together. 

We do not have enough information to order C and D, . Theorem 4 holds almost as 
well for C preceding D, as for D, preceding C, and it is hard to make a strong case for 
one order over the other. 

Figure 8 illustrates the scheduling of the processes in the high ideomotor compatibility 
condition. The ordering of C and D, has been left unspecified. For simplicity we have 
drawn m on the longest path from the terminating points of Dw , D, , and C; nothing 
in the data rules out this possibility. 

Discussion 

The interchange of the roles of D, and D, in the two compatibility conditions has 
important implications for theories of the Stroop effect. Many theories, e.g., Morton 
(1969), state that in the Stroop task the word automatically has access to the single 
channel before the color. Greenwald’s data complicate the picture. We do not know if 
one decision precedes the other in the high ideomotor condition. But if one decision does 
come first it is probably the decision about the arrow. Note that since the stimuli are 
the same in the two ideomotor compatibility conditions, the positions of the decisions 
have been interchanged for reasons unrelated to stimulus features per se. 

It may be a general rule that the subject makes his decisions in the order in which the 
corresponding responses occur. Greenwald’s data are consistent with this rule. It is 
possible that the subjects learned to make their decisions in a certain order as the experi- 
ment went on. Part of the interference in the Stroop task as it is usually performed may 
occur because the subjects need to make two decisions at about the same time but do 
not have a system which automatically makes one decision first. Time may be required 
to decide what to decide first. 

@o/18/2-3 
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We call C the correlation process. It has properties very similar to those of a process 
hypothesized by Keele and Neil1 (in press) which coordinates information activated in 
memory. The coordinating process, like C, resolves response conflict. It is executed 
following processes concerned with the number of alternative stimuli. The coordinating 
process has, however, at least two functions which may not apply to our process C. 
First, in the view of Keele and Neil1 the coordinating process selects information from 
codes activated in memory. Second, the process coordinates information from the 
environment with information regarding goals. Process C in the network model may 
be part of a more complicated system having the functions postulated by Keele and Neill. 

Durations of Paths 

Several equations provide information about the durations of the longest paths between 
points in the network. We present the highlights and leave the details to the interested 
reader. A thorough treatment of path durations requires a more sophisticated procedure 
for estimating parameters. We have chosen our estimates of coupled slack to make 
Eq. (22) hold exactly when it applies, but then other equations hold with some error. 
More sophisticated estimates would distribute the error more uniformly over the 
equations. 

We have an equation of form (22) for every coupled slack K(XY), and these provide 
bounds on path durations. For example, in the low ideomotor compatibility condition 
K,(DwD,) = -27. Recall that a is the starting point of DA and x is the terminal point 
of Dw . Then by (23) 

d(m) - d(su) - d(m) + d(m) = -27. 

Then since d(sv) - d(xv) >, 0 we obtain 

d(m) > 27. 

Considerable information is provided by Eq. (30). We find, for example, recalling that b 
is the terminating point of DA , 

d(h) - d(h) = RT,(dD,) - ATm(dDA) = 119. 

Since d(sv) = RT, = 216 while d(bv) > 119, over half of the verbal reaction time 
elapses after the subject has decided which verbal response is required. 

The decision about the arrow is completed before 97 milliseconds elapse because 

d(d) < d(w) - d(h) 

< 216 - 119 = 97. 

We also find from Eq. (30) that 

d(m) - d(m) = RT,(dDw) - RTm(dD,) = 86. 
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We cannot use Eq. (30) to learn about the durations of paths from C to the responses 
because dRT,(dC) is nearly zero. 

Prolonging Three Processes 

In the high ideomotor compatibility condition we know that C and D, are on a path 
together, but unfortunately we know little else. Suppose D, is not on a path with either 
C or D, . Then Theorem 6(b) should apply. Since 

ART$(AC, ADw , AD,) == ART;(AD,), 

i.e., 124 is about equal to 119 with an error of 6, the theorem holds. Theorem 6(b) also 
holds tolerably well for the verbal reaction times since 

ART;(AC, ADw , AD,) = ART:(AD,), 

i.e., 126 is about equal to 106 with an error of 20. The fact that the error is so large may 
indicate that C, D, and D, are all on a path together so that Theorem 6(b) does not hold 
and Theorem 6(d) applies instead. The data are entirely consltent with Theorem 6(d). 

The above equations provide support for the critical path method, but tell us little 

about the task network since several arrangements of C, D, , and D, lead to equations 
of Theorem 6 which all hold reasonable well. 

For the low ideomotor compatibility condition, we know Dw precedes C and D, 
and we know C and D, are on a path together. Therefore Theorem 6(d) should apply 
but we see that it does not hold with an acceptable error. The failure may occur because 
more practice is required, this particular case is the only case in which subjects must take 
two nontrivial decisions, the results of which conflict. This is only speculation, I do not 

know why the equation does not hold. 
Consider Theorem 6(d). Suppose D, precedes C which precedes DA . (The fit is worse 

if we assume otherwise.) Theorem 6(d) states 

ART,(AD, , AC, AD,) 

:= max{ART(AD, , AC), [AD, - 5’~~~ + max{[A& - SD~D~]+, 

[AC - SmA + [AD, - ~,,,1+1+H+>~ 

Note that (a) AD, - Sbo, = ARTm(AD,) + Km(DwD,J = 146 + 27 = 173, (b) 

A&-S, D = ARTm(ADw) + k;n(D&) = 146 + 67 = 213, and (c) if we assume 
ART,(AC, WdfiJ > ART&AD,) then AC - SCDA = 17 from Table 1. Substituting 

these values we find the left-hand side to be 395 while the right-hand side is 1 I3 2. 17 + 
213 = 343. The error is 52 which is not satisfactory. The equation is also in error for 

the verbal reaction times, the calculation is left to the reader. 
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