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Rewards shape attentional search modes
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Visual attention can be configured for specific stimulus features (feature search
mode) or it can be non-specifically set for salient pop-outs (singleton detection
mode). Additionally, monetary rewards have been shown to bias attention
toward specific features, but it is unknown whether secondary reinforcers
(images of US$) can shape global attention via search modes. In a between-
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group study, we trained participants to value one search mode over the other. In
a testing phase, a salient distractor captured the attention of the value-singleton
group; however, the value feature group was completely unaffected. This
suggests that rewards automatically bias global attention mechanisms and
potentially mediate the handoff between stimulus-driven and goal-directed
attentional control.
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When conducting a visual search, humans can adopt at least two different
search modes. The so-called singleton search mode is primarily stimulus-
driven. For example, when subjects search for a pop-out target, singleton
distractors usually capture attention (Theeuwes, 1992). In contrast,
feature search mode is primarily goal-directed. If a subject is in feature
search mode and searches for a red target, then a template-matching
red distractor, but not a green distractor, will capture the subjects’ atten-
tion (Folk, Leber, & Egeth, 2002). When given the option, subjects often
default to the easier singleton search mode (Kawahara, 2010). We won-
dered if we could use implicit reward stimuli (US bill images without
actual payment) to incentivize subjects to use the more difficult feature
search mode.

Methods

The experiment involved a training phase with rewards and a testing phase
with a critical distractor. Twenty-four subjects completed six alternating
train-test blocks of 72 trials (i.e., ABABAB design). Stimulus displays for the
two phases are illustrated in Figure 1(a). Training consisted of two types of
trials—feature search displays and singleton search displays. An equal
number of these displays were randomly intermixed within each training
block. Subjects searched for a line segment contained within a shape
(circle, diamond, hexagon, square, pentagon, or heptagon) and reported its
orientation (vertical or horizontal). There were six shapes presented on
every trial. On singleton search trials, the target always appeared within a
unique shape (e.g., diamond amongst squares). On feature search trials, the
target was always inside a circle and the remaining shapes were
heterogeneous.

During the training phase only, images of US bills appeared after correct
trial performance. Twelve subjects, hereafter referred to as the value-singleton
group, were highly rewarded (image of US$20 bill shown) after singleton
search trials and lowly rewarded (image of US$1 bill shown) after feature
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search trials. This contingency was reversed for the other 12 subjects, here-
after referred to as the value-feature group. Critically, all subjects knew in
advance they were to receive a fixed amount of course credit and zero mon-
etary payment as compensation.

The testing phase was identical to the singleton search condition of the
training phase except the target was always a circle and a single non-target
shape occasionally appeared (50%) as a uniquely coloured distractor (e.g.,
red square amongst yellow squares and yellow circle). The colour singleton
was poised to distract attention away from the target via stimulus-driven
attentional capture.

Figure 1. (a) Training and testing phase schematics. Search displays were differentially
reinforced between two groups. The figure depicts the contingency for the value-single-
ton group. The reward contingency was reversed for the value-feature group (not
depicted). The testing phase was identical for both groups. The dashed line depicts a
colour singleton distractor that was present on 50% of the testing trials. (b) Mean RT
and error rates. Errors bars represent 95% within-subject confidence intervals (Cousineau
& O’Brien, 2014; Loftus & Masson, 1994).
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Subjects engaged in singleton search mode are non-specifically looking for
the different item and thus are particularly prone to salient distractors.
However, subjects engaged in feature search mode are looking for a specific
shape (circle) and thus should be configured to easily avoid colour-induced
distraction. Therefore, we hypothesized that if rewards bias search mode
behaviour, then participants in the value-singleton group should show evi-
dence of greater distraction in the testing phase.

Results

Data trimming

Incorrect trials and response latencies ±2.5 SDs of the mean were removed
from analysis (this eliminated 6.5% of the data).

Training phase

Mean correct response times (RTs) for training trials were separately com-
puted for singleton and feature search displays (see Figure 1(b)). These
values were entered into a mixed model repeated-measures ANOVA.
Feature search displays produced longer RTs (M = 1172 ms, SEM = 49.0 ms)
compared to singleton search displays (M = 1010 ms, SEM = 34.6 ms, F(1,22)
= 36.81, p < .001, h2

p = .63). The between-group effect was not significant, F
(1,22) = .56, p = .46, h2

p = .03. Importantly however, the group x search
display interaction was significant, F(1,22) = 9.47, p = .006, h2

p = .30. Follow-
up analyses revealed that the value-feature group showed a greater RT differ-
ence between search conditions (243 ms for value-feature, t(11) = 5.32, p
< .001, compared to 80 ms for the value-singleton group, t(11) = 2.91, p
= .01). There was no significant effect for an analogous analysis of mean
error rates, ps > .60.

Testing phase

Mean correct-response RTs for testing trials were computed separately for dis-
tractor present and absent trials (see Figure 1(b)). These values were entered
into a mixed model repeated-measures ANOVA. This analysis revealed a
main effect of distractor status F(1,22) = 35.60, p < .001, h2

p = .62. Distractor
present displays (M = 824 ms, SEM = 31.4 ms) produced longer RT compared
to distractor absent displays (M = 786 ms, SEM = 31.3 ms). The between-
group effect was not significant, F(1,22) = .02, p = .90, h2

p = .001. Similar to
training, we also observed a significant group x distraction interaction, F
(1,22) = 36.81, p < .001, h2

p = .63. Follow-up analyses revealed that the value-
singleton group showed a significant distraction effect of 77 ms, t(11) = 7.31,
p < .001, whereas the value-feature group exhibited no distraction (M =−1
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ms, t(11) = .089, p = .93).There was no significant effect for an analogous analy-
sis of mean error rates, ps > .48.

Discussion

In this experiment, rewards delivered during a training phase effectively
biased attentional control in a subsequent testing phase. When subjects
were highly rewarded after completing singleton search, they apparently per-
sisted in singleton search mode. In contrast, when subjects were highly
rewarded after completing feature search, they persisted in feature search
mode. Critical group interactions were observed in training and testing
phases. Importantly, the only manipulated difference between the groups
was the treatment of reward contingency. Therefore, we conclude that atten-
tional control settings automatically adjust to reflect fluctuations in value-
based environmental contingencies. Furthermore, rewards effectively
mediate the bridge between stimulus-driven and goal-directed control set-
tings. These findings agree with contemporary thoughts on attentional
control (Vecera, Cosman, Vatterott, & Roper, 2014) and reward-based atten-
tion (Anderson, 2013; Awh, Belopolsky, & Theeuwes, 2012).
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